

KEK Physics Seminar

B. Golob

University of Ljubljana Belle Collaboration

Outline

- 1. Introduction
- 2. Phenomenology
- 3. Measurements

semileptonic $K^+\pi^ K_s\pi^+\pi^ K^+K^{-/}\pi^+\pi^-$ CPV 4. Prospects 5. Summary

Introduction

Physics of c-hadrons

increased interest at B-factories in recent years

B-factory, c-factory

 $\begin{array}{ll} \sigma(B\ \overline{B})\approx 1.1\ nb & \sigma(c\ \overline{c})\approx 1.3\ nb \\ (\sim 750\text{-}10^6\ B\overline{B}\ pairs) & (\sim 850\text{-}10^6\ X_c\overline{Y}_c\ pairs) \end{array}$

benchmark: $D^{*0} \rightarrow D^0 \pi^+_{slow}$; $D^0 \rightarrow K^-\pi^+$ N_{rec} int. lumin. [fb⁻¹] Facility Belle 2.5x10⁶ 1000 $P \ge 99\%$ Super KEKB 13x10⁶ 5000 0.4x10⁶ c-factory 20 coherent CDF/D0 0.5x10⁶ 0.35 D^o Mixing 2 B. Golob, Belle

B. Golob, Belle

D^o Mixing

D⁰ - D⁰ Phenomenology

Mixing phenomena

in course of life neutral meson X^0 can transform into anti-meson \overline{X}^0

 $X^0 = K^0$, B_d^0 , B_s^0 and D^0

t-dependent Schrödinger eq.:

mass eigenstates:

decay time evolution:

propagate in t according to distinct eigenvalues;

$$\frac{\Gamma}{\left|X^{0}(t)\right\rangle} = \left[\frac{\left|X^{0}\right\rangle}{\left|X^{0}\right\rangle} \cosh\left(\frac{ix+y}{2}t\right) + \frac{q}{p}\left|\overline{X}^{0}\right\rangle}{\sinh\left(\frac{ix+y}{2}t\right)}\right] e^{-(\frac{1}{2}+i\frac{m}{\Gamma})t}$$
Decay time distribution of experimentally accessible states X⁰, X⁰

sensitive to mixing parameters

 $= \frac{m_1 - m_2}{1 - m_2} \cdot \mathbf{y} = \frac{\Gamma_1 - \Gamma_2}{1 - \Gamma_2} \cdot \overline{\Gamma} = \frac{\Gamma_1 + \Gamma_2}{1 - \Gamma_2}$

B. Golob, Belle

D⁰ - D⁰ Phenomenology

Mixing description observation of K⁰: 1950 (Caletch) 6 mixing in K⁰: years 1956 (Columbia) observation of B_d⁰: 1983 (CESR) 4 mixing in B_d⁰: years 1987 (Desy) observation of B_s⁰: 1992 (LEP) 14 mixing in B_s⁰: 2006 (Fermilab) years observation of D⁰: 1976 (SLAC) 31 mixing in D⁰: 2007 (KEK, SLAC) years (evidence of)

B. Golob, Belle

D^o Mixing

6

D⁰ - D⁰ Phenomenology

Oscillations

Measurements

Belle measurements

- semileptonic decays,

 $D^0 \rightarrow K^{(*)}$ ⊕ PRD72, 071101 (2005), 253 fb⁻¹

- hadronic decays to non-CP final $D^0 \rightarrow K^+\pi^-$

PRL96, 151801 (2006), 400 fb⁻¹

- hadronic decays to multi-body final state, $D^0 \rightarrow K_s \pi^+\pi^$ arXiv: 0704.1000, 540 fb⁻¹
- decays to CP final state, $D^{0} \rightarrow K^{+}K^{-}/\pi^{+}\pi^{-}$

hep-ex/0703036v2, 540fb⁻¹, acc. to PRL

common:

8

charge of π_s tags the flavor of initially produced D⁰;

p*(D*) > 2.5 GeV/c

eliminates D meson production from $b \rightarrow c$

Measurements semileptonic

Reconstruct v:

missing momentum with kinematic constraints

Signal:

$$\Delta M = M(Kev\pi_{slow}) - M(Kev)$$

 $N_{RS} = (229.45 \pm 0.69) \cdot 10^3$

9

PRD72, 071101 (2005), 253 fb⁻¹

Measurements semileptonic

Decay time:

reduce bkg., increase sensitivity; <t >(bkg., RS) < <t >(mix. signal)

6 bins in 1 < t < 10

$$R_{M,i} = \frac{N_{WS,i}}{N_{RS,i}} \cdot \frac{\mathcal{E}_{RS,i}}{\mathcal{E}_{WS,i}}$$

Result:

 $R_{M} = (0.20 \pm 0.47 \pm 0.14) \cdot 10$ $R_{M} < 1.2 \cdot 10^{-3}$ 95% C.L.

dominating systematics from limited bkg. statistics (embedded π_{slow})

D^o Mixing

Measurements K+π⁻

Measurements $K_s \pi^+\pi^-$

t-dependent Dalitz analysis

ependent Dalitz analysis different decays identified through Dalitz analysis; CF: $D^0 \rightarrow K^{*-}\pi^+$ CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: D⁰ \rightarrow K^{*+} π ⁻ CP: $D^0 \rightarrow \rho^0 K_s$

their relative phases determined (unlike $D^0 \rightarrow K^+\pi^-$);

t-dependence:

$$\mathcal{M}(m_{-}^{2}, m_{+}^{2}, t) \equiv \left\langle K_{S} \pi^{+} \pi^{-} \left| D^{0}(t) \right\rangle = \qquad m_{\pm}^{2}: \text{ Dalitz variables}$$

$$= \frac{1}{2} \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \left[e^{-i\lambda_{1}t} + e^{-i\lambda_{2}t} \right] + \frac{1}{2} \frac{q}{p} \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) \left[e^{-i\lambda_{1}t} - e^{-i\lambda_{2}t} \right] \\ < \mathsf{f} \mid \mathsf{D}^{\mathsf{o}} > \qquad \lambda_{\mathsf{1,2}} = f(\mathsf{x},\mathsf{y}); \text{ n.b.: } \mathsf{K}^{\mathsf{+}} \pi^{\mathsf{-}} \mathsf{x}^{\mathsf{'2}}, \mathsf{y}^{\mathsf{'2}}$$
analogous for $\overline{\mathcal{M}} = <\mathsf{f} \mid \overline{\mathsf{D}^{\mathsf{o}}}(\mathsf{t}) > \qquad \sup \text{ of intermediate states} \\ \mathcal{A}(m_{-}^{2}, m_{+}^{2}) = \sum a_{r} e^{i\Phi_{r}} B(m_{-}^{2}, m_{+}^{2}) + a_{NR} e^{i\Phi_{NR}}$
B. Golob, Belle

B. Golob, Belle

14

arXiv: 0704.1000, 540 fb⁻¹

test of S-wave $\pi\pi$ contr. (f₀, $\sigma_{1,2}$): K-matrix formalism

Results (fit fractions, phases) in agreement with (measurement of ϕ_3) PRD73, 112009 (2006)

B. Golob, Belle

 $\rho(770)$

 $\omega(782)$

 $f_0(980)$

 $\rho(1450)$

 σ_1

 σ_2

NR

D^o Mixing

15

KEK Seminar, May 2007

1.5

Measurements κ_s π⁺π⁻

Measurements K+K- / π + π -

$D^0 \rightarrow K^+K^- / \pi^+\pi^-$

CP even final state; in the limit of no CPV: CP $|D_2> = |D_2>$ \Rightarrow measure $1/\Gamma_2$

$$y_{CP} \equiv \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1 = y\cos\varphi - \frac{1}{2}A_{M}x\sin\varphi =$$

= y
no CPV
S. Bergman et al., PLB486, 418 (2000)

 $A_{\mathbf{M}}$, ϕ : CPV in mixing and interference

Signal

M, Q, σ_t selection optimized in MC

	K⁺K⁻	Κ ⁻ π +	π+ π ⁻
N _{sig}	111x10 ³	1.22x10 ⁶	49x10 ³
Ρ	98%	99%	92%

B. Golob, Belle

17

Measurements K+K- / π + π -

Measurements K+K⁻ / π⁺π⁻

B. Golob, Belle

D^o Mixing

19

Measurements $K^+\pi^-$

B. Golob, Belle

D⁰ Mixing

Measurements

Results

K_s π⁺π⁻: (x,y)=(0,0) has C.L. 2.6%

K+K⁻ / π+π⁻: y=0 has C.L. 6x10⁻⁴

Measurements

Combination

1996 <u>FNAL E791</u> $R_M = (0.11 + 0.30 - 0.27 + 0.00 - 0.014)$ % 2005 <u>CLEO II.V</u> $R_M = (0.16 \pm 0.29 \pm 0.29)$ % 2004 <u>BaBar</u> $R_M = (0.23 \pm 0.12 \pm 0.04)$ % 2005 <u>Belle</u> $R_M = (0.020 \pm 0.047 \pm 0.014)$

R_M semil.

1999 FNAL E791 $\Delta\Gamma = (0.04 \pm 0.14 \pm 0.05) \text{ ps}^{-1} (y_{CP} = (0.8 \pm 3.1)\%)$ 2000 FOCUS y CP = $(3.42 \pm 1.39 \pm 0.74)\%$ 2002 CLEO II.V y CP = $(-1.2 \pm 2.5 \pm 1.4)\%$ 2003 BaBar y CP = $(0.8 \pm 0.4^{+0.5} - 0.4)\%$ 2002 Belle y CP = $(-0.5 \pm 1.0^{+0.7} - 0.8)\%$ 2007 Belle y CP = $(1.31 \pm 0.32 \pm 0.25)\%$

2006 <u>Belle</u> $x'^{2} = (0.018 + 0.021 - 0.023)\%$ y' = (0.06 + 0.40 - 0.39)%2007 <u>BaBar</u> $x'^{2} = (-0.022 \pm 0.030 \pm 0.021)\%$ $y' = (0.97 \pm 0.44 \pm 0.31)\%$ X'^{2} , y'

2005/2007 <u>CLEO II.V</u> $x = (1.9^{+3.2}_{-3.3} \pm 0.4 \pm 0.4)\%$ $y = (-1.4 \pm 2.4 \pm 0.8 \pm 0.4)\%$ X, Y 2007 <u>Belle</u> $x = (0.80 \pm 0.29 \pm 0.17)\%$ $y = (0.33 \pm 0.24 \pm 0.15)\%$

2006 <u>CLEO-c</u> $R_M = (0.17 \pm 0.15)\%$ $y = (-5.8 \pm 6.6)\%$ $\cos \delta_{K\pi} = 1.09 \pm 0.66$ CleO-C

Measurements CPV

CPV in D⁰ system

$$\left\langle f \left| H \right| D^{0}(t) \right\rangle \underset{CPV}{\neq} \left\langle \overline{f} \left| H \right| \overline{D}^{0}(t) \right\rangle$$

first two generations involved;

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix}$$

$$Nolfenstein param., \qquad \varphi \sim \frac{2\eta A^2 \lambda^5}{\lambda} \sim O(10^{-3})$$

CPV in D⁰ very small, $\leq 10^{-3}$; parameterization:

$$\frac{q}{p} \neq 1; \ \frac{q}{p} \equiv (1 + \frac{A_M}{2})e^{i\varphi}; A_M, \varphi \neq 0$$

 $D^{0} \rightarrow K^{+}\pi^{-}, K^{+}K^{-} / \pi^{+}\pi^{-}, K_{s} \pi^{+}\pi^{-}$ t distributions depend also on CPV parameters

x, y at upper limit of SM expectation \rightarrow search for CPV; at current level of sensitivity positive signal clear indication of NP;

B. Golob, Belle

26

Prospects

Prospects

B. Golob, Belle

28

Summary

- Belle and BaBar presented evidence for D⁰ mixing x = (0.94 ± 0.36)% y = (0.68 ± 0.21)%
- Values of mixing parameters at upper end of SM expectations; new measurements to further constrain x, y (and hope for more accurate predictions?)
- Search for CPV = NP search;
 Super-B factory would allow for sensitive searches in reasonable extensions of SM