KEK Seminar (January 9, 2007)

Charm Baryons at B-factories

Ruslan Chistov (ITEP, Moscow)

- Introduction: B-Factories and QCD
- (A) Charm Baryon Spectroscopy
 - (1) Prehistory: Charm Baryons before B-Factories Era
 - (2) Observation of New Charm Baryons
- (B) Charm Baryons from B-decays:
 - New Charmful Baryonic B-decays and New Dynamics
- (C) Summary and Perspectives

B-Factories and Data Sample

Ruslan Chistov

Charm Baryons at B-factories

Why it is important to study heavy hadron spectroscopy? QCD is one of 3 theories describing the fundamental interactions (EW+QCD+G)

And we are far from understanding how QCD works at longer distances governing the hadron spectra since many hadrons have unexpected properties.

We need to understand it in order to separate the EWP from strong-interaction effects. Moreover we may need to use our experience with QCD in dealing with any non-perturbative effects encountered at higher energies (e.g. at LHC).

Heavy hadron spectroscopy is one of the best places to test different theoretical approaches in QCD.

Ruslan Chistov

Charm Baryons

Baryons are the main part of THE MATTER AROUND US and turn out to be very complicated objects built from 3 quarks. In baryons we face with the problem of relativistic non-perturbative 3-body system!! \Rightarrow Baryon is a very difficult object... Thus we should study baryons to understand the nature of matter.

The charm baryons are more or less simple since they consists of one heavy c-quark. So, the generic picture is: Light diquark moves around one center – heavy c-quark.

Ruslan Chistov

B-Factories have started to study Charm Baryons

KEK Seminar (January 9, 2007) Charm Baryons at B-factories

Ruslan Chistov

Charm Baryons at B-factories

KEK Seminar (January 9, 2007)⁶

Before B-factories: CLEO detector

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Observation of $\Lambda_c^+ \rightarrow \Lambda K^+, \Sigma^0 K^+$ **at Belle and study of** $\Xi(1690)^0$ **at BaBar**

Improve knowledge on C.-s. decays

test different theoretical models

Ruslan Chistov

Improved measurement of Ξ_c^0 and Ξ_c^+ masses at Belle

PLB 605, 237 (2005)

Ruslan Chistov

Charm Baryons at B-factories

Improved measurement of Ξ_c^0 and Ξ_c^+ masses at Belle

PLB 605, 237 (2005), Erratum PLB 617, 198 (2005)

Decay mode	# of events	mass $[MeV/c^2]$	
$\Xi_e^+\to\Xi^-\pi^+\pi^+$	3605 ± 279	$2468.6 \pm 0.4 \pm 0.5$	
$\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+$	1177 ± 55	$2467.6 \pm 0.2 \pm 0.5$	
$\Xi_c^+ \to p K^0_S K^0_S$	$168\pm~27$	$2468.6 \pm 0.7 \pm 0.9$	
$\Xi_c^0\to \Xi^-\pi^+$	2979 ± 211	$2471.3 \pm 0.5 \pm 0.8$	
$\Xi_c^0\to\Lambda K^-\pi^+$	3268 ± 276	$2470.0 \pm 0.6 \pm 0.7$	
$\Xi_c^0\to\Lambda K^0_S$	465 ± 37	$2472.2 \pm 0.5 \pm 0.5$	Due to the mass scale
$\Xi_c^0 \to p K^- K^- \pi^+$	1908 ± 62	$2470.9 \pm 0.1 \pm 0.2$	
$m_{\Xi_0^+} = (2468.1)$	1 ± 0.4 (stat.	\oplus syst. +0.2-1.4 MeV/ c^2	(PDG : $(2466.3 \pm 1.4) \text{ MeV}/c^2$)
$m_{\Xi_0^0} = (2471.0$	0 ± 0.3 (stat.	\oplus syst. +0.2-1.4 MeV/ c^2	(PDG : $(2471.8 \pm 1.4) \text{ MeV}/c^2$)
	$m_{\Xi_{0}^{0}} - m_{\Xi_{0}^{+}} =$	$= (2.9 \pm 0.5) \mathrm{MeV}/c^2$	$(PDG: (5.5 \pm 1.4) \text{ MeV}/c^2)$

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Belle: Study of excited states Ec(2645)

Study of excited states E_c(2645): mass measurements at Belle

Belle (2006):

 $m_{\Xi_c(2645)^+} = (2645.4 \pm 0.1(\text{stat}) \pm 0.8(\text{syst})) \text{ MeV}/c^2,$

 $m_{\Xi_c(2645)^0} = (2645.6 \pm 0.2(\text{stat})^{+0.6}_{-0.7}(\text{syst})) \text{ MeV}/c^2,$

 $m_{\Xi_c(2645)^+} - m_{\Xi_c(2645)^0} = (-0.2 \pm 0.3(\text{stat}) \pm 0.9(\text{syst})) \text{ MeV}/c^2$

PDG(2006): $\Xi_c(2645)^+$ 2646.6 ± 1.5 $\Xi_c(2645)^0$ 2646.2 ± 1.2

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Improved measurement of Λ_c^+ mass at BaBar

Phys.Rev. D 72, 052006 (2005)

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Observation of Σ_{c} (2800) at Belle: (PRL 94, 12202 (2005))

$\Sigma_{c}(2800)^{0}$	$2.24^{+0.19+1.05}_{-0.55-0.50}$	$515.4^{+3.2}_{-3.1}{}^{+2.1}_{-6.0}$	61_{-13}^{+10}
$\Sigma_{c}(2800)^{+}$	$1.54^{+1.05}_{-0.57}^{+1.40}_{-0.88}$	$505.4^{+5.8}_{-4.6}^{+12.4}_{-2.0}$	$62^{+37}_{-23}{}^{+52}_{-38}$
$\Sigma_{c}(2800)^{++}$	$2.81^{+0.82}_{-0.60}{}^{+0.71}_{-0.49}$	$514.5^{+3.4}_{-3.1}{}^{+2.8}_{-4.9}$	$75^{+18}_{-13}{}^{+12}_{-11}$

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Observation of Σ_c (2800): **Discussion**

Theoretical models predict a rich spectrum of excited charmed baryons in the vicinity of the Σ_c (2800) [L.A.Copley, N.Isgur and G.Karl, Phys. Rev D 20, 768 (1979)].

One of the candidates is a \sum_{c2} doublet with J^P=3/2- and 5/2-(subscript 2 denotes the total angular momentum of light diquark.) \sum_{c2} is expected to decay principally into $\Lambda_c^+\pi$ in D-wave.

The predicted mass is close to the measured but the predicted width is only 15 MeV.

But the Σ_{c2} (3/2-) can mix with the nearby Σ_{c1} (3/2-) which would produce a wider physical state.

2006: Most Notable Results on Charm Baryons

BaBar: Observation of $\Lambda_c(2880)^+$, $\Lambda_c(2940)^+$ → D⁰p (Moriond QCD'06) Belle: Observation of $\Xi_{cx}(2980)^+$, $\Xi_{cx}(3077)^+$ → Λ_c^+ K⁻ π⁺

(Moriond QCD'06)

Belle: Observation of $\Xi_{cx}(3077)^0 \rightarrow \Lambda_c^+ K^0 \pi^$ and Evidence for $\Xi_{cx}(2980)^0 \rightarrow \Lambda_c^+ K^0 \pi^-$ (Charm'06)

BaBar:Confirmation of $\Xi_{cx}(3077)^+$ and $\Xi_{cx}(2980)^+$ (ICHEP'06)Be//e:Observation of $\Xi_{cx}(2980)^{+/0} \rightarrow \Xi_c^{*0/+}\pi^{+/-}$ (ICHEP'06)Be//e:Observation of $\Lambda_c(2940)^+ \rightarrow \Sigma_c \pi$ (ICHEP'06)BaBar:Observation of $\Omega_c^* \rightarrow \Omega_c \gamma$ (ICHEP'06)

Belle & <u>BaBar</u>: No signals for the production at $\sqrt{s} \sim 10.6 \text{ GeV}$ in e⁺e⁻ collisions of the SELEX $\Xi_{cc}(3520)^+ \rightarrow \Lambda_c^+ \text{K}^- \pi^+$ Ruslan Chistov Charm Baryons at B-factories KEK Seminar (January 9, 2007)¹⁶

BaBar: Observation of $\Omega_c^* \rightarrow \Omega_c \gamma$

hep-ex/0608055

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Search for the Ξ_{cc} (3520)⁺ $\rightarrow \Lambda_{c}^{+} \mathbf{K}^{-} \pi^{+}$

Belle and BaBar observed e⁺e⁻ \rightarrow double-cc; σ is ~10 larger than NRQCD predictions \Rightarrow motivation to search (recent work by A.K.Likhoded and A.V.Berezhnoy suggests - two prosesses are the PRL 89, 112001 (2002) 8 Events /2.5 [MeV/c²] same order - hep-ph/0602041) **SELEX** 7 Candidates/(3.5 MeV/c²) $M(\Lambda_c^+K^-\pi^+)$ BaBar, L~232 fb[·] 6 600 011103 (2006) 5 4 3 20 + 3 [1] 2 Ξ_{α}^{+} Candidates/(3.5 MeV/c²) phys. Rev. D74, b) n 80 3.47 3.52 3.57 3.62 3.42 6C 450 400 ²350 300 250 250 450 fb⁻¹ 200 Events / null result Similar search in $\Lambda_c K\pi\pi$, $\Xi_c\pi$, $\Xi_c\pi\pi$ also shows no signals. UL's are useful N=8.3 ± 37.3 < 69.1 @ 90% CL 50 for models calculating cccc. 0 3.425 3.45 3.475 3.5 3.525 3.55 3.575 3.6 3.625 3.65 3.4 $M(\Lambda_{c}^{+} K^{-} \pi^{+}) (GeV/c^{2})$

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

New Charmed Baryons from Belle

Near threshold in Mass($\Lambda_c^+ K^- \pi^+$) two new charmed baryons $L_{\sim}450 \text{ fb}^{-1} = \frac{\Xi_{cx}(2980)^{+}}{1000} \text{ and } \Xi_{cx}(3077)^{+} \text{ were observed}$

Ruslan Chistov

KEK Seminar (January 9, 2007) Charm Baryons at B-factories

New Charmed Baryons from Belle

To get more information about the properties of found states Belle searched for their isopartners in Mass($\Lambda_c^+ K_S^0 \pi^-$) and observe Ξ

Ruslan Chistov

Charm Baryons at B-factories

BaBar : Confirmation of $\Xi_{cx}(2980)^+$ and $\Xi_{cx}(3077)^+$

 $6.2 \pm 1.6 \pm 0.5$

 $6.2 \pm 1.2 \pm 0.8$

Reported on the resonant substructure: $\Sigma_c^{(*)}K$.

Belle also sees the res. substr. but didn't publish.

Results are consistent; BaBar performed 2D fit $(M(\Lambda_c K\pi) Vs. M(\Lambda_c \pi))$

Ruslan Chistov

 $3076.4 \pm 0.7 \pm 0.3$

 $3076.7 \pm 0.9 \pm 0.5$

BABAR $\Xi_c(3077)^+$

Belle $\Xi_c(3077)^+$

Charm Baryons at B-factories

204 + 35 + 12

 326 ± 40

 8.6σ

 9.7σ

Discussion of New \Xi_{cx} States

Observed Properties:

•Charm and strange quarks in the final state (Λ_c^+ and K^-); These new charm baryons have *large masses (largest in grand family of charm baryons), *finite widths; Neutral partners also observed not double charm baryons Most natural interpretation: excited charm strange baryons which **COUID be** D-wave excitations. Possible J^{P} are 1/2+(or 3/2+) and 5/2+(H.-Y.Cheng, C.-K.Chua, hep-ph/0610283; J.L.Rosner, hep-ph/0612332) 22

Belle: Observation of $\Xi_{cx}(2980)^{+/0} \rightarrow \Xi_{c}^{*0/+}\pi^{+/-}$

hep-ex/0608012

Search for another, "natural" channel for the new states Ξ_{cx}

Ruslan Chistov

Charm Baryons at B-factories

KEK Seminar (January 9, 2007)²³

BaBar: Observation of $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+ \rightarrow D^0p$

hep-ex/0603052

Λ_c(2880)⁺

A New Decay Mode; Improved Mass and Width

 $M = (2882 \pm 0.1 \pm 0.5) \text{ MeV/c}^2$ $\Gamma = (5.8 \pm 1.5 \pm 1.1) \text{ MeV}$

New Charm Baryon: $\Lambda_c(2940)^+$

 $M = (2939.8 \pm 1.3 \pm 1.0) \text{ MeV}/c^2$ $\Gamma = (17.5 \pm 5.2 \pm 5.9) \text{ MeV}$

Is it Λ_c^+ or Σ_c^+ ? Search for Isospin Partners \Rightarrow

Ruslan Chistov

Charm Baryons at B-factories

BaBar: Observation of $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+ \rightarrow D^0p$

Ruslan Chistov

Charm Baryons at B-factories

Belle: Observation of $\Lambda_c(2940)^+ \rightarrow \Sigma_c \pi$

 $M(\Sigma_{c}(2455)^{0,++}\pi^{\pm})$

	\mathcal{R}			
	BELLE	Yield	Mass, MeV/c^2	Width, MeV
	$\Lambda_c(2880)^+$	$880 \pm 50 \pm 40$	$2881.2 \pm 0.2^{+0.4}_{-0.3}$	$5.5^{+0.7}_{-0.3} \pm 0.4$
	$\Lambda_c(2940)^+$	$210^{+70}_{-40}{}^{+100}_{-60}$	$2937.9 \pm 1.0^{+1.8}_{-0.4}$	$10 \pm 4 \pm 5$
8				1
	$\Lambda_{c}(2880)^{+}$	2800 ± 190	$2881.9 \pm 0.1 \pm 0.5$	$5.8 \pm 1.5 \pm 1.1$
ты	$\Lambda_c(2940)^+$	2280 ± 310	$2939.8 \pm 1.3 \pm 1.0$	$17.5 \pm 5.2 \pm 5.9$

hep-ex/0608043

Confirmation of Λ_c(2940)⁺ (Parameters are consistent)

 Observation of a new decay mode
 ⇒ One needs to measure BR(→D⁰p)/ BR(→Σ_cπ)

to check exotic interpretation of $\Lambda_c(2940)^+$ as $D^{*0}p$ molecular state (hep-ph/0606015)

Ruslan Chistov

Charm Baryons at B-factories

Ruslan Chistov

Charm Baryons at B-factories

Belle: Observation of $\Lambda_{c}(2880)^{+} \rightarrow \Sigma_{c}^{*}\pi$

hep-ex/0608043

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)²⁸

Summary for New Charm Baryons

New charm baryons with
new decay mechanism
were discovered
by BaBar and Belle:with
ΛcKπ t
D0p the

Studies of their properties are ongoing

 $\begin{array}{l} \Lambda_{c}(2880)^{+} \rightarrow \Sigma_{c}\pi \quad \text{and} \ D^{0}p \ (!), \ \text{but} \\ \Lambda_{c}(2940)^{+} \rightarrow mostly \ \text{to} \ D^{0}p, \\ \Sigma_{c}\pi \ \text{suppressed} \end{array}$

$$\begin{split} \Xi_{cx}(2980) &\rightarrow \Xi_{c}^{*}\pi \text{ and } \Lambda_{c}K\pi (\Sigma_{c}\pi), \text{ but } \\ \Xi_{cx}(3077) &\rightarrow \text{ only to } \Lambda_{c}K\pi (\Sigma_{c}^{(*)}\pi), \\ &\text{ no signal for } \Xi_{c}^{*}\pi \end{split}$$

The list of new particles with not properly understood properties has been widen.

Charm Baryon Spectroscopy at B-Factories: Achievements and Perspectives:

Several new decay modes of Λ_c^+ were observed; Several new states were discovered.

- Ξ_{cx} and $\Lambda_c(2940)^+$ properties should be studied further;
- New searches unambiguously are necessary, e.g.: * confirmation of Ω_c^{*0}
 - * search for orbitally excitated Ω_c^0
 - * ... continue to search for the processes resulting in production of double charm baryons.

•Measurement of Ξ_c absolute Br and precision measurement of Λ_c^+ Br.

Charm Baryons from B-decays

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Observation of Inclusive Production of Λ_c , Ξ_c , Σ_c at old years at ARGUS and CLEO

Study of $B^0 \rightarrow \Lambda_c^+ \overline{p} n\pi$ at Belle

Belle

Ruslan Chistov

KEK Seminar (January 9, 2007) Charm Baryons at B-factories

Study of $B^+ \rightarrow \Lambda_c^+ p \pi^+ at$ Belle

Ruslan Chistov

Threshold peaking effect observed at Belle

Ruslan Chistov

Charm Baryons at B-factories

Discussion of Baryonic B Decays

At the same time 2-body charmless baryonic B decays have not been observed yet and best @90% CL Upper Limits from Belle :

 $\mathcal{B}(B^0 \to p\bar{p}) < 4.1 \times 10^{-7} \qquad \mathcal{B}(B^0 \to \Lambda\bar{\Lambda}) < 6.9 \times 10^{-7}$

 $\mathcal{B}(B^+ \to p\bar{\Lambda}) < 4.9 \times 10^{-7}$ (Phys.Rev. D71 (2005) 072007)

But multi-body charmfull baryonic B decays such as $B \to \Lambda_c^+ \bar{p}\pi^+\pi^-$ have \mathcal{B} 's ~ 10 times larger than charmfull 3-body modes (e.g. $B^- \to \Lambda_c^+ \bar{p}\pi^-$) and ~ 100 times larger than observed by Belle $B^0 \to \Lambda_c^+ \bar{p}$ (Phys.Rev.Lett. 90, 121802 (2003)).

Two features of $B \rightarrow baryons$ decays observed by Belle:

threshold enhancement in baryon pair invariant mass spectra and

 $\mathcal{B}(B \to 2\text{body}) < \mathcal{B}(3\text{body}) < \mathcal{B}(B \to 4\text{body})$ hierarchy.

Theoretical models to explain it: intermediate gluonic resonant states or non-perturb.QCD effects in the quark fragmentation.

What about 2-body charmful baryonic B decays?

Belle: First Observation of $\overline{B}^0 \rightarrow \Lambda_c^+ \overline{p}$

Charm Baryons at B-factories KEK Seminar (January 9, 2007)³⁷

Ruslan Chistov

 $B^0 \rightarrow \Lambda_c^- p$ and $B^+ \rightarrow \overline{\Xi}{}^0_c \Lambda_c^+$

 $Br=(2.19+0.56-0.49+-0.32+-0.57) \times 10^{-5}$

Consistent with the pole model prediction but 100 times smaller than QCDsum rule predictions and diquark models

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Ruslan Chistov

Belle: Observation of B⁻ $\rightarrow \Lambda_c^+ \overline{\Lambda}_c^- K^+$

Belle observed significant signal for $B^- \to \Lambda_c^+ \overline{\Lambda_c^-} K^-$ mode:

Ruslan Chistov

Ruslan Chistov

Study of Λ_c^+ production from B decays at BaBar

Ruslan Chistov

Study of Inclusive Production of Ξ_c , Ξ_c and Ω_c from B Decays at BaBar

Ruslan Chistov

Charm Baryons at B-factories KEK Seminar (January 9, 2007)

Observation of \overline{B}^0 \rightarrow D_s^+ \wedge \overline{p} at Belle

This decay proceeds with creation of ss pair, Br~10⁻⁵

FSI Dp \rightarrow D_s⁺ Λ .. ?

Ruslan Chistov

Charm Baryons at B-factories

Baryonic B-decays at B-Factories: Achievements and Perspectives

A lot of baryonic B-decay modes were observed; New QCD effect of threshold peaking of dibaryon mass in baryonic B-decays is established

- B→Ξc^{*,'} Λ_c and Ξc⁰Ωc⁰ should be searched for to obtain coherent and unique description of 2-body baryonic B-decays;
- Searches for another charmful baryonic B-decays proceeding through the creation of ss-bar pair;
- Study of threshold enhancement in 3-body B_cBM;

....

Hopefully, B-factories will contribute more soon!