Recent results of and future plans for the Booster Neutrino Beamline

Kendall Mahn, Columbia University for the MiniBooNE and SciBooNE collaborations

Outline

- One beam...
 - Booster Neutrino Beamline
 - Resulting flux
- Two experiments...
 - SciBooNE detectors
 - MiniBooNE detector
- Physics!
 - Oscillation
 - Cross section measurements
 - Neutrino and Antineutrino
- Summary

The big picture

- 8.9 GeV/c protons from Booster accelerator
- protons hit a target within a magnetic focusing horn and produce mesons
- The mesons decay into neutrinos the ~450 m decay region
- Neutrinos are observed in MiniBooNE and SciBooNE

Booster Neutrino Beamline (BNB)

Booster

4x10¹² protons / 1.6 μs pulse delivered at up to 5 Hz

Target
 1.7 λBe target

Magnetic horn

Pulses at 2.5 kV, 174kA Increases flux by ~x6

Secondary meson production

HARP 8.9 GeV/c pBe π^+ production

 For π⁺, K⁺, and K⁰ production use a parameterization to fit the existing data

 Errors span spread in data as well as fit errors

Neutrino flux

- Geant 4 model of beamline
- ν_µ predominantly from π⁺ except at high energy (K⁺)
- 0.5 % v_e content
 - 52% $\mu \Rightarrow e^+ v_{\mu} v_e$
 - 29% $K^+ \Rightarrow \pi^+ e^+ v_e$
 - 14% $K^0 \Rightarrow \pi e v_e$
 - 5% other
- 6% antineutrino content

Antineutrino flux

Reversible horn current; can focus negatively charged mesons for an antineutrino beam

 $\pi^- \Rightarrow \nu_\mu \text{ vs } \pi^+ \Rightarrow \nu_\mu$

Flux for antineutrino mode has substantial neutrino contamination, lower overall rate

Interactions in the BNB

- Nuance Monte Carlo
 D. Casper, NPS, 112 (2002) 161
- Largest interaction is charged current quasi elastic (CCQE)
 Common channel for normalization, oscillation analyses
- Next largest is charged current single pion production (CC π⁺) background in CCQE samples
- Also Neutral current pion production (NC π⁰) and Neutral current elastic scattering (NC EL)

Outline

- One beam...
 - Booster Neutrino Beamline
 - Resulting flux
- Two experiments...
 - SciBooNE detectors
 - MiniBooNE detector
- Physics!
 - Oscillation
 - Cross section measurements
 - Neutrino and Antineutrino
- Summary

SciBooNE

- Preexisting (free!) fine grained tracking detectors
- Insert into a running, modeled beamline
- Cross section measurements
 - Similar energy as T2K
 - Near detector for MiniBooNE
 - Measurement of rare and antineutrino cross sections
- Intent to run 1e20 pot in neutrino and antineutrino mode

The SciBooNE Collaboration

T. Ishii, M. Tanaka High Energy Accelerator Research Organization (KEK)

T. Katori, C. Polly, R. Tayloe Indiana University

Y. Hayato Institute for Cosmic Ray Research (ICRR)

I.J. Taylor, Y. Uchida, J. Walding, D. Wark, M.O. Wascko(*) Imperial College London

S.-I. Gomi, K. Hiraide, H. Kawamuko, H. Kubo, Y. Kurimoto, Y. Nakajima, T. Nakaya (*), K. Matsuoka, M. Taguchi, H. Tanaka, M. Yokoyama *Kyoto University*

J. Alcaraz, G. Jover, F. Sanchez Universitat Autonoma de Barcelona

R. Johnson University of Cincinnati

M. Wilking, E.D. Zimmerman University of Colorado, Boulder

A.A. Aguilar-Arevalo, L. Bugel, Z. Djurcic, J.M. Conrad, K.B.M. Mahn, V. Nguyen, M.H. Shaevitz, G.P. Zeller Columbia University

R.H. Bernstein, S.J. Brice, B.C. Brown, D.A. Finley, T. Kobilarcik, A.D. Russell, R. Stefanski, R.J. Tesarek, H. White *Fermi National Accelerator Laboratory*

W.C. Louis, R. Van de Water Los Alamos National Laboratory

W. Metcalf Louisiana State University

R. Napora Purdue University Calumet

U. Dore, C. Giganti, P.F. Loverre, L. Ludovici, C. Mariani Universita degli Studi di Roma "La Sapienza"

P. Nienaber Saint Mary's University of Minnesota

Y. Miyachi, T.-A. Shibata, H. Takei *Tokyo Institute of Technology*

J. Catala, A. Cervera-Villanueva, J.J. Gomez-Cadenas, M. Sorel, A. Tornero Unversidad de Valencia

SciBooNE: SciBar

- 15 ton extruded scintillator (carbon target) with wavelength shifting fiber (WLS) readout
- Each cell is 2.5 x 1.3 x 300 cm
- 224 64 channel Multi-Anode PMT (14336 channels)
- Built for K2K

SciBooNE: Electron Catcher (EC)

- "spaghetti" calorimeter
 - 1mm scintillating fibers in grooves between lead foil

256 channels

- 11 X₀ long
- 1 vertical and 1 horizontal plane; PMT readout at both ends
- Built for CHORUS, used for K2K

SciBooNE: Muon Range Detector (MRD)

- 12 5cm iron plates interspersed with scintillator counters; ~48 tons of material
- 13 horizontal and 12 vertical planes with 26 or 30 scintillator counters attached, each with a single PMT readout (362 channels)
- Assembled from scratch and spare parts at FNAL

Events in SciBooNE

- Tracking detector
 Can use dE/dX to distinguish
 pion from proton from muon
 proton tracks >10 cm are
 reconstructable
 electrons stop in EC
 Muons < 0.9 GeV stop in MRD
 - Resolution SciBar: 0.08 GeV muon energy, 1 degree angular resolution EC: 14% √E MRD: ~10% √E

(Real) Events in SciBooNE

- Mar. 2005: K2K ends
- Summer 2005: collaboration formed
- Nov. 2005: Proposed
- Dec. 2005: Approved, detectors sent from KEK
- July 2006: SciBar and EC arrive, MRD construction begins

- Sept. 2006: Groundbreaking for new detector hall
- Nov. 2006 Feb 2007: Assembly and construction of all 3 detectors

- March 2007: Testing of detectors with cosmic rays
- April 2007: Detectors lowered into new detector hall

Fermilab

 Fermi National Accelerator Laboratory

 P.O. Box 500 • Batavia, II. • 60510-0500

 630-840-3211

 FAX 630-840-2900

Director's Office

July 20, 2007

Prof. Tsuyoshi Nakaya High Energy Physics Group Dept of Physics, Faculty of Science Kyoto University Kitashirakawa Oiwake-cho Sakyo-ku, Kyoto, 606-8502 Japan

Dr. Morgan Wascko Physics Department Imperial College London Blackett Lab 525 Prince Consort Road London SW7 2AZ United Kingdom

Dear Tsuyoshi and Morgan,

Given your progress on the SciBooNE experiment, including a formal Memorandum of Understanding between SciBooNE and the Laboratory, I am pleased to grant formal Stage II approval to the experiment.

I wish you successful continuation of the data taking.

Sincerely,

Comana Soft

Piermaria Oddone

- May 31st, 2007: First data events in all 3 detectors!
- July 20th, 2007: Received Stage II approval

Outline

- One beam...
 - Booster Neutrino Beamline
 - Resulting flux
- Two experiments...
 - SciBooNE detectors
 - MiniBooNE detector
- Physics!
 - Oscillation
 - Cross section measurements
 - Neutrino and Antineutrino
- Summary

The MiniBooNE Collaboration

Y.Liu, D.Perevalov, I.Stancu University of Alabama S.Koutsoliotas Bucknell University R.A.Johnson, J.L.Raaf University of Cincinnati T.Hart, R.H.Nelson, M.Tzanov M.Wilking, E.D.Zimmerman University of Colorado A.A.Aguilar-Arevalo, L.Bugel L.Coney, J.M.Conrad, Z. Djurcic, K.B.M.Mahn, J.Monroe, D.Schmitz M.H.Shaevitz, M.Sorel, G.P.Zeller Columbia University D.Smith **Embry Riddle Aeronautical University** L.Bartoszek, C.Bhat, S.J.Brice B.C.Brown, D. A. Finley, R.Ford, F.G.Garcia, P.Kasper, T.Kobilarcik, I.Kourbanis, A.Malensek, W.Marsh, P.Martin, F.Mills, C.Moore, E.Prebys, A.D.Russell, P.Spentzouris, R.J.Stefanski, T.Williams Fermi National Accelerator Laboratory D.C.Cox, T.Katori, H.Meyer, C.C.Polly R.Tavloe Indiana University

G.T.Garvey, A.Green, C.Green, W.C.Louis, G.McGregor, S.McKenney
G.B.Mills, H.Ray, V.Sandberg, B.Sapp, R.Schirato, R.Van de Water
N.L.Walbridge, D.H.White
Los Alamos National Laboratory
R.Imlay, W.Metcalf, S.Ouedraogo, M.O.Wascko
Louisiana State University
J.Cao, Y.Liu, B.P.Roe, H.J.Yang
University of Michigan
A.O.Bazarko, P.D.Meyers, R.B.Patterson, F.C.Shoemaker, H.A.Tanaka
Princeton University
P.Nienaber Saint Mary's University of Minnesota
J. M. Link Virginia Polytechnic Institute
E.Hawker Western Illinois University
A.Curioni, B.T.Fleming Yale University

MiniBooNE: Detector

800 ton mineral oil (carbon target) Cherenkov detector

- 12 m diameter sphere
- 1280 inner region 8" PMTs, 10% photocathode coverage
- 240 outer 'veto' region PMTs

Resolution:

- Charge: 1.4 PE
- Time: 1.7 ns

Events in MiniBooNE

v_e-

 ν_{μ}

W⁺

 W^+

Use hit topology, timing to determine event type

- Outgoing lepton implies flavor of neutrino for charged current events
- Reconstructed quantities: track length, angle relative to beam direction
- Fundamental: timing, charge of hits, early/late hit fractions
- Geometry: position from wall of tank
- Additional information in scintillation light
 - ~25% of the light in the tank due to mineral oil
 Unlike prompt
 - Unlike prompt Cherenkov light, scintillation light is delayed
 - Amount depends on particle type

Subevents in MiniBooNE

19.2 µsec trigger window around 1.6µsec beam Trigger on neutrino event $(v_{\mu} + n \Rightarrow \mu + p)$ initially, subsequent electron from muon decay $(\mu \Rightarrow e^{+}v_{\mu}v_{e})$ Each cluster of hits in time is a 'subevent'

Precuts in MiniBooNE

Calibrating MiniBooNE

Outline

- One beam...
 - Booster Neutrino Beamline
 - Resulting flux
- Two experiments...
 - SciBooNE detectors
 - MiniBooNE detector
- Physics!
 - Oscillation
 - Cross section measurements
 - Neutrino and Antineutrino
- Summary

MiniBooNE

- Purpose: confirm or refute LSND
 - LSND observed an excess of v_e in a v_µ beam; assuming 2 parameter mixing gives a 0.25% oscillation probability
 - Run with same L/E, different L, E, signal signature
- Started in 1998, oscillation results this year
 - 5.57e20 protons on target in neutrino mode
 - 2.2e20 protons on target and counting in antineutrino mode

Oscillation Analysis

Observe an excess or not?

Out of tank events ('dirt')

v_e selection cuts: particle identification (PID)

Two PID algorithms used

- Likelihood based analysis (TBL): e/μ, e/π⁰ and m_{π0} cuts
- A "boosted decision tree" (BDT) algorithm to separate e, μ, π⁰
- A decision tree is similar to a neural net
 - Cut first on the variable which gives the most separation of signal to background, at the point where it gives the most separation. Then cut on next best variable...

"Boosting" is a method to additionally separate signal from background, by weighting events

Increase weight of misclassified events in current tree, and remake tree.
 Repeat ~100-1000x. Sum all the trees, by counting events on signal leaves as +1, and -1 otherwise. This forms the PID variable.

Oscillation Analysis

Out of tank events ('dirt')

NC π^0 tagging

- Asymmetric decays where only one photon is observed look just like a single electron, or a CCQE v_e event
- Select 1 subevent, minimal veto activity, above decay endpoint, and within fiducial volume
- Create two likelihood variables-- 1 ring vs 2 ring hypothesis, and 1 ring electron or muon like
- Select events which fit well to 2 ring, electron like, and which fall within the reconstructed π⁰ mass peak
- very pure (~90%) sample

NC π^0 rate measurement

- Compare the observed π^0 rate to the MC as a function of π^0 momentum, and make a correction factor
- Reweight the misidentified π^0 s based on their momentum by this correction factor
- This is also the correction applied to the $\Delta \Rightarrow N\gamma$ events for the oscillation analysis

Error 'budget'

source of uncertainty on nue background	TBL/BDT % error	constrain ed by MB data?	Reduced by relating ν_{μ} to ν_{e}
Flux from π^+/μ^+ decay	6.2 / 4.3	Y	Y
Flux from K ⁺ decay	3.3 /1.0	Y	Y
Flux from K ⁰ decay	1.5 / 0.4	Y	Y
Target/Beam model	2.8 / 1.3	Y	Y
v cross section	12.3 / 10.5	Y	Y
NC π^0 yield	1.8 / 1.5	Y	
Out of tank events	0.8 / 3.4	Y	
Optical Model	6.1 / 10.5	Y	Y
DAQ electronics model	7.5 / 10.8	Y	

All of our errors are highly correlated, but here are the diagonal errors

Constrain all samples with MiniBooNE data

Link between v_e and v_μ samples further reduces errors, like a 'near to far ratio'

* shows errors before ν_{e} / ν_{μ} constraint is applied

Result

- BDT also has no sign of excess in analysis region
- Also shows an excess at low energy, but errors are larger and data low relative to prediction elsewhere complicates the issue

- TBL analysis shows no excess in analysis region, but excess at low energy
- Excess cannot be described based on LSND and a simple 2 v mixing hypothesis; still under investigation

Sensitivity

- TBL limit (solid), BDT (dash)
- Agreement between independent analyses
- Incompatible with LSND at 98% CL at all ∆m² for 2 neutrino mixing hypothesis

Outline

- One beam...
 - Booster Neutrino Beamline
 - Resulting flux
- Two experiments...
 - MiniBooNE detector
 - SciBooNE detectors
- Physics!
 - Oscillation
 - Cross section measurements
 - Neutrino and Antineutrino
- Summary

Cross sections around 1 GeV

World's data on neutrino cross sections vs Ev

- Nothing measured to better than 15-20%
- Many measurements not on nuclear targets
- Can take ratios of processes to CCQE to avoid some flux uncertainties
- Or measure same process in two detectors

Cross sections around 1 GeV

World's data on antineutrino cross sections vs Ev

 Need antineutrino cross sections for future experiments
 Compare oscillation in neutrino and antineutrino modes to map out CP violation and mass hierarchy in neutrino mixing

P(osc) vs δ CP, for normal and inverted hierarchies

Charged Current Quasi-Elastic (CCQE) interaction

- Tag single muon events and their decay electron
 - 2 subevents, minimal veto activity in both
 - muon-like track, 2nd event below decay electron energy endpoint
 - both events within fiducial volume
 - 74% purity, 197k event sample
- Neutrino energy is related to energy of muon, angle between muon and neutrino, and binding energy
- Simple relationship between neutrino, and lepton measurables makes this a 'golden' mode for oscillation measurements

CCQE cross section formalism

C. H. Llewellyn Smith, Phys. Rep. <u>3</u>C, 261 (1972)

$$< N'|J_{\mu}|N > = \overline{u}(N') \left[\gamma_{\mu} F_{V}'(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}\xi F_{V}^{2}(q^{2})}{2M} + \gamma_{5}\gamma_{\mu}F_{A}(q^{2}) \right] u(N)$$

- QE cross section can be written in as a function of Q², in terms of vector (F_V) and axial vector (F_A) form factors
- F_v are constrained by electron scattering experiments; F_A by neutrino scattering only
- Assuming a dipole form:

$$F_A(Q^2) = \frac{g_A}{(1+Q^2 / M_A^2)^2}$$

where M_A is the 'axial mass'

 This picture is complicated by the presence of nuclear effects, strong at low Q²

CCQE measurement

Simultaneous shape fit for M_A and nuclear effect parameter (κ) in Q² with a relativistic Fermi Gas model M_A = 1.23 +/- 0.20 GeV, κ = 1.019 +/- 0.011 Recent K2K SciBar result: M_A = 1.14 +/- 0.11 GeV

World Average: M_A = 1.03 +/-0.02 GeV

NC π^0 :Coherent fraction

- π⁰ can be produced either from the excitation of a delta (resonant), or from the excitation of the whole nucleus (coherent)
- Coherent production is forward peaked, and a larger component of antineutrino running

Will convert rate measurement into a cross section Make a measurement of the coherent fraction: Coh/Res = (19.5 +/-1.1 (stat) +/- 2.5 (sys))%

Antineutrinos: Coherent fraction

- π⁰ can be produced either from the excitation of a delta (resonant), or from the excitation of the whole nucleus (coherent)
- Coherent production is forward peaked, and a larger component of antineutrino running

 Preliminary antineutrino sample fits better to a nonzero coherent fraction, as does the neutrino sample

NC Elastic

Signature is scintillation light of proton below Cherenkov threshold

- 1 subevent, minimal veto activity
- Cutting on late light fraction eliminates the Cherenkov light from low energy electron events
- Radial cut to reduce events from surrounding dirt which don't fire veto
- ~84% purity
- Only 1 other measurement made so far (overlaid here)

Sensitive to the same M_A as CCQE

Prospects: SciBooNE and MiniBooNE

- SciBooNE has superior efficiency and reconstruction capabilities, however, MiniBooNE dominates with statistics
- Leverage each other
 - ν_{μ} disappearance: measure initial rate of events in SciBooNE, compare directly to MiniBooNE
- MiniBooNE: tags CC π⁺ with 3 subevents (1 muon/pion, and two decay electrons)
- SciBooNE: reconstruct entire final state!

If pion is absorbed, will affect kinematics

Prospects: SciBooNE and MiniBooNE

- SciBooNE has superior efficiency and reconstruction capabilities, however, MiniBooNE dominates with statistics
- Antineutrino running:
 - MiniBooNE can select CC π^+ (neutrino only process) in antineutrino beam to measure neutrino contamination
 - SciBooNE can tag on an event by event basis

Summary

Lots of physics done with the Booster Neutrino Beam

- Recent MiniBooNE oscillation result
- Cross section results from MiniBooNE (CCQE)

And more to come!

- Soon NC π^0 and NC elastic, and CC π^+
- v_{μ} disappearance

SciBooNE proposed, installed, and running

- Will complement MiniBooNE's capabilities
- Map out cross sections around 1 GeV in both neutrino, and antineutrino interactions