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caner Today's talk
Qpa >~ 0.23
Dark Matter

 ® What Is 1t?
i (No candidate in the Standard Model!)

® When and how was it produced
NPT In the early universe??
® direct/indirect detection??

® Testable at Colliders?!




Today: discuss four different DM candidates

(as long as time allows

QO standard thermal relic WIMP
@ non-thermal WIMP (= cosmic ray signatures?)

@ gravitino DM
(+ long-lived charged particle) (= BBN signature?)

O decaying (gravitino) DM (= cosmic ray signatures?)

and their collider signatures/tests.
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> . mass, couplings...
Lets consider SUSY example
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Dark Matter in SUSY

R-'Jarify .. to avoid too rapid baryon/lepton number violation

Standard Model particle: A = A
SUSY partner particle: B = -B

Interactions

e BAIA . Forbidden>< B=>A +A;
-+ +




Dark Matter in SUSY

In SUSY models + R-parity, the
Lightest SUSY Particle (= LSP) is stable.

‘R-parity + (even)‘ | R-parity — (odd) |

—_— MLsPp
- )( LSP cannot decay!!

=) If neutral, Dark Matter candidate!
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Study in SUSY models
various studies:
cf.
Allanach, Belanger, Boudjema, Pukhov,'04
r Moroi, Shimizu, Yotsuyanagi,'05
lef/ff Nojiri, Polesello, Tovey, 05
Baltz, Battaglia, Peskin, Wizansky, 06
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recent hot top

PAMELA
(note: not published yet!

namurenews

Published online 2 September 2008 | Nature | doi:10.1038/455007a

Physicists aflutter about data photographed at
conference

Digital cameras snap slides ahead of publication.

Geoff Brumfiel (/news/author/Geoff+Brumfiel/index.html)

An Ttalian-led research group's closely held data have been outed
by paparazzi physicists, who photographed conference slides and
then used the data in their own publications.

For weeks, the physics community has been buzzing with the

latest results on 'dark matter' from a European satellite mission

known as PAMELA (Payload for Antimatter Matter Exploration

and Light-nuclei Astrophysics). Team members have talked

about their latest results at several recent conferences (see

Nature 454. 808; 2008

(http://www.nature.com/uidfinder/10.1038/454808b) ), but Is this the right place for digital
beyond a quick flash of a slide, the collaboration has not shared cameras? F. Chmura/Alamy
the data. Many high-profile journals, including Nature, have

strict rules about authors publicizing data before publication.

It now seems that some physicists have taken matters into their own hands. At least two papers recently
appeared on the preprint server arXiv.org showing representations of PAMELA's latest findings (M. Cirelli et
al. http://arxiv.org/abs/0808.3867; 2008 (http://arxiv.org/abs/0808.3867) , and L. Bergstrom et
al. http://arxiv.org/abs/0808.3725; 2008 (http://arxiv.org/abs/0808.3725) ). Both have recreated data
from photos taken of a PAMELA presentation on 20 August at the Identification of Dark Matter conference in
Stockholm, Sweden.

"We had our digital cameras ready," says Marco Cirelli, a theorist at the Institute of Theoretical Physics in Gif-
sur-Yvette, France, and one of those who took pictures. The preprints fully acknowledge the source of the data
and reference the presentation photographed.

PAMELA has been attracting such interest because it has reportedly seen an excess of high-energy positrons in
space. Those positrons could stem from the collision and annihilation of dark-matter particles, which could
make up most of the mass of the Universe. If the data hold up, they would be the most direct clue yet to the
nature of dark matter.

The satellite's finding comes at a time when theoretical physicists are desperate for dark-matter data to test
their ideas against. "There hasn't been much progress," says Adam Falkowski, a theorist at CERN, Europe's
particle-physics laboratory near Geneva, Switzerland. "The hunger for new results in the community is big."

Piergiorgio Picozza, PAMELA's principal investigator and a physicist at the University of Rome Tor Vergata,
says he is "very, very upset" by the data being incorporated into a publication. But Cirelli maintains that he and
others have done nothing wrong. "We asked the PAMELA people [there], and they said it was not a problem,"
he says.
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Non-thermal WIMP Dark Matter

FIGURES
T, = 10 MeV (without entropy production)
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Affleck-Dine baryogenesis - | | o

(= a natural baryogenesis in SUSY)
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w (Q-ball production L[ RN

: ' . . . 10
107 10" 10" 107 10° 107

(generic consequence) S meev)
Fujii, Hamaguchi, ‘01 and ‘02

m- (Q-ball decay at late time
(= non-thermal production of neutralinos!)

(cf. moduli decay; Moroi Randall,'99)
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Non-thermal WIMP Dark Matter

Qnon—thermal 0.2 ( 100 pb > ( mX > < 0.1 GeV >
oM . <0-aﬂn-v> 100 GeV Tnon thermal

777

ﬁDM =

Fdlrect detection X Tly m .
Flndlrect detection X n O ann. (XX o VlSlble)




Non-thermal WIMP Dark Matter

Qnon—thermal 0.2 ( 100 pb ) ( mX ) < 0.1 GeV >
oM . <O'ann.’U> 100 GeV Tnon thermal

Test it via collider
measurement !!

Especially Oann > 1 pb
would confirm the




@ gravitino DM

(+ long-lived charged particle) (= BBN signature?)
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Abstract
The lithium problem arises from the significant discrepancy between the primordial "Li abun-
dance as predicted by BBN theory and the WMAP baryon density, and the pre-Galactic lithium
abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed

for the past decade, with a persistent discrepancy of a factor of 2—3 in "Li/H. Recent developments

have sharpened all aspects of the Li problemn. Namely: (1) BBN theory predictions have sharpened

due to new nuclear data, particularly the uncertainty on “He(w, ~)"Be, has reduced to 7.4%, and
with a central value shift of ~ +0.04 keV barn. (2) The WMAP 5-year data now yields a cosmic
baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have
tested for systematic effects, and have reaped new lithium isotopic data. With these, we now find

that the BBN+WMAP predicts "Li/H = (5.24 71 i1) x 107'°. The Li problem remains and indeed

is exacerbated; the discrepancy is now a factor 2.4 — 4.3 or 4.20 (from globular cluster stars) to

5.3c (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and

key nuclear, particle, and astronomical measurements highlighted.
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This Li-7 problem may be solved if there is
a long-lived [O(1000 sec)] charged particle !

w Such a long-lived charged particle
naturally arises in SUSY models with
gravitino LSP + stau NLSP!!

Kohri, Silk, Starkman,’ 07

catalysis effect:

("Be X)+p — (®B X)+Y
Pospelov, 06;
+ Bird, Koopmans, Pospelov, 07 — ]
+ Kusakabe, Kajino, Boyd, Yoshida,

Mathews, 07,
+ Kamimura, Kino, Hiyama, 08

1. 2.
lifetime T, in 1000s




What is Gravitino?

—Supersymmetry (SUSY)

spin
quarks gq «—

leptons £

gauge bosons A,, 1] <——>

Higgs bosons H 0 ——

squarks @

o~

sleptons £

gauginos A

—

higgsinos h




What is Gravitino?

—Supersymmetry (SUSY)

spin
quarks gq «—

leptons £

gauge bosons A,,

Higgs bosons H

squarks @

o~

sleptons £

gauginos A

—

higgsinos h

(8.

graviton 8“




What is Gravitino?

Supergravity —

—Supersymmetry (SUSY)

spin _
quarks q «— squarks q

—~—

leptons £ sleptons £

gauge bosons A, gauginos A

o

Higgs bosons H higgsinos h

graviton ej gravitino G




What is Gravitino?

Supergravity —

—Supersymmetry (SUSY)

spin _
quarks q «— squarks q

—~—

leptons £ sleptons £

gauge bosons A, gauginos A

o

Higgs bosons H higgsinos h

graviton ej gravitino G




* Why Gravitino LSP ?




Why Gravitino LSP ?

among 29 SUSY particles?

ur UR; o7
squarks : ( o ) i sleptons : ( oz ) 23

——~——

gauginos and higgssinos : ;?’ XEI:, g

gravitino : G




Why Gravitino LSP ?

Dark Matter candidates

in SUSY Standard Model

ur UR; o7
squarks : ( o ) i sleptons : ( oz > 23

——~——

gauginos and higgssinos : ;?’ xit, g

gravitino : G




Why Gravitino LSP ?

Dark Matter candidates
in SUSY Standard Model

ur, UR;
squarks : R
(4

dr, dr;

gauginos and higgssinos :( x3?, xit,

neutral and color-singlet

gravitino :




Why Gravitino LSP ?

Dark Matter candidates
in SUSY Standard Model

ur, UR;
squarks : R
(4

dr, dr;

gauginos and higgssinos :( x3?, xgt,

neutral and color-singlet

gravitino :




Why Gravitino LSP ?

Dark Matter candidates
in SUSY Standard Model

ur, UR;
squarks : — —~
dr /), dr;

gauginos and higgssinos :( x3?, xgt,

neutral and color-singlet

gravitino :

Only Neutralino and Gravitino are viable candidates!
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Why Gravitino LSP ?

Other SUSY particle masses = O(100 GeV)-0O(1 TeV)

Gravitino mass.... model dependent.

Gravitino mass

eV keV

AMSEB,
OMSE v mMsB

D ——

%ravi’ry-MSB

Gravitino LSP




* Why Gravitino LSP ?

SUSY models

neutralino gravitino
LSP LSP

others hfty-fifty?




NLSP (Next-to-Lightest SUSY Particle)

In Gravitino LSP scenario, the NLSP is long-lived.

R-parity + (even) R-parity — (odd)

MNLSP

extremely weak
interaction

Mmea _1sp

NLSP can decay
only to Gravitino
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among 28 NLSP candidates?
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gravitino : G
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In general, from RGE, tendency is
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Why Stau NLSP ?

In general, from RGE, tendency is
e M(color singlet) < M(colored)
* M(weak singlet) < M(weak charged)
e M(3rd family) < M(Ist and 2nd family)
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Why Stau NLSP ?

In general, from RGE, tendency is
e M(color singlet) < M(colored)
* M(weak singlet) < M(weak charged)
e M(3rd family) < M(Ist and 2nd family)

Mass [GeV]

10 12 14 16
Log,,(Q/1 GeV)

typical RG evolution (from S.P.Martin, hep-ph/9709356)
gaugino
Higgsino

slepton guing

~

q
squarks

[ In most cases, either Stau or Neutralino is the NLSP




*Why Stau NLSP ?

SUSY models

neutralino gravitino

Stau NLSP

Neutralino
NLSP

» Gravitino LSP and Stau NLSP
IS a natural choice.
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Lifetime of Stau

e.g., for m(stau) = 200 GeV




Gravitino Problem (for stable gravitino)
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Long-lived staus @ colliders

We would like to study the decay of stau (into gravitino).

-> We need to stfop the staus.

massive stopper material
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Long-lived staus @ colliders

We would like to study the decay of stau (into gravitino).

-> We need to stfop the staus.

After a while, -+ The slepton decays into the Gravitino!!




stopper-detector
At LHC, we may place stoppers.

stopper-detector

5g/cm?
(total weight 8kt)




stopper-detector

wo mn\ nlaro ctanners.

er-detector

5g/cm?
(total weight 8kt)

y-position[m]

z-positon[m]




charged NLSP at ILC

Martyn, ‘06
At ILC, Highly segmented HCAL can serve as stopper-detector!




decaying (gravitino) DM (= cosmic ray signatures?)
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- thermal leptogenesis TR > 10°GeV = mG > O(10) GeV
e => Tstau »> 1000 sec. => difficulty with BBN
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- thermal leptogenesis TR > 10°GeV = mG > O(10) GeV
e => Tstau »> 1000 sec. => difficulty with BBN

A solution: a small R-parity violation can help it.
* A > 10'is large enough to make Tstau < 1000 sec,
- A <107 is small enough to satisfy the constraints including baryon washout,

* and to make the gravitino stable, i.e. Tgravitino >Tuniverse.
* (Buchmuller, Covi, KH, Ibarra, Yanagida,'07; cf. Takayama Yamaguchi, 00)

109 GeV

1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV




"+ thermal leptogenesis TR > 10%GeV = mG > O(10) GeV
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A solution: a small R-parity violation can help it.
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Summary
See DM, & Check 0ann =~ 1 pb

O standard thermal relic WIMP
See DM, & Check Oann > 1 pb

© non-thermal VIP (™ cosmIC ray signarures:

See long-lived charged particle, and
ORNTHURVE cock TvLsp ~ O(1000 sec)
(+ long-lived CHargea pe - 221n

Check R-parity violation !
O decaying (gravitino) DM . o Stgnarores:

Collider signatures/tests are crucial !




