p-values and Discovery

Louis Lyons Oxford I.lyons@physics.ox.ac.uk

KEK,

May 2007

Statistical Issues for LHC Physics

CERN Geneva June 27-29, 2007

This Workshop will address statistical topics relevant for LHC Physics analyses. Issues related to discovery, and the associated problems arising from systematic uncertainties, will feature prominently.

> Contacts Louis Lyons Albert De Roeck Conference secretary Dorothée Denise Dorothee.Denise@cern.ch

Further information and registration at http://cern.ch/phystat-lhc

Discoveries H0 or H0 v H1 p-values: For Gaussian, Poisson and multi-variate data Goodness of Fit tests Why 5σ ? **Blind analyses** What is p good for? Errors of 1st and 2nd kind What a p-value is not $P(\text{theory}|\text{data}) \neq P(\text{data}|\text{theory})$ THE paradox Optimising for discovery and exclusion Incorporating nuisance parameters

DISCOVERIES

 "Recent" history:

 Charm
 SLAC, BNL
 1974

 Tau lepton
 SLAC
 1977

 Bottom
 FNAL
 1977

 W,Z
 CERN
 1983

 Top
 FNAL
 1995

 {Pentaquarks
 ~Everywhere
 2002 }

 ?
 FNAL/CERN
 2008?

? = Higgs, SUSY, q and I substructure, extra dimensions, free q/monopoles, technicolour, 4th generation, black holes,.....

QUESTION: How to distinguish discoveries from fluctuations or goofs?

Penta-quarks?

Hypothesis testing: New particle or statistical fluctuation?

H0 or H0 versus H1?

H0 = null hypothesis

e.g. Standard Model, with nothing new H1 = specific New Physics e.g. Higgs with M_H = 120 GeV H0: "Goodness of Fit" e.g. χ^2 ,p-values H0 v H1: "Hypothesis Testing" e.g. L-ratio Measures how much data favours one hypothesis wrt other

H0 v H1 likely to be more sensitive

Testing H0:

Do we have an alternative in mind?

1) Data is number (of observed events) "H1" usually gives larger number (smaller number of events if looking for oscillations) 2) Data = distribution. Calculate χ^2 . Agreement between data and theory gives $\chi^2 \sim ndf$ Any deviations give large χ^2 So test is independent of alternative? Counter-example: Cheating undergraduate 3) Data = number or distribution Use L-ratio as test statistic for calculating p-value 4) H0 = Standard Model

p-values

Concept of pdf Example: Gaussian

y = probability density for measurement x

y =
$$1/(\sqrt{2\pi}\sigma) \exp\{-0.5^*(x-\mu)^2/\sigma^2\}$$

p-value: probablity that $x \ge x_0$

Gives probability of "extreme" values of data (in interesting direction)

$(x_0-\mu)/\sigma$	1	2	3	4	5
p p	16%	2.3%	0.13%	0.003%	0.3*10-6

i.e. Small p = unexpected

p-values, contd

Assumes: Gaussian pdf (no long tails) Data is unbiassed σ is correct If so, Gaussian x → uniform p-distribution

(Events at large x give small p)

p-values for non-Gaussian distributions

e.g. Poisson counting experiment, bgd = b $P(n) = e^{-b} * b^{n}/n!$

For n=7, p = Prob(at least 7 events) = P(7) + P(8) + P(9) + = 0.03

Poisson p-values

n = integer, so p has discrete values So p distribution cannot be uniform Replace Prob{ $p \le p_0$ } = p_0 , for continuous p by Prob{ $p \le p_0$ } $\le p_0$, for discrete p (equality for possible p_0)

p-values often converted into equivalent Gaussian σ e.g. $3*10^{-7}$ is " 5σ " (one-sided Gaussian tail)

Significance

Significance = S/\sqrt{B} ?

Potential Problems:

•Uncertainty in B

•Non-Gaussian behaviour of Poisson, especially in tail

•Number of bins in histogram, no. of other histograms [FDR]

- •Choice of cuts (Blind analyses)
- •Choice of bins (.....)

For future experiments:

• Optimising S / \sqrt{B} could give S =0.1, B = 10⁻⁶

Goodness of Fit Tests

Data = individual points, histogram, multi-dimensional, multi-channel

 χ^2 and number of degrees of freedom $\Delta\chi^2$ (or *ln*L-ratio): Looking for a peak Unbinned L_{max}? Kolmogorov-Smirnov Zech energy test Combining p-values

Lots of different methods. Software available from: http://www.ge.infn.it/statisticaltoolkit

χ^2 with v degrees of freedom?

1) v = data - free parameters ?
Why asymptotic (apart from Poisson → Gaussian) ?
a) Fit flatish histogram with y = N {1 + 10⁻⁶ cos(x-x₀)} x₀ = free param

b) Neutrino oscillations: almost degenerate parameters $y \sim 1 - A \sin^2(1.27 \ \Delta m^2 \ L/E)$ 2 parameters $\xrightarrow{} 1 - A (1.27 \ \Delta m^2 \ L/E)^2$ 1 parameter Small Δm^2

χ^2 with v degrees of freedom?

2) Is difference in χ^2 distributed as χ^2 ? H0 is true.

Also fit with H1 with k extra params

e. g. Look for Gaussian peak on top of smooth background $y = C(x) + A \exp\{-0.5 ((x-x_0)/\sigma)^2\}$

Is χ^2_{H0} - χ^2_{H1} distributed as χ^2 with $\nu = k = 3$?

Relevant for assessing whether enhancement in data is just a statistical fluctuation, or something more interesting

N.B. Under H0 (y = C(x)): A=0 (boundary of physical region) x_0 and σ undefined

Is difference in χ^2 distributed as χ^2 ?

Is difference in χ^2 distributed as χ^2 ?, contd.

So need to determine the $\Delta \chi^2$ distribution by Monte Carlo

N.B.

- 1) Determining $\Delta \chi^2$ for hypothesis H1 when data is generated according to H0 is not trivial, because there will be lots of local minima
- If we are interested in 5σ significance level, needs lots of MC simulations (or intelligent MC generation)

Unbinned L_{max} and Goodness of Fit?

Find params by maximising LSo larger L better than smaller LSo L_{max} gives Goodness of Fit ??

