Anti-neutrinos from nuclear reactors Chasing θ_{13}

Double Chooz

ICEPP, 18th of December 2006

H. de Kerret APC / Collège de France

Recent discoveries in Neutrino Physics

Non-accelerator experiments have changed our understanding of neutrinos

Atmospheric+Solar v (Super-K)

Solar (SNO)

Reactor (KamLAND)

Neutrinos are <u>not massless</u>

(mass is small: $m_{ve} < 0.0000059 m_{e}$)

• Evidence for neutrino flavor conversion

 $\nu_e\!\!\leftrightarrow\!\nu_\mu\!\!\leftrightarrow\!\nu_\tau$

Combination of experimental results show that *neutrinos oscillate*

Neutrino oscillations

Neutrino mass matrix

Constraining the neutrino sector $\sqrt{2}$

But no absolute mass scale coming from oscillation experiments --> β & $\beta\beta0v$ decays ?

θ_{13} & beam experiments

LBL v_{μ} disappearance : $\sin^{2}(2\theta_{23}) \rightarrow 2$ solutions : $\theta_{23} \& \pi/2 - \theta_{23}$ $|\Delta m^{2}_{13}| \rightarrow 2$ solutions $m_{1} \times m_{3}$ or $m_{3} \times m_{1}$ Appearance probability : $P(v_{\mu} \rightarrow v_{e}) \sim K_{1} \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13})$ $+ K_{2} \sin(2\theta_{23}) \sin(\theta_{13}) \sin(\Delta m^{2}_{31}) \cos(\delta)$ $\pm K_{3} \sin(2\theta_{23}) \sin(\theta_{13}) \sin(\delta)$ $+ \dots$ · K_{1}, K_{2}, K_{3} : constants known with experimental errors · dependence in $\sin(2\theta_{23}), \sin(\theta_{23}) \rightarrow 2$ solutions · dependence in $sign(\Delta m^{2}_{31}) \rightarrow 2$ solutions

• δ -CP phase ϵ [0,2 π] \rightarrow interval of solutions

θ_{13} & reactor experiments

 \cdot <E_v> ~ a few MeV \rightarrow only disappearance experiments

 \rightarrow sin²(2 θ_{13}) measurement independent of δ -CP

 $\cdot 1 - P(v_e \rightarrow v_e) = \sin^2(2\theta_{13})\sin^2(\Delta m_{31}^2 L/4E) + O(\Delta m_{21}^2/\Delta m_{31}^2)$

 \rightarrow weak dependence in Δm^2_{21}

• a few MeV v_e + short baselines \rightarrow negligible matter effects (O[10⁻⁴]) $\rightarrow sin^2(2\theta_{13})$ measurement independent of sign(Δm_{13}^2)

Complementarity with T2K

Assumptions:

- Double Chooz starts 2009 (2 detectors)
- **T2K** starting with full intensity 2011-2012

 \succ sin²(2 Θ_{13}) = 0.08, Δm²₂₃ = 2.0·10⁻³ eV²

θ_{13} seems in reach ...

Reference	$\sin heta_{13}$	$\sin^2 2\theta_{13}$
SO(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold SO(10)		
Asaka, Buchmüller, Covi [41]	0.1	0.04
SO(10) + flavor symmetry		
Babu, Pati, Wilczek [42]	$5.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, Tobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Barr [45]	0.014	$7.8 \cdot 10^{-4}$
Maekawa [46]	0.22	0.18
Ross, Velasco-Sevilla [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SO(10) + texture		
Buchmüller, Wyler [50]	0.1	0.04
Bando, Obara [51]	$0.01 \dots 0.06$	$4 \cdot 10^{-4} 0.01$
Flavor symmetries		
Grimus, Lavoura [52, 53]	0	0
Grimus, Lavoura [52]	0.3	0.3
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Mohapatra [55]	$0.08 \dots 0.4$	$0.03 \dots 0.5$
Ohlsson, Seidl [56]	$0.07 \dots 0.14$	$0.02 \dots 0.08$
King, Ross [57]	0.2	0.15
Textures		
Honda, Kaneko, Tanimoto [58]	$0.08 \dots 0.20$	$0.03 \dots 0.15$
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	$0.01 \dots 0.05$	$4 \cdot 10^{-4} 0.01$
Ibarra, Ross [61]	0.2	0.15
3×2 see-saw		
Appelquist, Piai, Shrock [62, 63]	0.05	0.01
Frampton, Glashow, Yanagida [64]	0.1	0.04
Mei, Xing [65] (normal hierarchy)	0.07	0.02
(inverted hierarchy)	> 0.006	$> 1.6 \cdot 10^{-4}$
Anarchy		
de Gouvêa, Murayama [66]	> 0.1	> 0.04
Renormalization group enhancement		
Mohapatra, Parida, Rajasekaran [67]	0.08.0.01	0.03 0.04

Table 1: Incomplete selection of predictions for θ_{13} . The numbers should considered as order of magnitude statements.

A Theoretician joke?

Double Chooz 3y sensitivity

a Course is

50 Years of detector developments

- Huge progress:
 - from 10 meters of the reactor core till 170 km (4 orders of magnitude; 8 orders on signal)
 - Signal/Background ~20 100 in recent experiment
 - Backgrounds are well understood
- Slower progress
 - Loaded scintillator: stability issue
 - Reconstruction
 - From PMTs signal, computes event position (timing, charge balance)
 - neutrino direction (neutron brings some direction memory: e+ and neutron position build a direction vector

Best current constraint: CHOOZ

World best constraint ! @ Δm^2_{atm} = 2.7 10⁻³ eV² $sin^2(2\theta_{13}) < 0.12$ (90% C.L)

M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374

2004-2006: Publications

Letter of Intent for Double-CHOOZ:

a search for the mixing angle θ_{13}

-White book APC, Paris - RAS, Moscow - DAPNIA, Saclay - EKU-Tübinge INFN, Assergi & Milano - INR, Moscow - MPI, Heidelberg - RRC, Ku TUM-München - University of PAquila - Universität Hamburg - Main physicist streams

Version 5.0

April 28, 2004

EU Letter of Intent hep-ex/0406032

Proposal for U.S. participation in Double-CHOOZ: A New θ_{13} Experiment at the Chooz Reactor

S. Berridge^g, W. Bugg^g, J. Busenitz^a, S. Dazelev^e, G. Drake^b, Y.Efremenko^g, M. Goodman^{b*}, J. Grudzinski^b, V. Guarino^b, G. Horton-Smith^d, Y. Kamyshkov^g, T. Kutter^d C. Lane^e, J. LoSecco^f, R. McNeil^e, W. Metcalf^e, D. Reyna^b, I. Stancu^a, R. Svoboda^{e*}, R. Talaga^b

October 14, 2004

^a University of Alabama, ^b Argonne National Laboratory, ^c Drexel University, ^d Kansas State University, ^e Louisiana State University, ⁴ University of Notre Dame, ⁹ University of Tennessee * US Contacts: phsvob@lsu.edu, maury.goodman@anl.gov

US Letter of Intent hep-ex/0410081

bugey:declais,boucshez,dekerret shoenert oberauer hagner Proposai hep-ex/0606025 Kamland:suzuki,suekane Savannah:soebel,svoboda Russia: skorokhvatov

Double Chooz: A Search for the Neutrino Mixing Angle θ_{13}

J. C. Barrière¹⁹ A. Bernstein¹⁴ L Barabar F. Beifel ukov¹⁰ A. Bernstein¹⁴ T. Bolhen¹² B. Bugg²³ J. Busenitz² A. Cabrena⁴ S. Cazaux¹⁹ M. Cerrada⁵ B. Chevis²² L. Bezrukov¹⁰ S. Berridge²³ n²⁰ Ch. Buck¹⁶ C. Cattadori^{7,17} Bowden²⁰ Caden⁶ H. Cohn²³ S. Cormon²¹ J. Coleman¹⁵ B. Courty⁴ A. Cucoane ¹¹ S. Dazeley¹⁵ M. Fallot²¹ C M. Cribier^{4,19} N. Danilov¹¹ A. Etenko¹³ A. Di Vacri⁷ Foncher²¹ T. Gabriel²³ P. Ghislain⁴ yu³ M. Goeger-Neff²² M. Goodman³ V. Gnarino² A. Gaseria²¹ Y. Efremenko²³ C. Fernández-Bedova F. von Feilitzsch²² Y. Foucher²¹ I. Gil Botella⁵ G. Horton-Smith¹² D. M. Kerel J. Konn22 A. Letourpoan¹⁹ D. Lhuillier¹⁹ M. Lindner²² Marie¹⁹ J. Martino²¹ D. McK G. Mention²⁹ W. Metcalf¹⁵ F. Marie¹⁹ D. McKee² Machulin¹³ J. P. Meyer¹⁰ D. M. C. D. Metcalf⁴⁵ B. McNeil F. Meiener¹⁹ L. Mikaelyan¹³ A. Milsztajn¹⁹ D. Motta¹⁹ L. Oberauer²¹ C. Palomares⁵ P. Perrin¹⁹ M. Obolensky⁴ W. Potzel²² B. Reinhold¹ J. Reichenbacher³ D. Royna³ M. Rolines²² s. Schoenert¹⁶ U. Schwan³⁶ M. Skorokhvatov¹³ A. Stahi S. Sukhotin^{4,13} R. S...⁴ Romero⁵ S. Roth¹ T. Schwetz akhvatov¹³ A. Stahl¹ R. Svoboda^{14,15} A V 83 S-1-19 I Stoner N. Stanton¹³ A. Tang¹³ D. Underwood³ F.J. Valdivia⁵ D. Vignand⁴ W. Winter^{22†} K. Zbiri²¹ B. Zimmermann⁸ D. Vincent⁴ 20th June 2006

Letter of Intent for KASKA

High Accuracy Neutrino Oscillation Measurements with $\bar{\nu}_e s$ from Kashiwazaki-Kariwa Nuclear Power Station.

M. Aoki⁵ K. Akiyama^{4,a} Y. Fukuda⁴ A. Fukui^{3,b} Y. Funaki⁹ H. Furuta⁹ T. Hara³ T. Haruna¹⁰ N. Ishihara² T. Iwabuchi^{5,c} T. Kawasaki⁵ M. Katsumata⁵ M. Kuze⁹ J. Maeda⁹ K. Matsubara⁹ T. Matsumoto^{10,d} H. Minakata¹⁰ H. Miyata⁵ Y. Nagasaka¹ T. Nakagawa¹⁰ N. Nakajima⁵ Y. Sakamoto⁸ K. Sakuma^{10,e} M. Nomachi⁶ H. Sngiyamo² K.Sakai⁵ F. Suekane H. Sugiyama² T. Sumiyoshi¹⁰ Y.Tabata⁷ N. Tamura⁵ M. Tanimoto⁵ R. Watanabe⁵ and O. Yasuda¹⁰

The events

proton-rich liquid scintillator is both a target and detector

90% C.L. sensitivity if $sin^2(2\theta_{13})=0$

Reactor₁ (0.5 km, 2.3 km): ~13 tons_{PXE} × 10 GW × 3 years → $sin^2(2\theta_{13}) < 0.02$, 90% C.L **Reactor**₂ (0.5 km, 2.3 km): ~270 tons_{PXE} × 10 GW × 3 years → $sin^2(2\theta_{13}) < 0.01$, 90% C.L

Daya Bay

China/US collaboration

Four reactor cores

- ✓ P=4 × 2.9 = 1.6 GW_{th}
- \checkmark + two new cores for 6 GW_{th} in 2011

Civil construction

- ✓ Near: 1 km tunnel + laboratory
- ✓ Far: 2 km tunnel + laboratory

~10 tons detector modules

- ✓ Near: 25 tons 300 m 200 mwe
- ✓ Far: 50 tons 1.5-1.8 km 700 mwe
- Movable detector concept

Sensitivity

- ✓ 0.4% systematic error
- \checkmark sin²(2 θ_{13}) < ~ 0.01 (90% C.L.)?
- **Prospects** (not yet approved)
- ✓ 2004-05: R&D, 2006-07: Construction
- ✓ 1 Near detector running in 2008
- ✓ Geological & safety studies ongoing

collaboration

• Japan

- Tohoku Univ.
- Tokyo Metropolitan Univ.
- Niigata Univ.
- Tokyo Institute of Technology
- Kobe Univ.
- Tohoku Gakuin Univ.
- Miyagi University of Education
- Hiroshima Inst. of Technology

• USA

- Livermore nat lab
- Argonne
- Columbia Univ
- Chicago Univ
- Kansas U
- Notre Dame U
- Tennesse U
- Alabama U
- Drexel U
- Illinois Inst tech

• France

- Saclay
- APC (collège de France)
- Subatech Nantes
- Germany
 - Max planck Heidelberg
 - Munich U
 - Hamburg U
 - Tubingen U
 - Aachen U
- Spain
 - CIEMAT Madrid
- England
 - Oxford
 - Sussex Univ
- Russia
 - Kurchatov inst
 - Sc. Acad.

At Chooz, June 06

France, Germany, Spain funded. England, US and Japan expected before Summer 07 Already started building...

Potential limit if $sin^2(2\theta_{13})=0$

Uncorrelated fluctuations included

• Relative Error : 0.6%

Near detector location

 $T_{i}^{R} - T_{i}^{D,R} - \sum_{k=1}^{K} \alpha_{i,k}^{D,R} S_{i,k}^{D,R}$ $\sum_{R=R_1, R_2}$ $\frac{\alpha_{i,k}^{D,R}}{\sigma_{i}^{D,R}}$ $\chi^{2} = \min_{\left[\alpha_{i,k}^{D,R}\right]} \left| \sum_{D=N,F} \sum_{i=1}^{NBins} \right|$ • Spectral shape uncertainty 2% $\sum_{\mathbf{x} \in R}$ • Δm^2 known at 20% U_i^D Power flucutation of each core: 3% +30% Available and suitable area L250 +20% 0.03 ± 109 On the median 0.029 0.028 0.027 $\sin^2(2\theta_{13})_{limit}$ 0.026 0.025 0.024 0.023 0.022 0.021 0.1 0.15 0.2 0.25 0.3 0.35 0.45 0.5 0.4 Near detector distance to reactor (in km) 3 years data taking

Spent fuel effect under study kopeikin and al.

Observable: e⁺ spectrum

Expected signal

Note: optimum baseline between ~1.2km and 1.8 km

Spectrum deformation information

The Double-Chooz concept

2004-2005: Detector design

New detector design

v target: 80% dodecane + 20% PXE + 0.1% Gd (acrylic, r = 1,2 m, h = 2,8 m, 12,7 m³)

γ-catcher: 80% dodecane + 20% PXE (acrylic, r+0,6m – V = 28,1 m³)

Non-scintillating buffer: same liquid (+ quencher?) (r+0.95m, , V = 100 m³)

PMTs supporting structure

Muon VETO: scintillating oil (r+0.6 m - V = 110 m³)

Shielding: 0,15 m steel

The Double-Chooz sites

- Statistical error -

@CHOOZ: R = 1.01 ± 2.8%(stat)±2.7%(syst)

 \checkmark Luminosity increase L = $\Delta t \times P(GW) \times V_{target}$

	CHOOZ	Double-Chooz
Target volume	5,55 m ³	12,67 m ³
Target composition	6,77 10 ²⁸ H/m ³	6,82 10 ²⁸ H/m ³
Data taking period	Few months	3-5 years
Event rate	2700	CHOOZ-far : 60 000/3 y CHOOZ-near: >3 10 ⁶ /3 y
Statistical error	2,7%	0,4%

Improving CHOOZ - Systematical error -

 $\texttt{@CHOOZ}: \sigma_{sys}\texttt{=2.7\%}$

✓ <u>Decreasing systematical error</u>

- 1. Improve the detector concept
- 2. Two identical detectors \rightarrow towards $\sigma_{relative} \sim 0.6\%$
- 3. Backgrounds improve S/B>100 → error<1%

	Chooz	Double-Chooz
Reactor cross section	1.9~%	
Number of protons	0.8~%	0.2~%
Detector efficiency	$1.5 \ \%$	$0.5 \ \%$
Reactor power	0.7~%	
Energy per fission	0.6~%	

Relative Normalization: Analysis

✓ @Chooz: 1.5% syst. err.

- 7 analysis cuts
- Efficiency ~70%
- ✓ Goal Double-Chooz: ~0.3% syst. err.
 - 2 to 3 analysis cuts

Selection cuts

- neutron energy
- (- distance e+ n) [level of accidenta
- Ơ (e+ n)

	CHOOZ	Doub	le-CHOOZ
selection cut	rel. error $(\%)$	rel. error $(\%)$	Comment
positron energy [*]	0.8	0	not used
positron-geode distance	0.1	0	not used
neutron capture	1.0	0.2	Cf calibration
capture energy containment	0.4	0.2	Energy calibration
neutron-geode distance	0.1	0	not used
neutron delay	0.4	0.1	
positron-neutron distance	0.3	0 - 0.2	0 if not used
neutron multiplicity [*]	0.5	0	not used
$\operatorname{combined}^*$	1.5	0.2-0.3	
	1.0	0.2 0.0	

*average values

Far site

Near site

Distance Reactor-	Required overburden
detector	(m.w.e)
100	45 - 5 3
150	55 - 65
200	67,5-80

BACKGROUNDS

Backgrounds

neutrino identification (signal)

prompt signal (e^+ + 2 * 511 keV + n capture on Gd (H_2 ,Li,B,)

Distance e⁺-n ~ 6cm with some memory Of the neutrino direction accidental background (uncorrelated)

Bkg reduction: Veto systems

crucial for bkg rejection •Tag µ and secondaries •Very high ε (~ 99%)

Baseline:

- . 50 cm, scintillating mineral oil
- . 60 100 PMTs
- Reflective walls (paint + Tyvek)

.Tag "near miss" µ Redundancy for higher rejection power

Baseline: **MINOS** like scintilator planes

Neutron Induced Background

- ✓ Cosmic muons create fast neutrons through
 - \checkmark Spallation in the rock surrounding the detector
 - ✓ **muon capture** in the detector materials

 \checkmark Fast neutron slows down by scattering into the scintillator; it could deposit between 1-8 MeV and be later captured on Gd !

✓Full simulation - Geant + Fluka

✓Old Chooz simulation: 300 m.w.e. 31hours - MC is reliable !

- Simulated: N_b<1.6 evts/day (90% C.L.)
- Measured in-situ: N_b=1.1 evts/day

✓ Double-Chooz simulation:

- + 338 106 μ tracked 580 103 neutrons tracked
- \cdot 1 neutron created a muon event
- Far detector: N_b<0.5 evt/day (90% C.L.)
- Near detector: N_b<3.2 evts/day (90%C.L.)

An outer muon veto will surround it, to tag near miss muons.

RECONSTRUCT THE µ TRACK (outer veto+inner veto+central detector)

Far detector spectrum with PMTs background

PMTs background shape rejection: How far ?

Contours of sensitivity loss 100 $sin^2(2\theta_{13})_{lim}$ 0.029 0.030 0.033 80 0.035 0.038 0.041 0.044 60 σ_{bkg} in % 40 20 10 8 2 4 6 Background rate in % of neutrino signal

Detector definition

Mechanics: Acrylics and Buffer

Vessel	Dimension	Distorsion	Stress	Transport & Integration
	Inputs : Target : 8 mm γ catcher : 12 m Loads = dead load	distortion : <1 mm	VM stress: 1 MPa	
	<i>Inputs :</i> Buffer : 3 m <i>Loads =</i> 2 kg / pmts + dead load	distortion : 4.1 mm	V NALLER VM stress: 23 MPa	<section-header></section-header>

Mechanics: y ray shiedling

 $\cdot \gamma$'s from rock radioactivity dominate the single rate in the Target+GC (no shield)

Optimum shielding with 17 cm of low radioactive steel (G3 & G4)
Cracks → a few % effect

• 250 tons of steel to be assembled in bars.

•A 1 cm steel vessel guarantees the veto tightness

Will be demagntized in lab

Far Detector Integration

TIBLE

Gd doped scintillator development

√Goal: 0.1% Gd loaded scintillator (follow up of LENS

- Light yield ~8000 γ/MeV + attenuation length > 5m
- STABLE & Compatible with acrylic

1/ Long term stability2/ scintillator-acrylic compatibility

- 400 days Ageing test @30-50° [x2-4 each 10°]
- Material compatibility test + acrylic design

Scintillator status

(russia-LNGS-heidelberg)

- ➤ Gd-loading: 1g/l
- solvent: PXE/dodecane (20:80 by vol.)
- Scintillator development and tests started 2003

Beta-Diketonate scintillator:

Light yield: 80 % of unloaded

Survey Scintillator Stability

Double Chooz R&D: 2 generation of Gd-Loaded scintillator

- Transition to industrial production (100kg is needed): MPIK Heidelberg is constructing a new building for storage and purification of all scintillators for both detectors.

- On-site storage tanks for scintillators in Chooz

Mockups

Physical one in Japan (instrumented)

Mechanical on in france

Testing & prototyping

Phototubes baseline

- 8" / 10" Ultra low background tubes
- 534 / 330 PMTs
- ~13 % coverage (200 p.e. Mev)
- Energy resolution goal: 7 % at 1 MeV
- Current work:
 - PMT selection (size, radiopurity)
 - ETL 9354KB, Hamamatsu, Photonis
 - Angular sensitivity, Concentrators?
 - Magnetic shielding (yes)
 →design study
 - Tilting tube options
 - Cabling & Tightness (done)
- tilted pe/MeV Ratio no 191,2 yes 196,2 1,026

Electronics & DAQ

Calibration

➤ Target region:
 Articulated arm
 (2-3 cm accuracy)
 ➤ γ-catcher and buffer:
 Wire driven sources
 (guide tubes)

By products: Non proliferation effort

Non proliteration ettort reactor monitoring

- ✓ IAEA: International Agency for Atomic Energy
- ✓ Missions: Safety & Security, Science & Technology, Safeguard & Verification

Control that member states do not use civil installations with military goals (production of plutonium !)

- Control of the nuclear fuel in the whole fuel cycle *
- Fuel assemblies, rods, containers *
- Distant & unexpected controls of the nuclear installations *
- \checkmark Why IAEA is interested to antineutrino?
 - IAEA wants the « state of the art » methods for the future
- \checkmark IAEA wants a feasibility study on antineutrinos
 - Monitoring of the reactors with a Double-Chooz like detector
 - Monitoring a country new reactors "à la KamLAND"

✓ Double-Chooz-IAEA:

- Perform new antineutrino spectrum measurement @ILL reactor (Mini-Inca + β -spectrometer)
- Use Double-Chooz near as a 'prototype' for nuclear reactor monitoring
- Other studies like large and very large underwater antineutrino detectors ...
- Collaboration with Los Alamos, Livermore, Sandia

(*Anti-neutrinos could play a role!)

Byproducts: geoneutrinos

-> Recent kamland result Double Chooz is too small to see them, But can help study the measurement

Idea: neutron keeps track of the direction Recontruct e+ and n position

First evidence: kamland

Need neutrino direction measurement

To find the direction of incoming neutrinos, compare the GLOBAL angular ditribution with MC

Double Chooz: large numbers of neutrinos with known direction, which will allow to improve algorythr

conclusions

Discovery potential

2008-2013: Data taking

Sensitivity 2007-2012

Double-Chooz Far Detector starts in 2007 Double-Chooz Far detector follows 16 months later

90% C.L. contour if $sin^2(2\theta)=0$ $\Delta m^2_{atm} = 2.8 \ 10^{-3} \ eV^2$ is supposed to be known at 20% by MINOS

Experimental context

..

Conclusions & outlook

Double Chooz ready to go! Moving towards the construction phase ...

- 2007 \rightarrow Start of the integration
- 2008 → Start of phase I : Far 1 km detector alone 1 km sin²(2θ₁₃) < 0.06 in 1,5 year
 World best sensitivity foreseen from 2008?
- 2009 → Start of phase II : Both near and far detectors 280 m + 1 km sin²(2θ₁₃) < 0.025 in 3 years
 Complementarity with Superbeam experiments: T2K, Nova

If oscillation found, build a new project to check it : a big detector at a powerful site