Semileptonic B Decays at BaBar

Francesca Di Lodovico

 $_{u}, X_{c}$

Queen Mary University of London

representing the BaBar Collaboration

KEK, January 10 2008

Outline

Introduction Motivations BaBar Experimental approach **Inclusive decays** Determination of $|V_{cb}|$ > Determination of $|V_{ub}|$ Exclusive Decays $> \mathsf{D}^{(*(*))}\ell v$ $>\pi(\eta^{(\prime)})\ell\nu$ Conclusions

Outline

Introduction Motivations **BaBar** Experimental approach Inclusive decays > Determination of |V_{cb}| > Determination of $|V_{\mu\nu}|$ Exclusive Decays $> D^{(*(*))} \ell v$ $>\pi(\eta^{(\prime)})\ell\nu$ Conclusions

F. Di Lodovico, QMUL

Semileptonic Decays

 $b \rightarrow c \ell v, u \ell v$

4

- Semileptonic decays are an important tool to study:
 - CKM matrix elements
 - Heavy quark parameters (eg. b, c quark masses)
 - -QCD Form Factors
 - New Physics

10 January 2008

F. Di Lodovico, QMUL

Framework: the CKM Matrix

- B⁺ and B⁰ are the most accessible 3rd-generation particles
- Their decays allow detailed studies of the CKM matrix

$$\mathsf{L} = -\frac{g}{\sqrt{2}} \begin{pmatrix} \overline{u}_L & \overline{c}_L & \overline{t}_L \end{pmatrix} \gamma^{\mu} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} W^+_{\mu} + h.c$$

- Unitary matrix
- V_{CKM} connects the weak to the mass eigenstates
- 3 real parameters + 1 complex phase
- Is this the complete description of the CP violation?
 - Is everything consistent with a single unitary matrix?

10 January 2008

F. Di Lodovico, QMUL

The only source of CP in the Minimal SM

Representation: the Unitarity Triangle

Unitarity of $V_{CKM} \implies V_{CKM}^{\dagger} V_{CKM} = 1 \implies V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ This is neatly represented by the familiar Unitarity Triangle

• Angles α , β , γ can be measured with β of *B* decays 10 January 2008 F. Di Lodovico, QMUL

$|V_{ub}/V_{cb}|$

Compare the measurements on the (ρ, η) plane

The <u>tells</u> tells us this is true as of today: still large enough to hide new physics!

0.6 듣

0.5 🗧

ರ ೯ **sin2**β

- We need the green ring thinner
- Left side of the Triangle is

Measurement of $|V_{ub}/V_{cb}|$ is complementary to sin2 β

(ρ, η) plane:

∆m_d

 $\Delta m_s \& \Delta m_d$

εĸ

ol. w/ $\cos 2\beta < 0$

Goal: Accurate determination of both $|V_{ub}/V_{cb}|$ and sin2 β

 $sin\beta$ (all charmonium) = 0.680±0.025 ~ percentage error: 3.7% (HFAG) 10 January 2008 F. Di Lodovico, QMUL 7

HFAG = Heavy Flavour Averaging Group

Semileptonic B Decays

• Natural probe for $|V_{ub}|$ and $|V_{cb}|$

• Decay rate $\Gamma_{c(u)} \equiv \Gamma(b \rightarrow c(u)\ell v) \propto |V_{c(u)b}|^2$

Decay Mode	Branching Fractio
$B^+ \rightarrow l^+ \nu_l + \text{anything}$	10.9 ± 0.4 %
$B^+ \to \bar{D}^* (2007)^0 \ell^+ \nu_\ell$	(6.5 ± 0.5) %
$B^+ \rightarrow \bar{D}^0 \ell^+ \nu_\ell$	(2.15 ± 0.22) %
$B^+ \to \bar{D}_1 (2420)^0 \ell^+ \nu_\ell$	(0.56 ± 0.16) %
$B^+ \to \bar{D}_2(2460)^0 \ell^+ \nu_\ell$	< 0.8% @90CL
$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	(0.53 ± 0.10) %
$B^+ \to D^{*+} \pi^+ \ell^+ \nu_\ell$	(0.64 ± 0.15) %
$B^+ \rightarrow \bar{D}^{(*)} n \pi \ell^+ \nu_\ell$	22

PDG 2006

• $\Gamma_{\rm c}$ larger than $\Gamma_{\rm u}$ by a factor ~50

- Extracting $b \rightarrow u \ell v$ signal challenging

Sensitive to hadronic effects

- Must understand them to extract $|V_{ub}|$, $|V_{cb}|$

10 January 2008

F. Di Lodovico, QMUL

Total b \rightarrow c(u) ℓ v Rate

Tree level, short distance (perturbative) + long distance (non perturbative):

• $\Gamma(b \rightarrow c(u) \ell v)$ described by Heavy Quark Expansion in $(1/m_b^u)^n$ and α_s^k

$\Gamma(B\toX_{c(u)}\boldsymbol{\ell}v)=$	G _F ² m _b ⁵ /192π ³ V _{c(}	_{u)b} ² [1+A _{ew}]A _{per}	t Anonpert
-	free quark decay	perturbative corrections (α_s ^k dependent)	Non-perturbative power corrections ((1/m _b) ⁿ dependent)

- Non-perturbative parameters need to be measured.
- They depend on the expansion, which depends on the m_b definition
- Similar expression for b→sγ.
 10 January 2008
 F.

F. Di Lodovico, QMUL

Moments in $B \rightarrow X_{c(u)} \ell \nu$ decays

Moments evaluated on the full lepton/mass spectrum or part of it: $p_{\ell} > p_{min}$ in the B rest frame

Lepton moments:

Hadronic mass moments:

$$\left\langle E_{\rm I}^{n} \right\rangle = \frac{1}{\Gamma_{c\,({\rm u})}} \left(E_{\rm I} - \left\langle E_{\rm I} \right\rangle \right)^{n} \frac{d\Gamma_{c\,({\rm u})}}{dE_{\rm I}} dE_{\rm I}$$
$$\left\langle m_{X}^{n} \right\rangle = \frac{1}{\Gamma_{c\,({\rm u})}} \int m_{X}^{n} \frac{d\Gamma_{c\,({\rm u})}}{dm_{X}} dm_{X}$$

Moments are related to non-perturbative parameters

For comparison with data, use low-order moments of inclusive distributions over large ranges on phase space to avoid problem with quark-hadron duality

Similarly, moments in the photon energy are calculated for $b \rightarrow s\gamma$

Calculations available in "kinetic" (Benson, Bigi, Gambino, Mannel, Uraltsev, Nucl. Phys. B665:367) and "1S" (Bauer, Ligeti, Luke, Manohar, Trott, Phys. Rev. D70:094017,2004) mass schemes

> 60 measured moments available form DELPHI, CLEO, BABAR, Belle, CDF

Exclusive Measurements

Matrix element for semileptonic decays:

$$\mathcal{M}(M_{Q\bar{q}} \to X_{q'\bar{q}}\ell^-\overline{\nu}_\ell) = -i\frac{G_F}{\sqrt{2}}V_{q'Q}L^\mu H_\mu$$

Leptonic current exactly known:

$$L^{\mu} = ar{u}_{\ell} \gamma^{\mu} (1 - \gamma_5) v_{\mu}$$

 Hadronic current described by Form Factors (FF), functions of squared momentum transfer q²:

$$\langle P'(p')|V^{\mu}|P(p)\rangle = f_{+}(q^{2})p + p')^{\mu} + f_{-}(q^{2})p - p')^{\mu}$$

Exclusive rates determined by $|V_{c(u)b}|$ and Form Factors (FF), which represent the probability that the heavy-quark combine to form the selected final state particle.

Theoretically calculable at kinematical limits

- Lattice QCD works if D^{*} or π is ~ at rest relative to B
- Empirical extrapolation is necessary to extract |V_{c(u)b}| from measurements
- Measure differential rates to constrain the FF shape, then use FF normalization from the theory for |V_{c(u)b}|

11

New Physics, $B \rightarrow D^{(*)} \tau v$

- Same Feynman diagram as the light leptons (e, μ), but the decays can also be mediated by a charged Higgs boson.
- Very clean probe of New Physics:
 - NP contributes at tree level
 - Measurements of FF's for light leptons allow for very precise prediction of the τ -hadronic behaviour
 - Spin zero Higgs does not couple to all the helicity states, affect D and D^{*} differently, τ polarization.

Outline

Introduction Motivations **BaBar** Experimental approach Inclusive decays > Determination of |V_{cb}| > Determination of $|V_{\mu\nu}|$ Exclusive Decays $> D^{(*(*))} \ell v$ $>\pi(\eta^{(\prime)})\ell\nu$ Conclusions

F. Di Lodovico, QMUL

PEPII at SLAC and BaBar

The BaBar Detector

$$\begin{split} \mathsf{B} &\to \mathsf{X}_{\mathsf{c},\mathsf{u}} \,\boldsymbol{\ell} \,\,\mathbf{v} \\ &\to \pi^{\pm}\mathsf{'}\mathsf{s}, \,\mathsf{K}^{\pm}\mathsf{'}\mathsf{s}, \,\gamma\mathsf{'}\mathsf{s} \\ &\boldsymbol{\ell} = \mathsf{e}, \,\mu, \,\tau \end{split}$$

• Good e, μ ID ($p_{\ell}^* > 1GeV$)

- Good hadron ID (e.g. π/K separation)
- Angular coverage ≈ 91% of 4π in CMS (challenge for v reconstruction)
- **Crystal-Calorimeter** Cherenkov -Detector • 5-layer SVT tracker e+ (3.1 GeV) 40-layer Drift Chamber → dE/dx DIRC (RICH) for particle ID • CsI(TI) crystal calorimeter (e^{\pm} , γ) Instrumented Flux Return for muon ID e[.] (9 GeV) Silicon- Vertex- Detector **Muon System Drift Chamber**

10 January 2008

F. Di Lodovico, QMUL

Outline

Introduction

- Motivations
- >BaBar
- Experimental approach
- Inclusive decays
 - > Determination of $|V_{cb}|$
 - Determination of |V_{ub}|
- Exclusive Decays
 D^{(*(*))}lv
 - $>\pi(\eta^{(')})\ell\nu$
- Conclusions

F. Di Lodovico, QMUL

Approaches to Measuring $B {\,\rightarrow\,} X \ell \nu$

Signal

Outline

Introduction Motivations >BaBar Experimental approach **Inclusive decays** Determination of $|V_{cb}|$ > Determination of $|V_{\mu\nu}|$ Exclusive Decays $> D^{(*(*))} \ell v$ $>\pi(\eta^{(\prime)})\ell\nu$ Conclusions

airXiv:0707.2670 [hep-ex]

19

232M BB

Moments in $B \rightarrow X_c \ell \nu$ decays

- B-reco. Subtract background with m_{ES}
- 1 lepton (e, μ) in recoil with energy P₁ > 0.8 GeV in B-rest frame
- Remaining charged and neutral particles form inclusive X_c system
- Measure moments of hadronic mass m_x and mixed mass-and-energy moments for several lower cuts on P_l
- Improve resolution with kinematic fit
 - energy-momentum conservation - E_{miss} , p_{miss} consistent with v
- Correct X_c system for bias due to unmeasured particles
- Dominant systematic uncertainty: efficiency on inclusive event reconstruction

Measured Moments

This measurement (open symbols not fitted)

- Moments integrated over data for various lepton cuts over the same mass or lepton energy distribution (all points highly corrrelated)
- Each observable has a different dependence on $|V_{cb}|$, m_b , m_c , and several nonperturbative params
- Parameters determined by a global fit over

 points
- The Opoints, not used in the fit, agree well with the fit results

airXiv:0707.2670 [hep-ex]

Global OPE Fit – Kinetic Scheme

All Moments 27 input moments: Without $b \rightarrow s\gamma$ 4.84.8m, [GeVic] 8 mass moments GeVia BABAR (this analysis) erel minary 4.74.7– 13 E, moments å (Phys. Rev. D69 111104 (2004)) - 6 E, moments 4.6 4.6(Phys. Rev. D 72, 052004 (2005), Phys. Rev. Lett. 97 171803 (2006)) 4.54.5 Further input: $\tau_{\rm P}$ 8 fit parameters: 4.44.4 0.30.50.6 4142 0.4 $- |V_{cb}|, m_{b} m_{c}, \mathcal{B}_{sl}$ μ_{\perp}^2 [GeV²] $|V_{\perp}| \times 10$ 4 HQE parameters Fit results: $|V_{cb}| = (41.88 \pm 0.44_{exp} \pm 0.35_{theo} \pm 0.59_{\Gamma SL})10^{-3}$ (1.9% total error) $m_{b} = (4.55 \pm 0.038_{exp} \pm 0.040_{theo}) \text{ GeV}$ (1.2% total error) $m_c = (1.070 \pm 0.038_{exp} \pm 0.040_{theo}) \text{ GeV}$ $\mathcal{B}_{SI} = (10.597 \pm 0.171_{exp} \pm 0.053_{theo}) \%$ $m_{\pi}^2 = (0.471 \pm 0.034_{exp} \pm 0.062_{theo}) \text{ GeV}^2$ $m^2_{_{\rm G}} = (0.330 \pm 0.042_{_{exp}} \pm 0.043_{_{theo}}) \; GeV^2$ non-perturbative params $\rho_{D}^{3} = (0.220 \pm 0.021_{exp} \pm 0.042_{theo})GeV^{3}$

 $\rho_{LS}^{3} = -(0.159 \pm 0.081_{exp} \pm 0.050_{theo})GeV^{3}$

OPE Global Fits

- More results from global fits in the kinetic and 1S schemes are available. Recent averages performed by the HFAG
- A pattern is present: results with $b \rightarrow c l v$ and $b \rightarrow s \gamma$ moments differ from results with $b \rightarrow c l v$ moments only (except in hep-ex/0611047, but larger errors).
- HFAG results for Lepton Photon:

m _b (GeV)	m _b (GeV)	
b→c ℓ ν b→sγ	b→c ℓ v	3
4.613 ± 0.035	4.677 ± 0.053	B
4.701 ± 0.030	4.751 ± 0.058	/
	m _b (GeV) b \rightarrow c ℓv b \rightarrow s γ 4.613 ± 0.035 4.701 ± 0.030	m_b (GeV) m_b (GeV) $b \rightarrow c \ell \nu \ b \rightarrow s \gamma$ $b \rightarrow c \ell \nu$ 4.613 ± 0.035 4.677 ± 0.053 4.701 ± 0.030 4.751 ± 0.058

- Large uncertainties due to the ansatz and missing terms
- Different values of m_b impact the determination of |V_{ub}| from inclusive decays

Outline

- Introduction Motivations >BaBar Experimental approach **Inclusive decays** > Determination of |V_{cb}| > Determination of $|V_{ub}|$ Exclusive Decays $> D^{(*(*))} \ell v$
 - $>\pi(\eta^{(')})\ell\nu$
- Conclusions

$B \rightarrow X_{\mu} \ell \nu$ rate

$B \rightarrow X_{\mu} \ell \nu$ theory: OPE approach

Restrict kinematics to suppress background from $B \rightarrow X_c \ell v$: OPE convergence is compromised! Need light-cone distribution (shape) function of b quark:

Shape

Function

Four approaches:

0

F(K+)

K+

- Relate b→uℓν directly to b→sγ: Lange, Neubert, Paz (LNP) [JHEP 0510:084, 2005], Leibovich, Low, Rothstein (LLR) [PLB 486:86]
- Select phase space in m_x-q² with reduced SF dependence: Bauer, Ligeti, Luke (BLL) [PRD 64:113004 (2001)]
- Kinetic scheme: P.Gambino, P.Giordano, G.Ossola, N.Uraltsev (GGOU) [JHEP10(2007)058] (very recent!)

Mean and r.m.s. are known

from the moments!

$B \rightarrow X_{\mu} \ell \nu$ theory: parton-level approach

- On-shell calculation framework
- Use perturbation QCD, with inclusive hadron final states coming from gluon radiation, as $m_p >> \Lambda$ (hadronic scale)
- The perturbative expansion of spectra in the threshold region is affected by large logarithms, to be resummed
- No Shape Function is introduced, but a modelling of non-perturbative QCD effects is adopted.
- Two approaches:
 - Dressed Gluon Exponentiation: J.R. Andersen and E. Gardi (DGE) [JHEP 0601:097 (2006)]
 - Analytic Coupling: U. Aglietti, G. Ferrera, G. Ricciardi (AC) [Phys.Rev. D74 (2006) 034006, Phys.Rev. D74 (2006) 034005, Phys.Rev. D74 (2006) 034004]

$B \rightarrow X_u \ell v$: fully tagged B

arXiv:0708.3702 [hep-ex] submitted to PRL

- Fully reconstructed B
- Events identified fitting the m_{ES} distribution
- Normalize to semileptonic events to be independent of tagging efficiency
- Use 3 kinematic variables to distinguish $b \rightarrow c \ell v$ from $b \rightarrow u \ell v: M_x, P^+, M_x^-q^2$
- Major systematic errors from: detector, m_{ES} fits, MC stat.

Variables $X_{u}\ell v$ events

 $\Delta B(10^{-3})$

M _x	803 ± 60	$1.18 \pm 0.09_{stat} \pm 0.07_{syst} \pm 0.01_{theo}$
P+	633 ± 63	$0.95 \pm 0.10_{stat} \pm 0.08_{syst} \pm 0.01_{theo}$
M _x ,q²	562 ± 55	$0.76 \pm 0.08_{stat} \pm 0.07_{syst} \pm 0.02_{theo}$

$B \rightarrow X_u \ell v m_x moments$ at Hadron07

- Analysis approach similar to arXiv:0708.3702 [hep-ex]
- Unfold the m_x spectrum for detector acceptance, efficiency and resolution.

Preliminary. Presented

347M BB

Extract mass moments with upper cut m_x² < 6.2 GeV²

Weak Annihilation

 $B \rightarrow \overline{u} \rightarrow \overline{u$

Small contribution to $B \rightarrow X_u \ell \nu$ decay (<3% of total rate)

- Compare $B^0 \rightarrow X_u \ell v$ partial rate to charge-averaged $B \rightarrow X_u \ell v$ rate in WAenhanced region (large p_ℓ and large q^2)
- Tagging: $B^0 \rightarrow D^{*+} \ell^{-} v X$ with partial D^* reconstruction
- Neutrino mass derived from kinematics $m_v^2 = (P_B P_D P_\ell)^2 \frac{1}{2}$
- Measure B for P_{ℓ} >2.2-2.4 GeV

arXiv:0708.1753 [hep-ex]

383M BB

ΔP_{ℓ}	$\overline{\Delta \mathcal{B}(B^0) \cdot 10^4}$
$2.2-2.6\mathrm{GeV}/c$	$2.62{\pm}0.33{\pm}0.16$
$2.3-2.6\mathrm{GeV}/c$	$1.30{\pm}0.21{\pm}0.07$
$2.4-2.6\mathrm{GeV}/c$	$0.76{\pm}0.15{\pm}0.05$

 $\Gamma_{\rm WA} = \Gamma^+ - \Gamma^0$

 $f_{WA}(\Delta P_{\ell}) =$

 Extract charge asymmetry, using info from untagged B→ulv from endpoint analysis (Phys.Rev.D73:012006,2006)

$$A^{+/0} = \frac{\Delta \Gamma^{+} - \Delta \Gamma^{0}}{\Delta \Gamma^{+} + \Delta \Gamma^{0}}$$

Limit on contribution from WA for interval 2.3 < E₁ <2.6 GeV:

$$\frac{|\Gamma_{WA}|}{\Gamma_u} = \frac{2 \cdot f_u(\Delta P_\ell)}{f_{WA}(\Delta P_\ell)} \cdot A^{+/0} < \frac{3.8 \%}{f_{WA}(2.3 - 2.6)}, \quad \text{at 90\% C.L}$$

10 January 2008

F. Di Lodovico, QMUL

fraction of WA in interval ΔP_{μ}

$B \rightarrow X_u \ell v E_\ell$ analyses

- The E_{ℓ} (endpoint) analysis is the original method to study $B \rightarrow X_{u} \ell v$
- Two untagged analyses so far
- Identify high energy lepton (electron, plenty of statistics)
- Very high background from $B \rightarrow X_c \ell \nu!$
- Accurate subtraction of the background is crucial
- Missing momentum used for determining q²

SF independent analyses

- Assumption that QCD interactions affecting $b \rightarrow s\gamma$ and $b \rightarrow u\ell v$ are the same
- Take ratio of weighted $b \rightarrow s\gamma$ and $b \rightarrow u\ell v$ decay rates
- b \rightarrow s γ spectrum from Phys. Rev. D72 (2005) 052004

•Two BaBar analyses:

|V_{ub}| results

Plethora of theoretical approaches \rightarrow plethora of $|V_{ub}|$ values for each analysis

Current approach is either to quote all the values or just BLNP (OPE)

BLNP: m_b from $b \rightarrow c \ell v$ moments:

 $|V_{ub}|$ = (3.98 ± 0.15 ± 0.30) 10⁻⁴

BLNP: m_b from b \rightarrow clv and b \rightarrow s γ moments can't be used because of uncontrolled theoretical errors for the b \rightarrow s γ moments. $|V_{ub}|$ value using b \rightarrow clv and b \rightarrow s γ was: $|V_{ub}| = (4.31 \pm 0.17 \pm 0.35) 10^{-3}$

Use only the partial \mathcal{B} from m_x for the Breco analyses as experimental correlation among the variables are not published

- Results vary from 4.83×10⁻³ (BLL) to 3.69×10⁻³ (AC)
- b-quark masses approaches and dependences different.
- Aim for the near future: to quote one value of |V_{ub}|
- |V_{ub}| average using the Kinetic scheme (P.Gambino, P.Giordano, G.Ossola, N.Uraltsev, [JHEP10(2007)058]) is being computed.

Outline

- Introduction Motivations >BaBar Experimental approach Inclusive decays > Determination of |V_{cb}| > Determination of $|V_{ub}|$ Exclusive Decays $> \mathsf{D}^{(*(*))}\ell v$
 - >π(η^('))ℓv Conclusions

$|V_{cb}|$ and Form Factors from $B \rightarrow D^* \ell v$

* Differential decay rate : $\frac{d\Gamma(B^{0} \to D^{*-}\ell^{+}\nu_{\ell})}{dw \ d \cos \theta_{\ell} \ d \cos \theta_{V} \ d\chi} = \frac{G_{F}^{2}(V_{cb})^{2}}{48\pi^{3}} F(w,\theta_{\ell},\theta_{V},\chi)G(w)$ Phase Form Phase Factors Space

D^{*} boost in the B rest frame

 $w \equiv \frac{M_B^2 + M_{D^*}^2 - q^2}{2M_B M_{D^*}}$

- HQ symmetry (b and c mass infinite) predicts a unique universal FF, normalized to 1.0 at zero recoil.
- QCD (and QED) correction to F(1) needed!
- $F(w,\theta_1,\theta_2,\chi)$ incorporates 3 non-trivial form factors, $A_1(w)$, $A_2(w)$, V(w)
- HQET relates the 3 FF's to each other through HQS, but leaves 3 free parameters to be determined experimentally. They are:

Amplitude ratios: $R_1(w)=V/A_1$

$$R_2(w) = A_2/A_1$$

Curvature

 $\rho^2\text{=-dF/dw}|_{w=1}$

- Using a parametrization by CLN (Caprini, Lellouch, Neubert, NPB530, (1998) 153): three parameters need to be extracted from data $R_1(1)$, $R_2(1)$ and ρ^2 .
- Goal is to determine R₁(w), R₂(w), ρ²
- There are 4 observables: w and 3 angles $(\theta_1, \chi, \theta_v)$

$B^{\scriptscriptstyle 0} \to D^{*_+} \, \ell \, \, \nu$ Selection

arXiv:0705.4008 [hep-ex]

$B \rightarrow D^*$ Form Factors: 1D Projections

- Simultaneous χ^2 fit of 1D projections in three variables w, $\cos\theta_1$, $\cos\theta_2$ (integrated over angle χ) 79M BB
- First simultaneous measurement of form factors and $|V_{cb}|$, fully accounting for all

• Final results combined with Phys.Rev. D74 (2006) 092004 (which uses a full 4D fit) to give a combined value of the form factors:

$$\begin{split} \rho^2 &= 1.179 \pm 0.048 \pm 0.028 & \mathsf{R}_1(1) = 1 \ .417 \pm 0.061 \pm 0.044 \\ \mathsf{R}_2(1) &= 0.836 \pm 0.037 \pm 0.022 & \mathsf{F}(1)|\mathsf{V}_{cb}| = (34.7 \pm 0.3 \pm 1.1) \ 10^{-3} \end{split}$$

Syst. Uncertainties dominated by detector efficiencies, Bg, R₁, R₂

New BaBar FF are ~5 times better than the old ones from CLEO (with ~3 fb^{-1})

$|V_{CB}|$ and Form Factors from $B^- \rightarrow D^{*0}e^-v$

- Look at decay chain: $D^{*0} \rightarrow \pi^0 D^0$ and $D^0 \rightarrow K^- \pi^+$ Discriminating variables: Δm , $\cos \theta_{BY}$
- Binned maximum likelihood fit in Δm , $\cos\theta_{_{YB}}$ and ω
- 23500 ± 330 signal events from the fit
- Main background: mis-reconstructed $B^{0\pm} \rightarrow D^{*0\pm}e-v$
- Main systematic uncertainties:
 - $-\pi^0$ reconstruction efficiency
 - $\mathcal{B}(D^{*0} \rightarrow \pi^0 D^0)$
 - $R_1(1)$ and $R_2(1)$ for ρ^2
- Results:
- $F(1)|V_{cb}| = (35.9 \pm 0.6 \pm 1.4) \ 10^{-3}$
- $\rho^2 = 1.16 \pm 0.06 \pm 0.08$
- $\mathcal{B}(B^{-} \rightarrow D^{*0}e^{-}v) = (5.56 \pm 0.08 \pm 0.41)\%$ in agreement with PDG values of $\mathcal{B}(B^{0} \rightarrow D^{*-}e^{+}v)$

10 January 2008

F. Di Lodovico, QMUL

arXiv:0712.3493 [hep-ex]

226M BB

BABAR Results vs. World Average

•Global multidimensional fit (arXiv:0712.3493, $B \rightarrow D^{*0}ev$ not yet included)

- •Using F(1)=0.919+0.033 (Hashimoto et al PRD66 104503): |V_{cb}|= (39.1+0.6+1)10⁻³
- While from inclusive decays (kin. scheme) $|V_{cb}| = (41.68+0.39+0.58)10^{-3}$
- Discrepancy between inclusive and exclusive |V_{cb}|

341M BB

symmetry, but

 $\Delta_{\text{excl-incl.}} = (1.2 \pm 0.4)\%!$

arXiv:0712.3503 [hep-ex] submitted to PRL

Branching Fractions for $B \rightarrow D/D^*/D\pi/D^*\pi \ell v$

- Breco sample
- reconstruct e, μ in the recoil
- reconstruct $D^{(*)(0)(\pm)}$ in the recoil
- extract signal by fitting missing mass squared
- dominant syst due to Breco, $B(D^{(*)(0)(\pm)})$ and track reconstr.

 $\mathcal{B}(\overline{B}^0 \to D^{(*)} \pi \ell^- \bar{\nu}_\ell) = (1.37 \pm 0.17_{stat.} \pm 0.10_{syst.})\%,$

10 January 2008

F. Di Lodovico, QMUL

arXiv:0709.1698 [hep-ex] accepted by PRL

Observation of B \rightarrow D^(*) τ v

- Large τ mass gives sensitivity to new physics at tree level. Eg charged Higgs boson
- Very challenging: $\tau \rightarrow e v_e v_\tau$, $\tau \rightarrow \mu v_\mu v_\tau$ produce two additional neutrinos
- Select Breco events. Identify D^(*) plus lepton in the recoil. • Maximum likelihood fit with:
 - two discriminating variables missing mass squared squared and lepton energy
 - 8 channels: 4 signal ($D^0\tau \nu$, $D^{*0}\tau \nu$, $D^+\tau \nu$, $D^{*+}\tau \nu$), 4 background $B \rightarrow D^{**}\ell v$. $D^* au
 u$

10 January 2008

 $D\tau\nu$

 $D^*\ell\nu$

 $D\ell\nu$

Observation of B \rightarrow D^(*) τ v

arXiv:0709.1698 [hep-ex] accepted by PRL

Confirmation of Belle observation in D^{*+}, first observation of D^{*0} and first evidence for the D modes.

		1 1 AT	Main systematic errors
Mode	R [%]	B [%]	from PDF parametrization, combinatoric background
	[/0]	[70]	parametrization
$B \to D \tau^- \overline{\nu}_{\tau}$	$41.6 \pm 11.7 \pm 5.2$	$0.86 \pm 0.24 \pm 0.11 \pm 0.06$	3.6 σ
$B \to D^* \tau^- \overline{\nu}_{\tau}$	$29.7\pm 5.6{\pm}1.8$	$1.62 \pm 0.31 \pm 0.10 \pm 0.05$	6.2 σ

Outline

- Introduction Motivations >BaBar Experimental approach Inclusive decays > Determination of |V_{cb}| > Determination of $|V_{\mu\nu}|$ Exclusive Decays $> D^{(*(*))} l v$
 - $> \pi(\eta^{(')}) \ell \nu$
- Conclusions

Exclusive $B \rightarrow \pi \ell \nu$

• $B \rightarrow \pi \ell v$ rate is given by

 $\frac{d\Gamma(B \to \pi | v)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2 \qquad \text{One FF for } B \to \pi \ell v$ with massless lepton

Form factor $f_+(q^2)$ has been calculated using

Lattice QCD

 Unquenched calculations by Fermilab (hep-lat/0409116) and HPQCD (PRD73:074502)

±12% for q² > 16 GeV²

- Light Cone Sum Rules
 - Ball & Zwicky (PRD71:014015)
 - ±13% for q² < 16 GeV²

Quark model, PRD52 (1995) 2783

0.6

0.5

0.4

0.3

0.2

0.1

 $IB(B^0 \rightarrow \pi 1^+ v)/dq^2/IV$

10 January 2008

F. Di Lodovico, QMUL

Ball-Zwicky

45

PRL 98, 091801 (2007)

Loose untagged $B \rightarrow \pi^+ \ell v$ 206M BB

- No Tag
- No neutrino tight quality cuts (increase signal efficiency)
- 12 q² bins
- Smallest statistical and systematic uncertainties of all individual published $B \rightarrow \pi Iv$ measurements
- Larger systematic error due to fit

Tagged $B \rightarrow \pi^{0/+} \ell \nu$

SL tag

10

Had tag

 $B^+ \rightarrow \pi^0 I \nu$

5

60-signal: 26 ± 7

20

15 $\cos^2\phi_{t}$

 $B^+ \rightarrow \pi^0 I \nu$

signal: 92 ± 26

8<q²<16 q²>16 (GeV²)

Fully (hadronic) and semileptonic tags

 $\pi^{1}v) \times 10$

 $\Delta B(B^0$

0.8

0.6

0.4

0.2

q²<8

 ϕ_{B} is the angle between the

SL tag

directions of the two B mesons.

80

60

80

40

20

20

Exclusive |V_{ub}|: Summary

|V_{ub}|: CKM consistency

0

 Most probable value of |V_{ub}| from measurements of other CKM parameters 2 Standard Model and from the exclusive final states favours a value ~ 3.5*10⁻³

• Steady work in the inclusive decays to improve current calculations of |V_{ub}|

• "Tension" with exclusive decays not there anymore for some calculations

• Still work on the experimental and theoretical side needed to understand current results

hep-ex/0607066

50

Other Modes: $B \rightarrow \eta \ell v$ and $B \rightarrow \eta' \ell v$

Independent measurements of various $B \rightarrow X_u \ell v$ decay modes important to further constraint theoretical models

Hadronic tag

* Reconstruction of signal B:

→ Lepton momentum p*> 0.5 GeV for electrons p*> 0.8 GeV for muons

- \rightarrow Meson reconstructed in
- $\eta \rightarrow \gamma \gamma$
- $\eta \rightarrow \pi^+ \pi^- \pi^0$

 $\eta \rightarrow \pi^0 \pi^0 \pi^0$

- $\eta' \to \rho \gamma$
- $\eta' \rightarrow \eta \pi^+ \pi^-$

 fit to m_B distributions to extract signal yields

$$\begin{split} & \mathcal{B}(B^{+} \rightarrow \eta \ I^{+}\nu) < 1.4 \ x \ 10^{-4} \ (90\% \ CL) \\ & \mathcal{B}(B^{+} \rightarrow \eta \ I^{+}\nu) = (\ 0.84 \pm 0.27_{stat} \pm 0.21_{syst}) 10^{-4} \end{split}$$

𝔅(B⁺ → η' I⁺ν) < 1.3 × 10⁻⁴ (90% CL)

Need more data!

Outline

Introduction Motivations >BaBar Experimental approach Inclusive decays > Determination of |V_{cb}| > Determination of $|V_{ub}|$ Exclusive Decays $> D^{(*(*))} \ell v$ $>\pi(\eta^{(\prime)})\ell\nu$

Conclusions

Summary

- Very significant improvements of understanding semileptonic B decays in the past 5 years!
- Challenge of QCD corrections is being addressed.
- High order terms in OPE calculations are needed. Special treatment for $B \rightarrow X_s \gamma$ required.
- Experimentally, $B \rightarrow X_u \ell v$ measurements can be improved with higher statistics and reduced systematics.
- Exclusive measurements: needed improved normalization of FF by theory
- Current differences between exclusive and inclusive measurements may be of both theory and experimental nature.
- Tight scrutiny needed to arrive at a more stringent test of the CKM matrix in the future!
- First evidence of $B \rightarrow D\tau v!$

10 January 2008

F. Di Lodovico, QMUL