Design Activity of Large Detector for ILC

July 18, 2007 Yasuhiro Sugimoto KEK

Outline

- ILC detectors
- GLD/LDC
- Engineering challenge
- GLD-LDC collaboration
- LOI/EDR

ILC Detectors

	TABLE I	I: Benc	hmark reactions for the ev	aluation of ILC detectors			
	Process and	Energy	Observables	Target	Detector	Notes	
	Final states	(TeV)		Accuracy	Challenge		
Higgs	$ee \rightarrow Z^0 h^0 \rightarrow \ell^+ \ell^- X$	0.35	$M_{recoil}, \sigma_{Zh}, BR_{bb}$	$\delta\sigma_{Zh} = 2.5\%, \delta \mathrm{BR}_{bb} = 1\%$	т	{1}	
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow b\bar{b}/c\bar{c}/\tau\tau$	0.35	Jet flavour , jet (E, \vec{p})	$\delta M_h = 40 \text{ MeV}, \ \delta(\sigma_{Zh} \times BR) = 1\%/7\%/5\%$	V	$\{2\}$	
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow WW^*$	0.35	M_Z, M_W, σ_{qqWW}	$\delta(\sigma_{Zh} \times BR_{WW^*}) = 5\%$	C	{3}	
	$ee \rightarrow Z^0 h^0 / h^0 \nu \bar{\nu}, h^0 \rightarrow \gamma \gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma}) = 5\%$	С	{4}	
	$ee \rightarrow Z^0 h^0 / h^0 \nu \bar{\nu}, h^0 \rightarrow \mu^+ \mu^-$	1.0	$M_{\mu\mu}$	5σ Evidence for $M_h = 120$ GeV	Т	$\{5\}$	
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow invisible$	0.35	σ_{qqE}	5σ Evidence for BR _{invisible} = 2.5%	C	{6}	
	$ee \rightarrow h^0 \nu \bar{\nu}$	0.5	$\sigma_{bb\nu\nu}, M_{bb}$	$\delta(\sigma_{\nu\nu h} \times \mathrm{BR}_{bb}) = 1\%$	С	{7}	
	$ee \rightarrow t\bar{t}h^0$	1.0	σ_{tth}	$\delta g_{tth} = 5\%$	C	{8}	
	$ee \rightarrow Z^0 h^0 h^0, \ h^0 h^0 u ar{ u}$	0.5/1.0	$\sigma_{Zhh}, \sigma_{\nu\nu hh}, M_{hh}$	$\delta g_{hhh} = 20/10\%$	С	{9}	
SSB	$ee \rightarrow W^+W^-$	0.5		$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	V	{10}	
	$ee \rightarrow W^+W^- \nu \bar{\nu}/Z^0 Z^0 \nu \bar{\nu}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5} = 3 \text{ TeV}$	С	{11}	
SUSY	$ee \rightarrow \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_e	$\delta M_{\tilde{\chi}^0_1}$ =50 MeV	Т	{12}	ILC detectors should
	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ (Point 1)}$	0.5	$E_{\pi}, E_{2\pi}, E_{3\pi}$	$\delta(M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}) = 200 \text{ MeV}$	Т	{13}	
	$ee \rightarrow \tilde{t}_1 \tilde{t}_1$ (Point 1)	1.0		$\delta M_{\tilde{t}_1} = 2 \text{ GeV}$		{14}	Identify and measure
-CDM	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 3)	0.5		$\delta M_{\tilde{\tau}_1} = 1 \text{ GeV}, \ \delta M_{\tilde{\chi}_1^0} = 500 \text{ MeV},$	F	{15}	1 momente of
	$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi_1^+} \tilde{\chi_1^-}$ (Point 2)	0.5	M_{jj} in $jj \not\!$	$\delta \sigma_{\bar{\chi}_2 \bar{\chi}_3} = 4\%, \ \delta (M_{\bar{\chi}_2^0} - M_{\bar{\chi}_1^0}) = 500 \text{ MeV}$	C	{16}	4-momenta or
	$ee \rightarrow \tilde{\chi_1^+} \tilde{\chi_1^-} / \tilde{\chi_i^0} \tilde{\chi_j^0}$ (Point 5)	0.5/1.0	ZZĘ, WWĘ	$\delta\sigma_{\tilde{\chi}\tilde{\chi}}=10\%, \ \delta(M_{\tilde{\chi}_0^0}-M_{\tilde{\chi}_0^0})=2 \text{ GeV}$	С	{17}	$W Z \gamma l c b$
	$ee \to H^0 A^0 \to b\bar{b}b\bar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta M_A = 1 \text{ GeV}$	С	{18}	,2,,,,,,,,,,
-alternative	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta M_{\tilde{\tau}_1}$	Т	{19}	
SUSY	$\tilde{\chi}_1^0 \to \gamma + \not\!$	0.5	Non-pointing γ	$\delta c \tau = 10\%$	С	{20}	
breaking	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 + \pi_{soft}^{\pm} $ (Point 8)	0.5	Soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m}{=}0.2{-}2~{\rm GeV}$	F	{21}	
Precision SM	$ee \rightarrow t\bar{t} \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	V	{22}	
	$ee \rightarrow f\bar{f} \ (f = e, \mu, \tau; b, c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M_{Z_{LR}} = 7$ TeV	V	{23}	
New Physics	$ee \rightarrow \gamma G \text{ (ADD)}$	1.0	$\sigma(\gamma + E)$	5σ Sensitivity	С	{24}	
	$ee \to KK \to f\bar{f}$ (RS)	1.0			Т	{25}	
Energy/Lumi	$ee \rightarrow ee_{fwd}$	0.3/1.0		$\delta M_{top} = 50 \text{ MeV}$	Т	{26}	
Meas.	$ee \rightarrow Z^0 \gamma$	0.5/1.0			Т	{27}	

Benchmark processes

Performance Goal

- Vertex Detector
 - Impact param. res. : $\sigma_{\rm b}$ = 5 \oplus 10/($p\beta$ sin^{3/2} θ) μ m
 - Charm and τ ID is important : $c\tau \sim 100 \ \mu m >> \sigma_b$
- Tracker
 - $\delta p_t / p_t^2 = 5 \times 10^{-5} / \text{GeV}$
- Calorimeter
 - Jet energy resolution : $\sigma_E / E = 30\% / E^{1/2}$
- Hermeticity or $\sigma_E / E = 3 4 \%$
 - Forward coverage down to ~5 mrad

Detector Concepts for ILC

- Four Detector Concepts: GLD, LDC, LDC, 4th
- Three of them are optimized for "PFA" \rightarrow Larger BR² preferable
- Convergence from 4 to 2 by the end of next year
 - Aug. 2007: LOI call
 - Summer 2008: LOI submission
 - End of 2008: Two detector designs
- By the end of 2010: Two Detector Engineering Design Report (EDR)

4th

PFA

- Jet Energy Resolution
 - $\sigma_E / E = 30\% / E^{1/2}$ is necessary to separate W and Z
 - Charged (~60%) by central tracker
 - Gammas (~30%) by EM CAL
 - Neutral hadrons (~10%) by H CAL
 - Isolate and identify each shower cluster in CAL → Particle (Energy) Flow Algorithm (PFA)
 - Confusion between charged tracks and γ /nh cluster in the CAL gives the largest contribution to σ_E/E

Detector optimization for PFA

- In order to get good PFA performance;
 - Jet particles should spread in CAL → Large BR² (R: CAL inner radius)
 - CAL should be fine-segmented to separate each particles
 - Effective Moliere length should be small to minimize the size of the EMshowers
 - Particles should be traced from the central tracker to CAL → Minimize the gap between tracker and CAL → Hadron CAL inside the solenoid

Detector features

	GLD	LDC	SiD	4-th
Tracker	TPC + Si-strip	TPC + Si-strip	Si-strip	TPC or DC
Calorimeter	PFA	PFA	PFA	Compensating
Calonneter	Rin=2.1m	Rin=1.6m	Rin=1.27m	Rin=1.5m
Б	ЗТ	4T	БТ	3.5T
			51	No return yoke
BR ²	13.2 Tm ²	10.2 Tm ²	8.1 Tm ²	(non-PFA)
E _{store}	1.6 GJ	1.7 GJ	1.4 GJ	2.7 GJ
Sizo	R=7.2m	R=6.0m	R=6.45m	R=5.5m
5120	Z =7.5m	Z =5.6m	Z =6.45m	Z =6.4m

GLD Baseline Design

LDC baseline design

11

GLD/LDC Baseline Design

Sub-detector	GLD	LDC	
Vertex det.	FP CCD	CPCCD/CMOS/DEPFET/ISIS/SOI/	
Si inner tracker	Si strip (4-layers)	Si strip (2-layers)	
Si forward trk.	Si strip/pixel (?)	Si strip/pixel (?)	
Main trk.	TPC	TPC	
Additional trk.	Si endcap/outer trk. (option)	Si endcap/external trk.	
EM CAL	W-Scintillator	W-Si	
HCAL	Fe(Pb)-Scintillator	Fe-Sci./RPC*/GEM*	
Solenoid	3T	4T	
Muon det.	Scintillator strip	Sci strip/PST/RPC	
Iron yoke	(25cm + 5cm) x 9/10	(10cm+4cm) x 10 + 1m	
Forward CAL	W-Si/Diamond	W-Si/Diamond	

12

Expected performance

Impact parameter resolution

 χ^2 / ndf Impact Parameter res. at cos0=0 31.55 / 14 p0 1.221 ± 0.03998 res. (µm) p1 6.855 ± 0.1985 p2 7.68 ± 0.1931 $\sigma^2 = \sigma_0^2 +$ 10 1 10² Momentum (GeV/c) 1 10 80µm Si-equivalent per layer is assumed

GLD study

Expected performance

Momentum resolution

Expected performance

• PFA performance

Jet-energy resolution study by M.Thomson for LDC00 (BR²=11.6 : Larger than latest LDC)

E (GeV)	$\sigma_E/E(\%)$	$\alpha \left(\sigma_{E} / E = \alpha / \sqrt{E} \right)$
45	4.4	0.295
100	3.1	0.305
180	3.1	0.418
250	3.4	0.534

GLD sub-detector R&D in Japan

- FPCCD Vertex Detector
 - KEK, Tohoku, JAXA
- TPC
 - Saga, KEK, TUAT, Kogakuin, Kinki, Hiroshima
- Scintillator/MPPC based CAL
 - Shinshu, Niigata, Tsukuba, Tokyo, Kobe
- Superconducting solenoid
 - KEK
- Simulation study for detector optimization
 - Tohoku, Niigata, KEK, Tokyo, Shinshu, Kobe, Saga

Engineering challenge of GLD

- GLD design shown in page 9-10 is just a "conceptual" design
- We need more realistic design study which includes considerations on
 - Mechanical design of sub-detectors
 - How to support sub-detectors
 - How to integrate sub-detectors into a detector system
 - Surface assembly scheme (CMS style?)
 - Detector alignment
 - Power consumption and cooling method
 - Amount of cables and pipes coming out from the detector
 - Location and size of electronics-hut
 - Design of back-end electronics and DAQ system
 - Design of detector solenoid with anti-DID (Detector Integrated Dipole)
 - How to open and maintain the detector
 - How to make it compatible with the push-pull scheme
 - ...

Surface assembly

• CMS style

Each big segment is assembled on surface and lowered by 2000-ton crane

Anti-DID

w/o Anti-DID

with Anti-DID

Push-Pull Scheme

- Baseline ILC Design
 - Only one interaction point
 - Two detectors use the beam in turn
- Push-pull scheme
 - Very quick switch over is necessary (in few days)
 - Put detector, elec. hut, final quad, etc. on a big platform, and move them together with the platform ?
 - We have to think seriously how to make cryogenic system flexible

Push-Pull Scheme

Platform
 Study by
 J.Amann

Future Prospect

- GLD-LDC collaboration
 - Four detector concepts will be converged into two by the end of 2008
 - Spontaneous convergence is preferable not to make "losers" for yet to be approved project
 - GLD and LDC are both based on TPC main tracker and PFA-optimized calorimeter, and it is natural to be unified
 - GLD and LDC had a joint meeting at LCWS2007, and agreed that they will write a "single common LOI"
 - Towards the common LOI, re-consideration of the detector design will be done, and collaboration including the definition of common detector parameters will be carried out

Future Prospect

• LOI

- LOI will include
 - Detector design convincing of feasibility
 - R&D plan for technologies which are not established
 - Demonstration of physics performance
 - Reliable cost estimation
 - Description of the organization capable of making the engineering design
 - Participating institutes
 - Commitment of major labs
 - MoU between labs and universities, if necessary
- LOI will NOT include
 - Final technology choice for sub-detectors → Several options will be preserved

Future Prospect

• EDR

- Feature of detector EDR in 2010
 - Used as a proposal of the ILC project to governments together with accelerator EDR
 - Not a construction-ready design report
 - The design described in the EDR could be changed depending on the outputs of LHC and/or detector R&D after 2010
 - Construction-ready EDR (or TDR) will supposedly be made in 2012-2013(?)
- Resource
 - It requires a sizable resource to make an EDR
 - We have to make all efforts to get the resource

Summary

- ICFA/ILCSC will call for LOI soon
- GLD and LDC will submit a common LOI next summer
- Detector EDR has to be made by the end of 2010
- Intensive design study for ILC detectors will be carried out
- Present GLD "conceptual" design satisfies the performance goal for ILC physics
- There are so many issues to be studied towards LOI and EDR
 - Realistic detector design and optimization
 - Sub-detector R&D
 - Simulation study
 - Engineering study
- We are at a phase of great fun Don't miss the opportunity!