

Satoshi Mihara, KEK KEK physics seminar on 20/May/2008

Overview

What is MEG?

MEG detector

MEG status and future plan

What is MEG ?

Aiming at <u>observing</u> $\mu \rightarrow e \gamma$ event with a sensitivity of $^{\sim}10^{-13}$

Why do we want to search for $\mu \rightarrow e\gamma$?

Quark Mixing : B factories etc Unification of quarks and leptons (GUT) Charged Lepton Must Also Mix! $\mu \rightarrow e$: most sensitive Seesaw mechanism to make neutrinos light Neutrino Oscillation : SuperK etc

Explores GUT/seesaw via SUSY

S.Orito and T.Mori

μ ->e γ Search Chronology

Y.Kuno

How do we search for $\mu \rightarrow e\gamma$?

$\mu \rightarrow e\gamma$ Signal and Detection

γ

180°

High intensity muon beamDC is better than plused

Large acceptance of the detector system

Good detector resolutions to suppress background

MEG Detector

Three Major Components

Muon beam transport system

Positron detector

Photon detector

Muon Beam at Paul Scherrer Institute

World most powerful proton cyclotron
590MeV
> 2mA
Particle physics experiment, π and μ
μsR
Neutron

Muon Transport System

 \mathbf{e}^{μ}

Target System

Target System:

175µm Polyester ellipse 210x70 mm Rohacell support frame + stems strain-relieved target mount He-driven pneumatic insertion electronic position end-markers

Expected Muon Stop-rate: $Rs^{\sim} 0.62R_0$ R_0 = incoming muon rate Decay + He interaction ~12% R_0 Stop in <u>slanted</u> target ~ 70% R_0

Polyester/Rohacell target

Inside COBRA in parking position

Beam Commissioning Run Results

Rate at Entrance COBRA 1.15·10⁸ μ ⁺s⁻¹ at 1.8mA, 4cm Tg Rate at COBRA centre > 6 ·10⁷ μ ⁺s⁻¹ at 1.8mA, 4cm Tg Beam Spot σ ~ 10.8 mm (as expected)

Collimator transmission $\varepsilon = 95\%$

Separation Quality High Intensity (slits open) 7.4σ Low Intensity 8.1σ SMH41 SMV41 Correction at Centre of COBRA

~ 2 mm Horizontally ~ 7 mm Vertically

Positron Detector

Positron Tracking System

- Cross-sectional View -

COBRA Magnet (Constant Bending Radius)

uniform B

constant bending radius independent of emission angles

low energy e+ quickly swept out

Drift Chamber System

506.13

.

outer-cathode foil

inner-cathode foil

sense wire

potential wire

Drift Chamber Module

No structure on muon stopping target sidePrecise pressure control system

Gas Pressure Equalization System

Track Finding

Track Fitting

Performance in 2007

Reconstructed Spectrum (Radiative Trig.)

 End-point is fitted to the convolution of "theoretical response function" and "Gaussian", with three free parameters; "E_{edge}", "σ_p" and "Normalization"

• σ_p=480 keV (=0.9 %)

Timing Counter

30 plastic scintillation bars for timing Read out by 2" PMTs at both ends

256 Scintillation fibers for z position Read out by APDs at both ends

TC Waveform Analysis

2 kinds of waveform are recorded Attenuated PMT waveform Discriminator output (NIM)

 σ_{time} in a single bar: 52 psec Better in 2 adjacent hit events

Synchronization in different chips

Precise clock signal (20MHz) is distributed over the experiment

Resolution evaluated by adjacent TC hits over different 20MHz clock

 $\sigma_{clock}=110$ psec

Bad clock quality Distortion in chip Improved in the next version of chip

Liquid Xenon Photon Detector

Why Liquid Xenon?

Good resolutions Large light output yield W_{ph}(1MeV e) = 22.4eV Pile-up event rejection

Fast response and short decay time

 $\tau_s = 4.2$ nsec, $\tau_T = 45$ nsec (for electron, no E)

0.2 0 −0.2 −0.4 −0.6 0.2 MIND SAN AND ST Liquid Xe -0.8 NaI(Tl) -1 -1.2 -1.4 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Time [µsec]

	NaI	BGO	GSO	LSO	LXe
Effective Atomic number	50	73	58	65	54
Density (g/cm3)	3.7	7.1	6.7	7.4	3.0
Relative light output (%)	100	15	20-40	45-70	80
Decay time (nsec)	230	300	60	40	4.2,22,4

FIG. 4. Decay curves obtained for the luminescence from liquid xenon excited by electrons (\bullet), α particles (\blacktriangle), and fission fragments (\blacksquare).

LXe and Scintillation light

MEG LXe Detector

Active volume ~800l is surrounded by PMTs on all faces 846 PMTs in the liquid No segmentation Energy

All PMT outputs

Position

PMTs on the inner face

Timing

Averaging of signal arrival time of selected PMTs

52.0 10

52.8 Mr V

·-- *

14.39

Detector Assembly

•900 liter liquid xenon •846 2"PMT in the liquid

Typical Event

Xenon Detector PMT Calibration

...

X cl

LEDs in the liquid for PMT gain calibration Alpha sources for PMT QE calibration and λ abs monitor

Liquid Purification

Impurity contamination can cause absorption of scintillation light

H₂O, O₂
Light yield for 17.6MeV γ is utilized to monitor
more precisely than using alpha source signal

Xenon Liquid-phase purification S.Mihara Cryogenics 688 46 2006

Xenon Detector Calibration/Monitor

Trace the detector response to gamma ray as frequently as possible

The best way is to use "high energy" gamma ray (with known energy) emitted from the target

Gamma emission from excited nuclei Particle decay

Reaction	Resonance energy	σ peak	γ-lines
Li(p, y)Be	440 keV	5 mb	17.6 MeV, 14.6 MeV
$B(p,\gamma)C$	163 keV	2 10 ⁻¹ mb	4.4 MeV, 11.7 MeV, 16.1 MeV

C–W Accelerator

Linearity Check

CEX run – Pi0 calibration

CEX process $\pi^- p \rightarrow \pi^0 n$ $\pi^0 (28 MeV/c) \rightarrow \gamma \gamma$ 54.9 MeV < E(γ) < 82.9 MeV

82.9MeV

85 90 Energy (MeV)

 \mathbf{E}_{γ}

54.9MeV

1.3MeV for θ>170°

0.3MeV for θ>175°

Pb collimator panel in front of the Xe detector

CEX run data analysis, preliminary

Position cut

Cut shallow events (< 2cm) Select only center events (|u|,|v| < 5cm) Position correction Pile-up rejection by light distribution Select center event on NaI detector Not applied QE correction If applied worsen resolution.

Pedestal has 2% spread

Needs better baseline evaluation Check hardware for 2008 run

MEG status

Successful data acquisition in 2007 All detector worked fine 2x10¹² muons stopped on the target 630k MEG trigger

24 weeks DAQ time is scheduled in 2008

- To improve performance
 - Better XEC PMT calibration
 - Further noise reduction in the experiment
 - New version of waveform digitizer will be ready

MEG future plan

Detector upgrade plan

Improve resolutions by developing new devices Higher QE PMT

APD

Energy Resolution (σ) [%]

Energy resolution vs. Energy

Event Reconstruction

Shallow event reconstruction

Pile-up rejection can be improved

MEG Detector Upgrade

Improve detector resolution and background rejection capability

Finer granularity on the inner (entrance) face APD 1 inch PMT

Prospects
Better event reconstruction
shallow event
Pile-up
Incident angle measurement

2 inch PMT

K. Ni et al NIM A551 (2005)356-363

Hamamatsu R5900-06

Incident Angle Reconstruction

After Discovery of $\mu \rightarrow e \gamma$

What's next?

Polarized MEG

Arbitrary

If we succeed to observe enough number of events… Is it possible to investigate "inside the loop"? ~100% polarized Produced muon itself is polarized

Kuno and Okada, PRL 77(1996)434

Angular Distribution

$$\begin{split} dN(\mu^+ \rightarrow e^+\gamma) / d\cos\theta_e &\propto \\ &B(\mu^+ \rightarrow e^+\gamma)(1 + AP_\mu \cos\theta_e)/2 \\ &A &= (|A_L|^2 - |A_R|^2)/(|A_L|^2 + |A_R|^2) \\ &A &= +1 (A_L \neq 0, A_R = 0) \\ &A &\approx 0 \quad (A_L \approx A_R) \\ &A &= -1 (A_L = 0, A_R \neq 0) \\ \hline &Radiative \ \mu^+ \ decay \\ &N(\mu^+ \rightarrow e^+\nu\nu\gamma) \propto (1 + P_\mu \cos\theta_e) \end{split}$$

Possible to distinguish A=-1, 0, +1 at 68% C.L. for $B(\mu^+ \rightarrow e^+\gamma) > 10^{-12.5}$

Detector acceptance

S.Yamada SUSY2004

Summary

MEG is ready to start full DAQ!
Successful DAQ in 2007
2x10¹² muons stopped on the target

24 weeks DAQ is scheduled in 2008
Reach MEGA limit
Further development of analysis tools/better calibrations
Noise situation improved
Next version of waveform digitizer will be ready in 2008

Detector upgrade is being considered

Comments

After MEG result comes out,

 $\mu \rightarrow 3e$

Measure angular distribution with polarized muons

It will also be important to confirm it with different physics process μ -e conversion