

CMS Road to Early LHC Physics

- my personal view -

S.Kunori / U. of Maryland 19-Nov-2007

The CMS Collaboration

	Number of Laboratories
Member States	59
Non-Member States	67
USA	49
Total	175

	Nr of Scientific Authors
Member States	1084
Non-Member States	503
USA	723
Total	2310

Associated Institutes					
Number of Scientists	62				
Number of Laboratories	9				

Oct. 3rd 2007/gm

CMS Detector Design Priorities

Expression of Interest (EOI): Evian 1992

- 1. A robust and redundant Muon system
- 2. The best possible e/γ calorimeter consistent with 1.
- 3. A highly efficient Tracking system consistent with 1. and 2.
- 4. A hermetic calorimeter system.
- 5. A financially affordable detector.

Compact Muon Solenoid (CMS) μ Letter of Intent (LOI): LHCC, 1 Oct 1992

barrel as long as possible

Strong Field 4T Compact design Solenoid for Muon P_t trigger in transverse

plane

Redundancy: 4 muon stations with 32 r-phi measurements

 $\Delta P_t/P_t \sim 5\%$ @1TeV for reasonable space resolution of muon chambers (200µm)

Technical Proposal 1994 Technical Design Report 1997 Magnet, HCAL ECAL, Muon 1998 Tracker

19-Nov-2007 / S. Kunori

extrapolated position (cm)

Building 40 at CERN – 6 stories

The CMS detector

All silicon tracker micro strips (10M ch) pixel (60M ch) (5.4m long, 2.4m Φ : $|\eta| < 2.5$) Hermetic calorimeter ECAL: PbWO4 crystal HCAL: brass+scinti. ($|\eta| < 3.0$) in 4 Tesla solenoid

(12.5m long, $6m \Phi in$)

Robust muon systemDT+RPC (barrel)CSC+RPC (endcap)(in iron yoke: |η| <2.1)</td>

Fast cerenkov calor. quartz fibber (3<|η|<5)

The CMS detector

The LHC

R = 4.5 Km E = 7+7 TeV (pp)

crossing rate =40MHz (25nsec)

design luminosity = 10³⁴cm⁻²s⁻¹

~20 pp interactions per crossing at design luminosity

First collision in 2008

 $h \rightarrow 4 \mu$ with 20 min. bias evt.

CMS at Cessy, France (LHC Point 5)

Surface buildings and main shaft

My slide from 2003

Installation of the first muon chamber

My slide from 2003

2005: Underground Cavern

2005: Muon Barrel (DT) and Endcap (CSC)

Superconducting Solenoid

Coil Insertion

August 2005

The 220 ton cold mass was rotated in 15 min in the surface building.

Moving YB0 with vac tank over the coil.

Ready to insert.

Inner VacTank/Screen Insertion in Sept 2005 These operations require a free length of 30 m min.

Coil swiveling in Surface Hall August 05

CMS Surface Assembly (A. Herve)

• These heavy construction activities cannot be done in a reasonable time, safely, in the underground hall.

• A much longer and wider underground hall, equipped with two 80-ton cranes, would be needed, and more time....

Same scale!

Underground hall Detector fully open

HCAL Barrel (HB) Insertion into the Magnet

Two ECAL (EB) modules in HB

Barrel Ready for Cosmic Muon Runs summer 2006

Endcap also ready for cosmic runs

CMS Detector – closed and reached 4T

- Experiment closed first time
- Magnet commissioning and field mapping
- Combined operation of full chain: Detector – Electronics – DAQ – Trigger – Software
- Establish timing, calibration, operation procedures
- → MTCC 2006 Magnet Test and Cosmic Challenge

MTCC: Detectors synchronized and read-out!

- Recorded ~200M cosmics
- Trigger rate up to 200 Hz
- Data very useful to measure detector performance, validate detector simulation and reconstruction algos, study noise
 - In fact it is still a treasure trove

Run 2605 / Event 3981 / B=3.8 T / 27.08.06, 22h Muon traversing DT, RPC, HCAL, ECAL, Tracker

Cosmic Muons in MTCC

Track parameters are compared to Cosmic Muon MC:

Almost every aspect of final CMS from detector to off line software has to work to produce these plots

Operation of Magnet and Field Mapping

Field mapped at: 2.0, 3.0, 3.5, 3.8(twice) & 4.0 T with 0T references. statistical precision of 10⁻⁴ achieved

Lowering detector to underground

350 tons HF+ – First detector descended. (Nov 2006)

500 tons HB+ in front of muon barrel rings 10 hours after 100 meters trip from surface

Commissioned YE+1 (endcap muon) with HE

9-Jan-07

19-Nov-2007 / S. Kunori

First Barrel Muon Ring YB+2 lowered 19-Jan-2007

Opening plug under 2000-ton load

19-Nov-2007 / S. Kunori

2000-ton YB0's 100 meter trip

28-Feb-2007

EB-Installation Completed

Commissioning in UX5 -underground-

Snapshots from September Global Run

A little crowded in the underground control room, since systems are still expert driven

(Surface control room ready Jan'08)

But good camaraderie as run operations begin to take shape

CMS Tracker Integration Facility

The silicon strip tracker connected and readout from January – July 2007 in dedicated surface facility.

• Nearly 2M channels, more than CDF silicon vertex

Gain operational experience, detector performance studies, alignment studies.

• 5M cosmic muon tracks collected @ T=15, 10, -1, -10, -15 °C

19-Nov-2007 / S. Kunori

Cosmics in the Tracker

Example of Performance

•The Quality of the CMS Tracker is Excellent:

- Dead or Noisy Strips < 3 / 1000
- Signal:Noise > 25:1 in Peak Readout Mode
- Enormous experience gained in operating the Tracker at TIF

1st Measurements of Efficiency of Tracker

single side layers and more than 99% for double side layers. Further cross check need for double side layers.

02 May 2007

Daniele Benedetti - Università&INFN Perugia

TB2006: Calorimeter Response to Hadrons

Tuning of hadron physics model in GEAN4 is in progress. (especially P<10GeV).

TB2006 - ECAL Crystal Calibration with π^0 's

- Preparation for in-situ calibration with π^{0} 's -

CSA07: Computing Software and Analysis Challenge

Planning + Coordination + Execution (MC events)

CSA07: Computing Software and Analysis Challenge

Commissioning of the data handling system: 50% of 2008 Goal Software development program with analysis activities and users.

Service	2008 Goal	CSA07 Goal	CSA06 Goal	Status 2006
Tier-0 Reco Rate	I 50Hz - 300Hz	100Hz	50Hz	Achieved
Network Transfers between T0-T1	600MB/s	300MB/s	150MB/s	Achieved (6/7 cont.)
Network Transfers between T1-T2	50-500 MB/s	20-200 MB/s	10-100 MB/s	Achieved (15 sites)
Network Transfers TI-TI	100MB/s	50MB/s	NA	Not Attempted
Job Submission to Tier-Is	50k jobs/d	25k jobs/d	12k jobs/d	3k jobs/d
Job Submissions to Tier-2s	150k jobs/d	75k jobs/d	48k jobs/d	Achieved
MC Simulation	1.5 10^9 events/year	50M per month	NA	Not Attempted

100%

50%

25%

FNAL Involvement in CMS Operation

FNAL Remote Operation Center (ROC)

(remote monitoring during TB2007 data taking)

Role:

-Remote shifts in local time zone.

-Work with various local groups

LHC Phyis. Center (LPC)software & analysis Detector groupsdetector commissioning test beam Computingdata operartion FNAL machine group-LHC monitoring

Being used during Global runs Test beam data taking Tracker commissioning Data operation

The FNAL ROC group delivered online/monitoring sw, based on experience with operation of CDF/Dzero at Tevatron.

Physics at LHC

Standard Model

Higgs **Origin of EW symmetry** breaking? Mass? Top, b-quark, ... **Beyond Standard Model** Supersymmetry (SUSY) **Dark matter** Unify gauge couplings **Extra dimension Little Higgs Technicolor** Heavy Z', W' **Black Hole** Quark substructure

Beam Commissioning

It will most likely take YEARS to reach design luminosity !!! J.Wenning June 2007							
Parameter	Phase A	Phase B	Phase C	Nominal			
k / no. bunches	43-156	936	2808	2808			
Bunch spacing (ns)	2021-566	75	25	25			
N (10 ¹¹ protons)	0.4-0.9	0.4-0.9	0.5	1.15			
Crossing angle (μ rad)	0	250	280	280			
√(β*/β* _{nom})	2	√2	1	1			
σ * (μm, IR1&5)	32	22	16	16			
L (cm ⁻² s ⁻¹)	6×10 ³⁰ -10 ³²	10 ³² -10 ³³	(1-2)×10 ³³	10 ³⁴			
My guess year Luminosity	2008 O(100pb ⁻¹)	2009 O(1fb ⁻¹)	2010 O(10fb ⁻¹)	2011 O(100fb ⁻¹)			
W→μν Z→μμ	10 ⁶ 10 ⁵						
ιι 7 μν λ	10 [.]						

Comparable statistics to Tevatron

Use of Early Data

Measure Standard Model Processes at 14TeV

- Background in search for new physics
- With 10pb⁻¹
 - Measure W (10⁵) and Z (10⁴) cross section
 - Observe top production
 - ...
- With 100pb⁻¹
 - Measure top production (10⁴)
 - ..
 - → good understanding of SM at 14TeV and start search for new physics
- With 1fb⁻¹
 - Beyond Tevatron precision
 - May observe new physics

Improve detector alignment and calibration

- examples
 - 100k $Z \rightarrow \mu\mu$ with 100pb⁻¹ for alignment
 - Dijet balance for calorimeter calibration
 - M(jj) in ttbar events for jet energy scale
- Many processes
 - Triggers and software in preparation

M_w(jj) from top decay

Physics Selection (Trigger)

- Example -

Preparation of				
trigger for				
dijet physics				

• CMS jet trigger saves all high E_T jets & pre-scales the lower E_T jets.

➔ Prescale means to save 1 event out of every N events.

		L1		HLT		ANA	Mass values	
	Path	Ε _T	Pre-	Rate	Ε _T	Rate	Dijet Mass	are efficient for
1 - 4032		(GeV)	scale	(Hz)	(GeV)	(Hz)	(GeV)	each trigger, measured with
$L = 10^{32}$ 100 pb ⁻¹	Low	25	2000	146	60	2.8		prior trigger
	Med	60	40	97	120	2.4	330	
	High	140	1	44	250	2.8	670	As luminosity
L = 10 ³³	L = 10 ³³ Add New Threshold (Ultra). Increase Prescales by 10.							increases new trigger paths
1 fb ⁻¹	Ultra	270	1	19	400	2.6	1130	are added
1 - 1034	Add New Threshold (Super). Increase Prescales by 10.						Each with new unprescaled	
10 fb ⁻¹	Super	450	1	14	600	2.8	1800	threshold.

Topology-based analysis

- Exclusive channels for discovery
 - e.g. H→μμμμ, H→γγ, H→jjττ
 - many channels to cover at LHC
- Inclusive channels (topology) for discovery
 - Dijet
 - Jets + MET
 - Lepton + jets+ MET
 - Dilepton + jets + MET
 - Deleptons
 - Photons
 - Others*
 - Develop model templates
 - to discriminate signal
 - Analysis groups
 - CMS + Theorists
 - Critical mass @ LPC/Fermilab

	initial	spin	electric charge	color charge	weak
excited quark	qq	0, 1, 2,	4/3, <mark>1/3</mark> , -2/3	3, 6	0, 1
E6 diquark	qg	1/2, 3/2,	2/3, -1/3	3, 6, 15	1/2
techinrho	gg	0, <mark>1, 2,</mark> 3,	0	1, 8, 10, 27	0
RS graviton	qq	0, 1 , 2,	0, 1	1, 8	0, 1
W' _{SSM}	bq,				
Z' _{SSM}	bg, bq				

Preparation for Early Physics at LPC/Fermilab

US CMS Physics Workshop, Oct-2007

Conclusion

- CMS is taking cosmic data with more and more elements in the underground collision hall.
- CMS detector will be closed for 4Tesla operation in spring 2008. It will be ready for pp data taking by mid-2008.
- If we have done a good job, then with 1fb⁻¹ data, we might see something new.

19-Nov-2007 / S. Kunori

CMS Road to Early LHC Physics