First Observation of the Bottomonium Ground State η_b(1S)

Peter Kim SLAC National Accelerator Laboratory

(BaBar Collaboration)

KEK Seminar Dec. 8, 2008

Discovery of the bottom quark

E288 at Fermilab: p + (Cu, Pt) $\rightarrow \mu^+ \mu^- X$ S.W.Herb *et al*, PRL 39, 252 (1977)

Bound states of (bb): Bottomonium!

Upsilon Family

FIT WITH 3 PEAKS

W.R.Innes et al, PRL 39, 1240 (1977)

Upsilon states quickly confirmed at DORIS/CESR (1978-1979) DASP II, LENA, PLUTO, CLEO Experiments Original proposals for E cm = 8.4 GeV (DORIS) and 8 GeV (CESR)

Most of bottomonium physics come from experiments at e+e- Storage Rings and now at the B-factories.

Production in e+e- Annihilation

- Copious production of Upsilon states (1--) that couple to virtual photon
- Upsilons in clean environment: nothing else in the rest of the event.
- Continuum qq cross section: ~3.3 nb
- Visible cross section at PEP-II: 7 nb (Y2S) and 4 nb (Y3S)

Bottomonium Physics

- Bottomonium states are the heaviest and most compact bound states of quark and anti-quark in nature
- Tests of NRQCD and lattice QCD predictions: α_s, m_b

Spectroscopy: Hyperfine and fine splitting Hadronic and radiative transitions Decays

Some puzzles in the Bottomonium system

- Many different M(π⁺π⁻) distributions in di-pion transitions between the Upsilon states
- Unexpectedly large hadronic transition rates (via η or ω meson)
- Transitions to lower (bb) bound states observed at E_cm above the B-meson pair production threshold

Spectroscopy and Transitions

Observation of η_b in Y(3S) $\rightarrow \gamma \eta_b$ [BABAR] PRL 101, 071801 (2008).

Hadronic Decays

• Narrow widths of Y(nS) states: $\Gamma = 20-55$ KeV

 $e^+e^- \rightarrow \gamma * \rightarrow Y(nS) \rightarrow ggg \text{ or } \gamma gg (\sim 2.5\%)$

In lowest order QCD, other states will annihilate to either 2 or 3 gluons, depending on J = Odd or Even.

 $\begin{array}{ll} \eta_{\text{b},}\,\chi_{\text{b0}}(n\text{P})\text{,}\,\,\chi_{\text{b2}}(n\text{P}) \ \rightarrow \ gg \\ h_{\text{b}},\,\chi_{\text{b1}}(n\text{P}) \ \rightarrow \ g\ (q\overline{q}) \end{array}$

[High multiplicity hadronic final states: each hadronic decay mode has $BF = \sim 10^{-5}$]

• Widths of η_b , even all $\chi_b(1P)$, $\chi_b(2P)$ states are not known

 $η_c$, χ_{c0} (1P), χ_{c1} (1P), χ_{c2} (1P) : Γ = 25, 10, 1, 2 MeV (Charmonia in PDG)

Theo. extrapolation (NRQCD, Potential models)

 \rightarrow Smaller values for the Bottomonium

η_b

- Spin-0 partner of Y(1S): pseudoscalar
 - Hyperfine mass splitting: 71.5 MeV BABAR, PRL 101, 071801 (2008).
 Theoretical predictions in Potential models and lattice QCD calculations

Decay Width

– Quarkonium decay rates (LO)

Kwong, Mackenzie, Rosenfeld, Rosner, PRD 37, 3210 (1988)

$$\frac{\Gamma_{\gamma\gamma}(\eta_b)}{\Gamma_{gg}(\eta_b)} = \frac{9}{2} Q_b^4 \frac{\alpha_{em}^2}{\alpha_s^2} \left(1 - 7.8 \frac{\alpha_s}{\pi}\right)$$

- Theoretical Estimates of $\Gamma\gamma\gamma(\eta_b) = (0.2 - 0.7) \text{ keV} \rightarrow \Gamma(\eta_b) = 5 - 15 \text{ MeV}$ [$\Gamma\gamma\gamma(\eta_c) = 7 \text{ keV} \text{ and } \Gamma(\eta_c) = 25 \text{ MeV}$]

• Radiative Production: $Y(nS) \rightarrow \gamma \eta_b(1S)$

- Magnetic Dipole (M1) transitions
- k= 70, 610, 920 MeV for 1S,2S,3S
- Forbidden transitions suppressed by ~1/100

Godfrey and Rosner, PRD 64, 074011 (2001)

 $\Gamma_{\rm M1} \propto {\rm k}^3/{\rm m}^2_{\rm O} \cdot |\langle {\rm f} | j_0(kr/2) | {\rm i} \rangle|^2$

Previous Searches for η_b

Inclusive search in radiative transitions [CLEO III, PRL 94, 0322002, 2005] $B(Y(2S) → γ η_b) < 5.1 x 10^{-4}$ $B(Y(3S) → γ η_b) < 4.3 x 10^{-4}$ Y Data Sample: 9 Million 6 Million **Double transitions** • $Y(3S) \rightarrow \pi^0 h_b(1P) \text{ or } \pi^+\pi^-h_b(1P); h_b(1P) \rightarrow \gamma \eta_b$ $BF < 1.8 \times 10^{-3}$ (CLEO) $Y(3S) \rightarrow \gamma \chi_{b0}(2P); \gamma \chi_{b0}(2P) \rightarrow \gamma \eta_{b}$ $BF < 2.5 \times 10^{-4}$ (CLEO III) **Exclusive searches** $\eta_{b} \rightarrow$ 4- and 6-prong Final States in 2-photon production ALEPH at LEP II (2002) One 6-prong candidate in the signal region, M=9300 MeV 1 background event expected $\eta_{\text{h}} \rightarrow$ 4-, 6-, 8-prong Final States in 2-photon production L3 & DELPHI at LEP II (2006) $\eta_{\rm b} \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ CDF II at Tevatron (2006)

Inclusive Search in E_γ Spectrum [Y(3S) $\rightarrow \gamma \eta_b$]

- $M(\eta_b) = 9.4 \text{ GeV/c}^2 \rightarrow E_{\gamma} = 911 \text{ MeV} (in E_cm \text{ frame})$
- Very high background rate
 - Photons from hadronic decays: π^0 , η , ϖ , η , ϕ ...
 - Direct photons from Bottomonium decays: e.g., $B(Y(1S) \rightarrow \gamma g g) = 2.5 \%$
 - ISR photons from e+e- $\rightarrow \gamma$ (qq) events
 - Transition photons between the bb-bar bound states

BABAR Measurements

 $\begin{array}{ll} N_signal = & 19152 \pm 2010 \; events \\ BF \; (Y(3S) {\rightarrow} \; \gamma \; \eta_b) = (4.8 \pm 0.5 \; [stat] \pm 1.2 \; [syst] \;) \; x \; 10^{\text{-4}} \end{array}$

Mass is $\eta_b = 9388.9^{+3.1}_{-2.3} \pm 2.7 \text{ MeV}/c^2$

Mass splitting M(Y(1S)) - M(η_b) = 71.4^{+2.3}_{-3.1} ± 2.7 MeV/ c^2

<u>Run7 BaBar at PEP-II</u>

Data Sample

Y(3S): 30.2 fb⁻¹ 120 Million Y(3S) Events Y(2S): 14.5 fb⁻¹ 100 Million Y(2S) Events Scan above Y(4S) Energy: 5 fb⁻¹

- Plan for Final Run: 250 fb⁻¹ of Y(4S) data
- Dec. 15th : first collisions at Y(4S) energy
 - Dec. 19th: FY08 Budget announced
 - → Immediate Shutdown of BaBar/PEP-II or

Run at Y(3S) E_CM by reducing the HER(e-) energy (<u>BaBar Higgs/Exotics Workshop, Oct. 2007</u>)

- Dec. 21st Decision to move to Y(3S)
- Dec. 22nd Y(3S) scan completed
 - Run at the Y(3S) peak (10.3553 GeV)
 - Peak Luminosity at 1.2 x 10³⁴

HER 8.5923 GeV (-247 MeV) LER 3.1200 GeV

- 2S (10.0327 GeV)
 - HER 8.0653 GeV (-920 MeV, 1 mrad)
 - LER 3.1200 GeV
- Move to Y(2S) energy in March (in 10 hrs)
- Scan above Y(4S) for 10 days
- Last Data Taken on Apr. 7, 2008

BaBar Detector

Event Selection

- Hadronic Event Selection
 - Track multiplicity of the Event > 3
 - R2 (Ratio of 2nd to 0th Fox-Wolfram moment) <0.98 to suppress QED background
- Photon Selection
 - Neutral clusters in EMC; Isolated from charged tracks
 - Shower shape consistent with EM shower profile
 - Central Barrel section of the CsI calorimeter

 $-0.762 < \cos(\theta\gamma, lab) < 0.890$

 \rightarrow Better energy resolution &

Reduced ISR photon background

Photon Shower Shape Cut

Lateral Shower Shapes in EMC clusters

LAT =
$$\sum_{i=3}^{n} E_i r_i^2 / (E_1 r_0^2 + E_2 r_0^2 + \sum_{i=3}^{n} E_i r_i^2)$$

where the *n* crystals in the EMC cluster are ranked in order of energy deposited in that crystal, *Ei*, and r0 = 5cm is the average distance between crystal centers. *ri* is the distance between crystal *i* and the cluster centroid calculated from an energy-weighted average of the *n* crystals.

Signal MC Photon

0.85 < Eγ < 0.95 GeV

Monte Carlo simulations

 $\begin{array}{l} Y(3S) \rightarrow \gamma \; \eta_b, \; 1 + cos^2 \theta \gamma \; distribution \; relative \; to \; beam \; axis \\ JETSET \; is \; used \; for \; hadronization \; of \; quarks/gluons \\ Detector \; simulations \; using \; GEANT \end{array}$

- Inclusive properties of η_{b} hadronic decays (via 2-gluons) not known

Use the $\chi_b(2P)$ peak in data to calibrate Reconstruction Efficiency

• Non-peaking background shape/yield also not well-known

2.4 fb⁻¹ of Y(3S) data set aside for optimization study [Test Sample]

25.6 fb⁻¹ of Y(3S) data for Analysis: (109 ± 1) Million Y(3S) Events

Event Shape

 Strong correlation between the candidate photon and the thrust Axis calculated from the tracks in the rest of the event (Continuum events)

- No other useful event-shape variables were found...
- The background photons from bottomonium decays (3-gluon, γ gg, gg), are more isotropically distributed, making these events harder to distinguish from the η_b signal.

→ Photon candidate rejected

S/B Optimization

Optimization criteria verified with the $\chi_b(2P)$ yield in Test Sample

Similar ($\eta \rightarrow \gamma \gamma$) veto does not Improve the S/B ratio...

Signal Detection Efficiency

Determined from MC simulations

Cut	Efficiency (%)
Reconstruction	70.5
Hadronic selection	97.2
LAT < 0.55	98.0
In barrel	89.9
$ \cos heta_T < 0.7$	68.9
π^0 - 50 MeV cut	89.8
Total	37.0

Net efficiencies: ε(signal) = 37% ε(bkgd) = 6%

Background Composition: Continuum (30%) Bottomonium decays (70%)

Inclusive Photon Spectrum in 2.5 fb⁻¹ Y(3S) Test Sample

$\chi_{b}(2P)$ Peaking Background

 $J^{PC} = 0^{-+}$ 1^{--} 1^{+-} 0^{++} 1^{++} 2^{++}

Fitting the Eγ Spectrum

Simple 1-D histogram fit (binned Maximum likelihood Fit) with 4 components

1) Smooth non-peaking Background

2) Y(**3S**) $\rightarrow \gamma \eta_b$ Signal (<u>920 MeV</u>)

3) $e^+e^- \rightarrow \gamma_{ISR}Y(1S)$ Peak (850 MeV)

4) $\chi_b(2P) \rightarrow \gamma Y(1S)$ Peak (750 MeV)

PDF of each component studied in advance & the parameters are estimated, without looking at the Signal Region.

1) Non-peaking Background

Empirical function is used to parameterize the smooth non-peaking background

$$A\left(C + e^{-\alpha E_{\gamma} - \beta E_{\gamma}^2}\right)$$

Fit parameters C, α , β determined here is used as the "starting values" in the Final Fit

2) η_{b} Signal PDF

Signal Shape from MC Simulation

Signal PDF: Crystal Ball Function \otimes Breit-Wigner

Fix the S-wave Breit-Wigner width to 10 MeV

The width is varied 5, 15, 20 MeV to determine systematics

Crystal Ball Function [www.wikipedia.org]

A <u>probability density function</u> commonly used to model the photon energy line shape. It consists of a <u>Gaussian</u> core portion and a power-law low-end tail, below a certain threshold.

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$

where

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right)$$
$$B = \frac{n}{|\alpha|} - |\alpha|,$$

N is a normalization factor and α , *n*, and σ are parameters.

Examples of the Crystal Ball Function Red: $\alpha = 10$, Green: $\alpha = 1$, Blue: $\alpha = 0.1$ 24

3) $e^+e^- \rightarrow \gamma_{ISR} Y(1S)$ Background

(Initial State Radiation)

Potentially a very large background source (Not considered in previous CLEO Analyses) Photon momentum peaked along beam direction e⁺e⁻ QED process at 10.355 GeV

Cross section: 25 pb E(γ_{ISR}) = 0.855 GeV

Cross section <u>measurements</u> at 10.58 GeV E_cm $\sigma(e+e- \rightarrow \gamma_{ISR}Y(3S)) \sim 29 \text{ pb}$ $\sigma(e+e- \rightarrow \gamma_{ISR}Y(2S)) \sim 17 \text{ pb}$ $\sigma(e+e- \rightarrow \gamma_{ISR}Y(1S)) \sim 19 \text{ pb}$

We use Continuum events in Off-Y(3S) Data and Off-Y(4S) Data to determine the background rate and shape.

2.4 fb⁻¹ at E_cm 30 MeV below the Y(3S) 44 fb⁻¹ at E_cm 40 MeV below the Y(4S)

$e^+e^- \rightarrow \gamma_{ISR} Y(1S)$ at 10.54 GeV

Shape & Rate determined using Off-Y(4S) data where E_{γ} (ISR) peaks at 1.025 GeV

Crystal Ball function with power law, transition point and width parameters obtained from the fit

 $N_sig = 35800 \pm 1600$

Yield Estimate for $e^+e^- \rightarrow \gamma_{ISR}Y(1S)$ In Y(3S) On-Resonance Data Sample Using Y(4S) Off-Resonance Data

Sample	Lumi	Cross-Section	Reconstruction	Yield	Extrapolation to	
	$[{\rm fb}^{-1}]$	$[\mathbf{pb}]$	Efficiency		$\Upsilon(3S)$ On-Peak	
$\Upsilon(3S)$ Off-Peak	2.415	25.4	5.78 ± 0.09	2773 ± 473	29393 ± 5014	Stat.
$\Upsilon(4S)$ Off-Peak	43.9	19.8	6.16 ± 0.12	35759 ± 1576	25153 ± 1677	Error

- Extrapolated numbers from Y(3S/4S) Off-peak samples in good agreement
- Systematic error on extrapolation (5%)
- ISR Yield obtained from extrapolation (25153) fixed in the final fit
 - ✓ ISR Yield varied by ±1 σ as part of the study of the systematic uncertainties on the η_b peak position and yield.

Calculation	$\sigma_{\Upsilon(3S)}$ (pb)	$\sigma_{\Upsilon(4S)}$ (pb)	Ratio	Asymmetric collider correction
Benayoun, et. al., 2nd order	25.4	19.8	1.283	Yes
Benayoun, et. al., 1st order	28.46	21.62	1.316	No
Benayoun, et. al., 2nd order	26.12	20.21	1.292	No
Blümlein, et. al., 1st order	28.46	21.62	1.316	No
Blümlein, et. al., 2nd order	27.02	20.46	1.320	No
Blümlein, et. al., 3rd order	27.13	20.54	1.321	No

- 4) χ_{bJ}(2P)→γY(1S)
 - Model each transition by a Crystal Ball function
 - Transition point and power law tail parameter fixed to same value for each peak
- Peak positions fixed to PDG values shifted by a common offset
 - Offset due to PEP-II energy meas. and γ energy calibration:
 - +3.8 MeV in data

→used to set the energy scale of other peaks

- Ratio of yields is taken from PDG
 - -- $R(\chi_{b1}/\chi_{b2}) = 1.2$ (consistent with value we measure using soft Y(3S) $\rightarrow \chi_{b1,2}(2P)$ transition photons)

 $(\chi b_0(2P) \text{ contribution is very small})$

Incorporate ISR peak contribution

- Model tail of γ peak from χ_b (2P) properly

FIT RESULT

FIT RESULT

Observation of the η_b

More Checks

Detector Effects

- Noisy EMC channels monitored online; no hot spots in EMC photon distribution
- Remove photons with small Lateral Moment to veto possible hot crystals
 - $\succ \eta_b$ signal remains strong
- Remove photons with large Lateral Moment to veto accidental photon overlaps

e.g., two photons from $\chi_b(2P)$ transitions

> No effect on η_b signal significance

χ_b line shape

- − Float the ISR Y(1S) yield → fitted yield (24800+/-4000) consistent with expected number of ISR events (25000); No effect on the $η_b$ yield
- χ_b line shape consistent with the shape from the exclusive reconstruction: Y(3S) $\rightarrow \gamma \chi_b(2P); \chi_b(2P) \rightarrow \gamma Y(1S); Y(1S) \rightarrow \mu + \mu -$

• Is it really the η_{b} ?

The only Bottomonium state below the Y(1S) mass is the η_b Event properties such as track multiplicity and photon direction consistent with η_b

STUDY OF SYSTEMATIC UNCERTAINTIES

- Systematic uncertainties associated with the η_{b} yield and mass
 - Vary ISR yield by $\pm 1\sigma$ (stat $\otimes 5\%$ syst) $\rightarrow \delta N = 180, \delta M = 0.7$ MeV
 - Vary ISR PDF parameters by $\pm 1\sigma$
 - − Vary Signal PDF parameters by ± 1 σ → δ N = 98, δ M=0.1 MeV
 - − Vary χ_b peak PDF parameters by ± 1 σ → δ N = 642, δ M=0.3 MeV
 - Fit with BW width fixed to 5, 15, 20 MeV $\rightarrow \delta N = 2010$, $\delta M = 0.8$ MeV
- $\rightarrow \delta N = 50, \delta M = 0.3 \text{ MeV}$
- Additional systematic uncertainties in Branching Fraction calculation
 - $-\chi_{\rm b}(2P)$ yield in data and MC at PDG rates: 22%
- Significance test

Vary BW width and fit parameters; Vary all parameters in the direction result in lowest significance: NO Change in Significance (> 10 σ)

SUMMARY OF Y(3S) MEASUREMENTS

 $\eta_b = 9388.9^{+3.1}_{-2.3} \pm 2.7 \text{ MeV/}c^2$

M(Y(1S)) - M(η_b) = 71.4^{+2.3}_{-3.1} ± 2.7 MeV/ c^2

 $BF(Y(3S) \rightarrow \gamma \eta_b) = (4.8 \pm 0.5 \pm 1.2) \times 10^{-4}$

Theorists faced with BABAR Hyperfine Splitting measurement

 $M(\eta_b)$ and a(s) from nonrelativistic renormalization Group, Kniehl et al, PRL 92:242001 (2004)

Experiment:

Ľ€

 $E_{\rm hfs}^{\rm exp} = 71.4 \pm 2.7 \,({\rm syst}) \,{}^{+2.3}_{-3.1} \,({\rm stat}) \,\,{\rm MeV}$

Inclusive Search in E_{γ} Spectrum [Y(2S) $\rightarrow \gamma \eta_b$]

100 Million Y(2S) Events; *BF* expected = $(1 - 5) \times 10^{-4}$

Eγ Signal at <u>611 MeV</u> ISR-Y(1S) peak at <u>545 MeV</u> χ_b (1P) → γY(1S) peak at <u>420 MeV</u>

Analysis almost identical to the Y(3S) case with minor modifications

Comparison to Y(3S) Analysis

30% better photon energy resolution at lower energy → better separation between peaks

More (x3) random photon background at lower energy → less significance at similar *BF*

Photon Selection and Optimization

- Same hadronic event selection and photon candidate selection as in Y(3S) analysis
- Event Shape: |cos θ(Thrust) | < 0.8 Less continuum background as the Y(2S) cross section is twice the Y(3S) cross section
- Pi0 Veto: E(g2) > 40 MeV
- MC signal detection efficiency = 35.8%

Fitting the Photon Energy Spectrum

χ^2 fit of 1-D histogram with 4 components

1) Smooth non-peaking Background

Parameterization with exponential of 4th order polynomial

2) $Y(3S) \rightarrow \gamma \eta_b$ Signal (610 MeV) Shape from MC simulation

3) $e^+e^- \rightarrow \gamma_{ISR}Y(1S)$ Peak (545 MeV)

Sharpe determined using Off-4S data Normalization floated in the fit

4) $\chi_b(1P) \rightarrow \gamma Y(1S)$ Peak (420 MeV)

Relative rates of χ_b states fixed to exclusive $\gamma\gamma\mu^+\mu^-$ measurement Photon lineshape uses Crystal Ball function convoluted with Doppler Broadening

Close-up View

Non-peaking Background subtracted

BABAR Preliminary

Y(2S) Fit Result

- η_b yield: 13915⁺³⁵⁵⁵₋₃₄₅₂
- η_{b} peak position: $610.5^{+4.5}_{-4.3} \pm 1.8 \,\mathrm{MeV}$
- ISR yield of 15000 ± 4200 is consistent with the expected rate of 16700 ± 700 ± 1200
- Goodness of Fit: χ^2 /ndof=116.2/93
- Significance including systematics: >3.5 σ
- The bump at 680 MeV is too narrow for the detector resolution of photons at that energy
- No detector artifacts or random photon overlaps seen

Yield and peak position systematics

Source	$\Delta N [Evts]$	Δ peak pos. [MeV]
η_b width, 5 MeV	-1519	-0.5
η_b width, 15 MeV	1195	0.4
η_b width, 20 MeV	2328	0.9
ISR PDF, N	133	0.10
ISR PDF, A	180	0.05
ISR PDF, σ	43	0.05
signal PDF, N	44	0.01
signal PDF, A	62	0.05
signal PDF, σ_{CB}	53	0.01
χ_{bJ} PDF, N	33	0.01
χ_{b1}/χ_{b2} ratio	150	0.14
χ_{b0}/χ_{b1} ratio	145	0.03
$\chi_{b0} \sigma$	121	0.03
Extra χ_{bJ} tail	+1537	0.07
$\exp Pol(3)$ pdf	-2237	(1.3)
Total, fit variations	$+2811 \\ -2726$	1.6
Energy scale offset	0	0.9
χ_b masses	0	0.4
Total	$+2811 \\ -2726$	1.8

 η_{b} width Variation

 χ_{b} shape variation

Smooth background shape variation

$$Y(\textbf{2S}) \rightarrow \gamma \ \eta_{\textbf{b}}$$

$$Y\textbf{(3S)} \rightarrow \gamma \ \eta_{b}$$

$${
m E}_{\gamma} = 610.5^{+4.5}_{-4.3} \pm 1.8 \,\, {
m MeV}$$

 $^+\mathrm{M}(\eta_\mathrm{b}) = 9392.9^{+4.6}_{-4.8} \pm 1.8 ~\mathrm{MeV/c^2}$ $\mathrm{M}(\Upsilon(1\mathrm{S})) - \mathrm{M}(\eta_\mathrm{b}) = 67.4^{+4.8}_{-4.5} \pm 1.9 ~\mathrm{MeV/c^2}$

$$B(\Upsilon(2S) o \gamma \, \eta_b) = [4.2^{+1.1}_{-1.0} \pm 0.9] imes 10^{-4}$$

 $\begin{array}{c} 10000 \\ 99 \\ 8000 \\ 4000 \\ 2000 \\ 0 \\ -2000 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1 \\ 1.1 \\ E_{\gamma} (GeV) \end{array}$

 $egin{aligned} \mathrm{E}_{\gamma} &= 921.2^{+2.1}_{-2.8} \pm 2.4 \,\,\mathrm{MeV} \ \mathrm{M}(\eta_{\mathrm{b}}) &= 9388.9^{+3.1}_{-2.3} \pm 2.7 \,\,\mathrm{MeV/c^2} \ \mathrm{M}(\Upsilon(1\mathrm{S})) - \mathrm{M}(\eta_{\mathrm{b}}) &= 71.4^{+2.3}_{-3.1} \pm 2.7 \,\,\mathrm{MeV/c^2} \end{aligned}$

 $B(\Upsilon(3S) o \gamma \, \eta_b) = [4.8 \pm 0.5 \pm 1.2] imes 10^{-4}$

Other Searches for η_b at BaBar

• $Y(2S) \rightarrow \pi^+\pi^-Y(1S); Y(1S) \rightarrow \gamma \eta_b(1S)$ INCLUSIVE

18 M Y(1S) events in $\pi^+\pi^-$ Recoil Ey signal at 71 MeV No χ_b background; No peaking ISR background

• $Y(3S) \rightarrow \gamma \eta_b(2S)$ INCLUSIVE

Eγ Signal at 360 MeV (Difficult Region with nearby E1 transitions)

- $Y(3S) \rightarrow \pi^0 h_b(1P) \text{ or } \pi^+\pi^-h_b(1P); h_b(1P) \rightarrow \gamma \eta_b \text{ INCLUSIVE}$
- $Y(3S) \rightarrow \omega \eta_b(1S)$ INCLUSIVE
- $Y(nS) \rightarrow \gamma \eta_b(1S)$: Full reconstruction of exclusive channels

Next steps in η_b physics

Measurement of the η_b width More precise mass splitting determination Improved branching fraction measurements Investigate the properties of the η_b events Reconstruction of exclusive decay modes

 $\eta_b \rightarrow \gamma \gamma$ (*BF* = few x 10⁻⁴)

	CLEO III	BaBar	BELLE
Y (1S)	20 M		100 M
Y (2S)	9 M	100 M	
Y(3S)	6 M	120 M	11 M

100 Million events are not enough to achieve all these goals...

We will need a Super-B Factory.

Summary

- First Observation of the η_b in Y(3S) $\rightarrow \gamma \eta_b$ Hyperfine Splitting of 71.5 MeV, a challenge to the Theorists
- Confirmation with Further Evidence in Y(2S) $\rightarrow \gamma \eta_b$
- Exciting results on η_b and other bottomonium physics are expected from BABAR, BELLE, and CLEO experiments in the near future

Thank you!