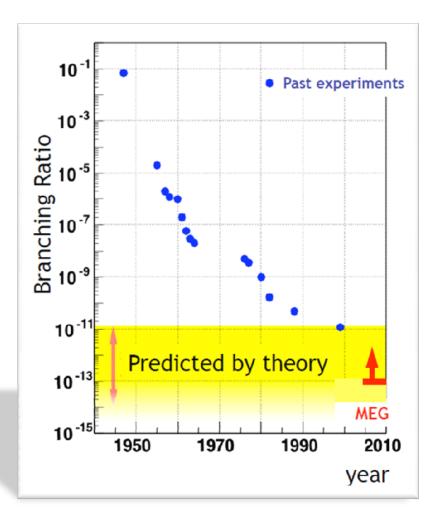
J. Adam,^{1,2} X. Bai,³ A. Baldini^a,⁴ E. Baracchini,⁵ A. Barchiesi,⁶ C. Bemporad^{ab},⁴ G. Boca^{ab},⁷ P. W. Cattaneo^a,⁷ G. Cavoto^a,⁶ G. Cecchet^a,⁷ F. Cei^{ab},⁴ C. Cerri^a,⁴,^{*} A. De Bari^a,⁷ M. De Gerone^{ab},⁸ T. Doke,⁹ S. Dussoni^{ab},⁸ J. Egger,^{1.}* L. Galli^{ab},^{4,1} G. Gallucci^{ab},^{4,1} F. Gatti^{ab},⁸ B. Golden,⁵ M. Grassi^a,⁴ D. N. Grigoriev,¹⁰ T. Haruyama,¹¹ M. Hildebrandt,¹ Y. Hisamatsu,^{3,1} F. Ignatov,¹⁰ T. Iwamoto,³ D. Kaneko,³ P.-R. Kettle,¹ B. I. Khazin,¹⁰ O. Kiselev,¹ A. Korenchenko,¹² N. Kravchuk,¹² A. Maki,¹¹ S. Mihara,¹¹ W. Molzon,⁵ T. Mori,³ D. Mzavia,¹² H. Natori,^{3,1} R. Nardò^{ab},⁷ D. Nicolò^{ab},⁴ H. Nishiguchi,¹¹ Y. Nishimura,³ W. Ootani,³ M. Panareo^{ab},¹³ A. Papa^{ab},⁴ R. Pazzi^{ab},^{4,†} G. Piredda^a,⁶ A. Popov,¹⁰ F. Renga^{ab},⁶ S. Ritt¹ M. Rossella^a,⁷ R. Sawada,³ M. Schneebeli,^{1,2,‡} F. Sergiampietri^a,⁴ G. Signorelli^a,⁴ Shu^{1,9} C Topch^aa,⁵ C. JuStkov,⁵ Y. Uchiyama,^{3,1} R. Valle^{ab},^{8,8} C. Voena^a,⁶ F. Xiao,^{5,1} S. Yamada, A. Linna J. Z. Shu^{1,9} C. JuStkov,⁵ Y. Uchiyama,^{3,1} R. Valle^{ab},^{8,8} C. Voena^a,⁶ F. Xiao,^{5,1} S. Yamada, A. Linna J. Z. Shu^{1,9} C. JuStkov,⁵ Y. Uchiyama,^{3,1} R. Valle^{ab},^{8,8} C. Voena^a,⁶ F. Xiao,^{5,1} S. Yamada, A. Linna J. Z. Linna J. Linna J. Z. Linna J. Linna J. Linna J. Z. Linna J. Linna hep-ex] 18 Aug 2009 (MEG Collaboration) ¹Paul Scherrer Institute PSI, CH-5232 Villigen, Switzerland ²Swiss Federal Institute of Technology ETH, CH-8093 Zuerich, Switzerland ³ICEPP. The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ⁴INFN Sezione di Pisa^a; Dipartimento di Fisica^b dell'Università, Largo B. Pontecorvo 3, 56127 Pisa, Italy piversity of California, Inving, CA 92697, USA ⁶INFN Sezione di Roma^a; Dipartimento di Fisica^b dell'Università, Via Bassi 6, 27100 Pavia, Italy ⁸INFN Sezione di Genova^a: Dipartimento di Fisica^b dell'Università, Via Dodecaneso 33, 16146 Genova, Italy ⁹Research mititute for Science and Engine ring, Waseda Universite, 3-4-1 Oktob, Shinjuku-ku, Tekno 169-8555, Japan ¹¹ KEK. High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan ¹²Joint Institute for Nuclear Research, 141980, Dubna, Russia ¹³INFN Sezione di Lecce^a: Dipartimento di Fisica^b dell'Università, Via per Arnesano, 73100 Lecce, Italy (Dated: August 18, 2009) A search for the decay $\mu^+ \to e^+ \gamma$, performed at PSI and based on data from the initial three months of operation of the MEG experiment, yields an upper limit $BR(\mu^+ \rightarrow e^+\gamma) \leq 3.0 \times 10^{-11}$ (90% C.L.). Positrons and photons from ~ 10¹⁴ stopped μ^+ -decays were measured by a superconducting positron spectrometer and a 900 litre liquid xenon photon detector.

A limit for the $\mu \to e\gamma$ decay from the MEG experiment

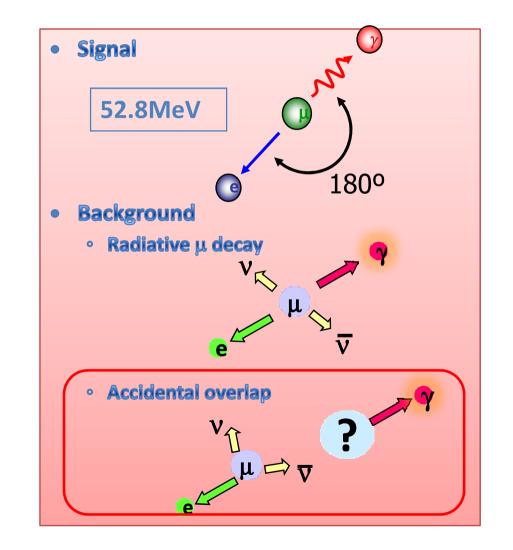
Outline

- Introduction
- MEG detector
- MEG data acquisition in 2008
- Analysis
- Summary and prospect of 2009 run

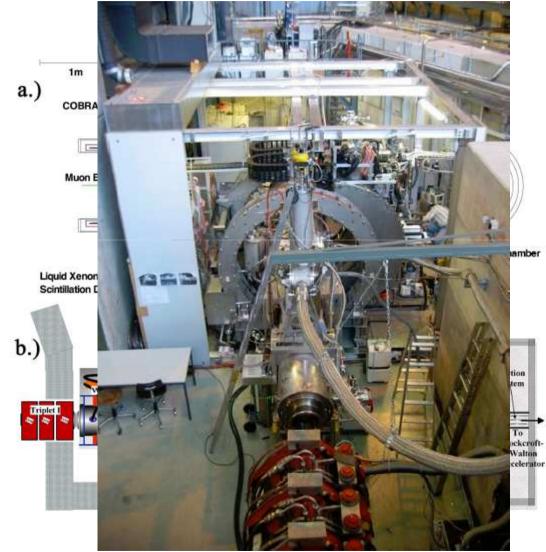

What is MEG?

- Aiming at <u>observing</u> µ→e γ event with a sensitivity of ~10⁻¹³
 - Normal muon decay: $\mu \rightarrow e \overline{v} v$
 - Radiative muon decay: $\mu \rightarrow e \overline{v} v \gamma$

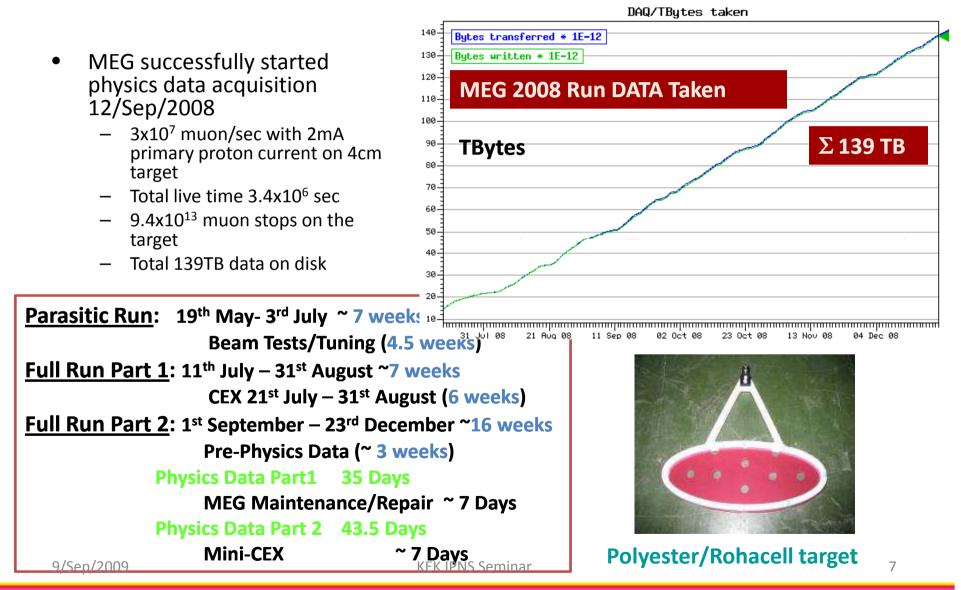
$\mu \rightarrow e \gamma$ Search Chronology



- Order of 10 improvement in 50 years
- Best limit by MEGA collaboration, Br($\mu \rightarrow e\gamma$) < 1.2x10⁻¹¹
 - μ*Ti* → *eTi* < 7 x 10⁻¹³ (SINDRUM II)
- Strong motivation
 - Neutrino oscillation
 - SUSY GUT


$\mu \rightarrow e \gamma$ Signal and its Detection

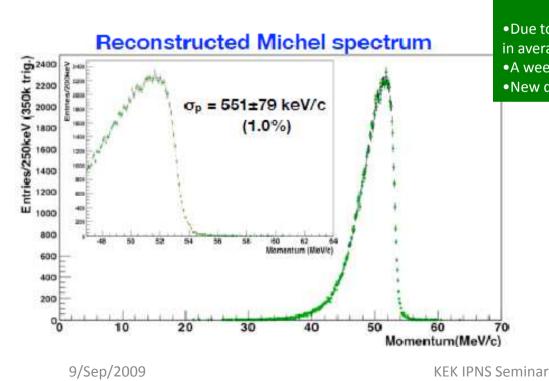
- High intensity muon beam
 DC is better than plused
- Large acceptance of the detector system
- Good detector resolutions to suppress background

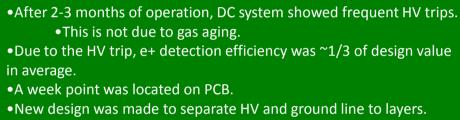

MEG Detector/Muon Beam Line

- Muon Beam
- PiE5 muon beam line
 - 1.15x10⁸ μ⁺s⁻¹ at the detector entrance
 - at 1.8mA, 4cm Tg
- Photon
 Detector
 - 900 liter liquid xenon
 - 846 PMTS in the liquid
 - Cooling with a PTR
 - purification
- Positron
 Detector
 - COBRA spectrometer
 - Low-mass drift chamber
 - High resolution timing couter

9/Sep/2009

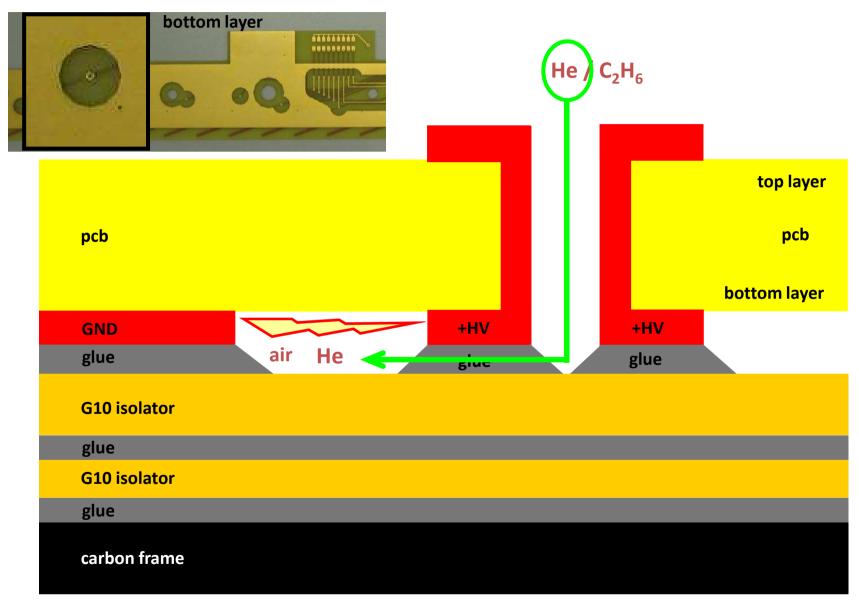
Data Acquisition in 2008

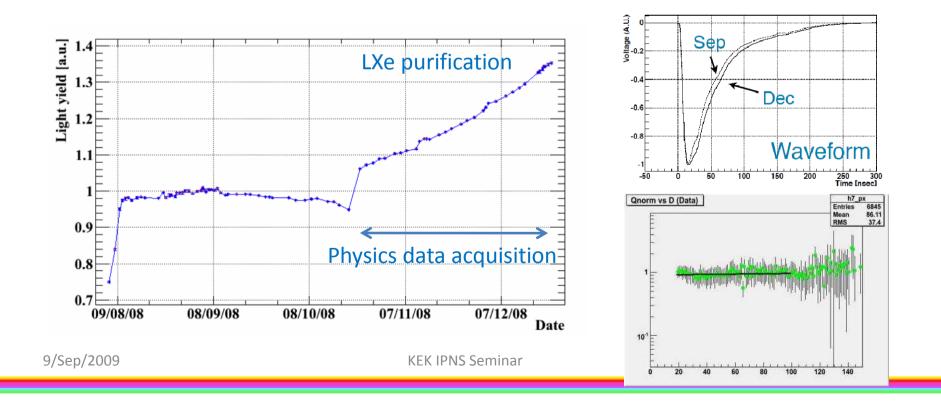



DETECTOR PERFORMANCE

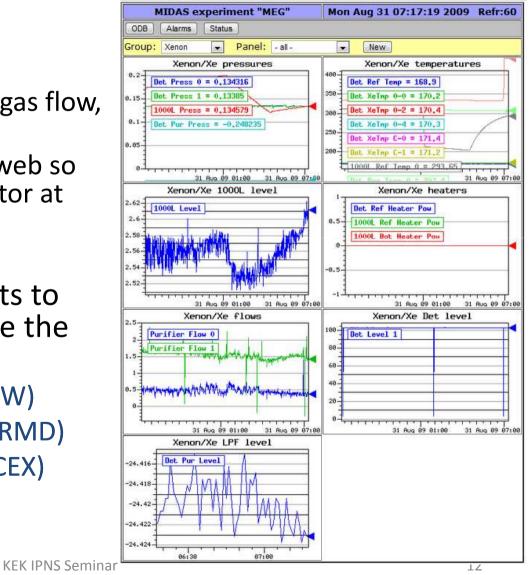
9/Sep/2009

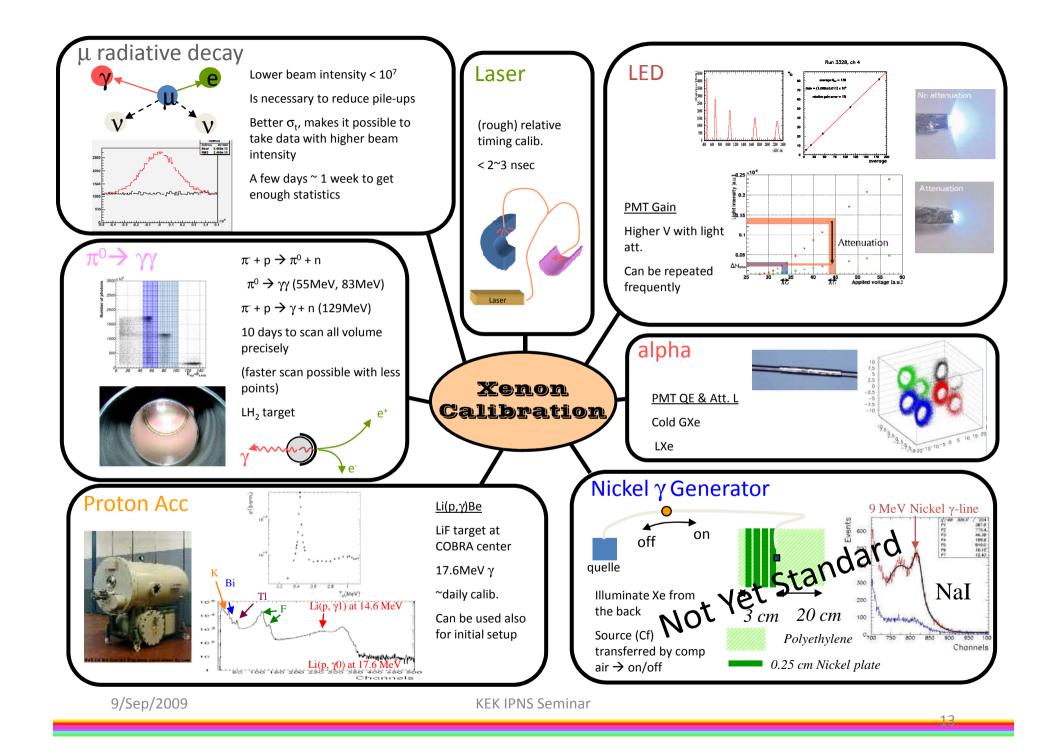
DC Performance in 2008


- End-point is fitted to the convolution of "theoretical response function" and "Gaussian", with three free parameters:
 - " E_{edge} "," σ_{p} " and "Normalization"
 - Problem in 2008 DAQ
 - Too many HV trip for stable detector operation


PCB Cross Section

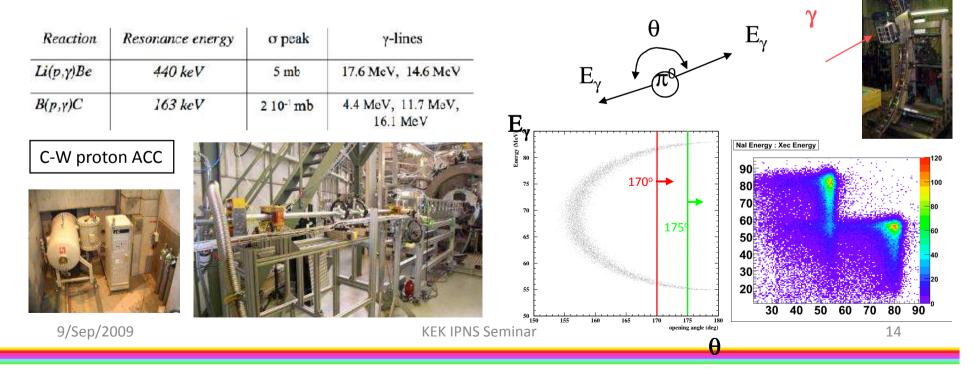
ØE%elp/2000minar


LXe Operation Summary in 2008

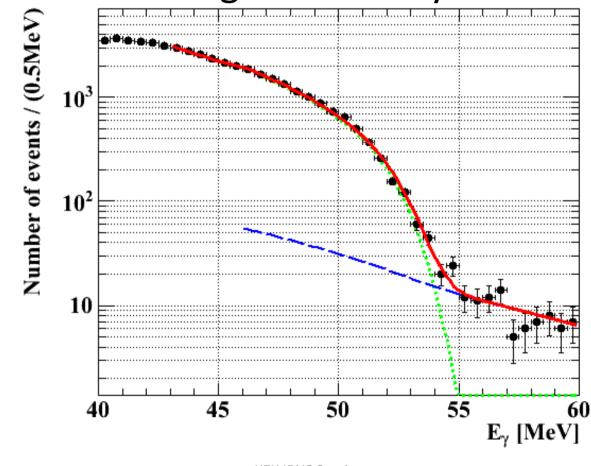

- Successful operation with very few dead channels (~0.5%)
- Light yield and waveform was changing by purification of LXe.
 - Frequent monitor of the change by using several calibration sources.
 - Absorption length was confirmed to be long enough
 - Light emission was probably affected by impurity

Monitoring and Calibrations

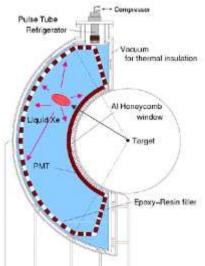
- Primitive level
 - Temperature, pressure, gas flow, gas composition
 - All are broadcasted via web so that everyone can monitor at different time zones
- Additional measurements to calibrate and synchronize the sub-detectors
 - Cockcroft-Walton acc (CW)
 - Radiative Muon Decay (RMD)
 - Pion charge-exchange (CEX) reaction runs

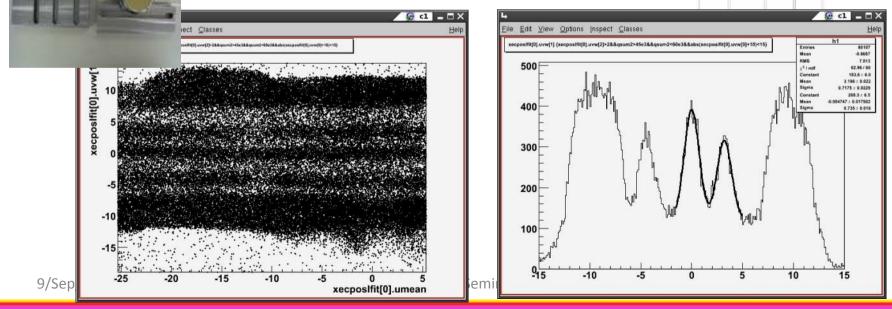


Photon Energy Calibration


- CW runs
 - Proton on Li₂B₄O₇ target
 - 17.6 MeV γ to monitor the detector energy scale
 - Coincident γ 's of 4.4, 11.6MeV to determine time offsets of TCs
 - Repeated 3 times in a week

- CEX reaction runs
 - $\pi^{-}p \rightarrow \pi^{0}n$
 - $\pi^0(28 \text{MeV/c}) \rightarrow \gamma \gamma$
 - 54.9MeV<E(γ)<82.9 MeV
 - − Dalitz decays $\pi^0 \rightarrow \gamma e^+e^-$ collected to study the detector time synchronization and resolution


RMD Photons for Energy Scale Monitoring

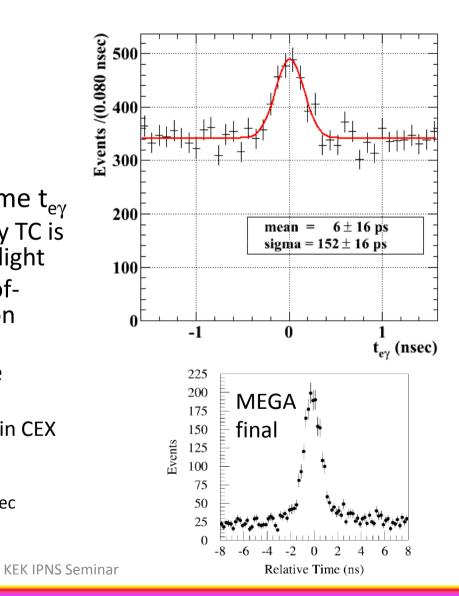

• and also for background study

Photon Position Reconstruction

- Position reconstruction by using the light distribution seen by the PMTs near the incident position
- Performance evaluation by a Monte Carlo simulation validated in a CEX run with a lead collimator
 - ~5mm along the LXe surface and ~6mm along the radial directions



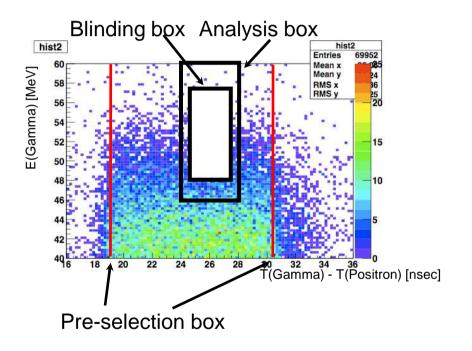
Positron Momentum


- Track reconstruction with the Kalman filter technique
- Energy scale and resolution are evaluated by fitting the Michel spectrum at 52.8MeV
- Resolution function with core and tail components

- Core : 374keV (60%), tails: 1.06 MeV (33%) and 2.00MeV (7%)

Photon-Positron teγ

- Calibration using
 - Laser data
 - CW Boron data
 - CEX run data
- Photon-Positron Relative time t_{eγ}
 - Positron time measured by TC is corrected by the time-of-flight
 - Photon time by the time-offlight (depth reconstruction important)
 - RMD peak is clearly visible
 - 40<Εγ<45 MeV
 - Eγ dependence evaluated in CEX run data
 - σ_{teγ}=148+/-17 psec
 - Stability better than 20psec



All results are **PRELIMINARY** since we are still doing several systematic checks !!!

PHYSICS ANALYSIS RESULTS

Blinding-Box Analysis

- Pre-selection and blinding
 - Data reduction: 84%
 - Hidden signal box on (E γ , t_{e γ})
 - Event data falling in the blind box is automatically separated (and password protected) and written to a different file from other events
- All analysis procedure is defined and fixed without using hidden data
- Analysis box is defined for the likelihood analysis

Single Event Sensitivity Estimation

Ω/ 4 π	0.09		
γ	0.66 x 0.91 (Εγ>46MeV)x(pileup, CR)	4.6x10⁻³ (from BG rate, Ε _γ >45MeV, Ε _e >50MeV)	280/250 (RD sideband data, E _e <48MeV,
e+	0 . 15 (DCH x DC-TC match)		
Trigger	0.66		
	(DM)		#expected /
Selection	0.99 x 0.98 (DCH x γ acc.)		#observed)
Νμ	9.4x10¹³ μ stops (3.0x10 ⁷ μ/s/2mA·6290C)		
SES	2.0x10 ⁻¹²	2.2x10 ⁻¹²	2.2x10 ⁻¹²

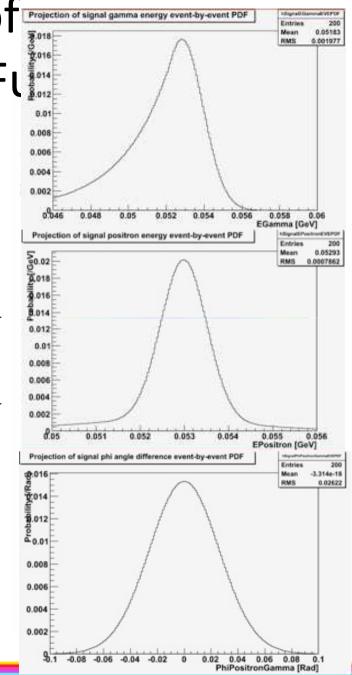
Expected 90% CL using 2008 Data

 The average expected 90% CL upper limit on BR assuming no signal
 1.2 × 10-11

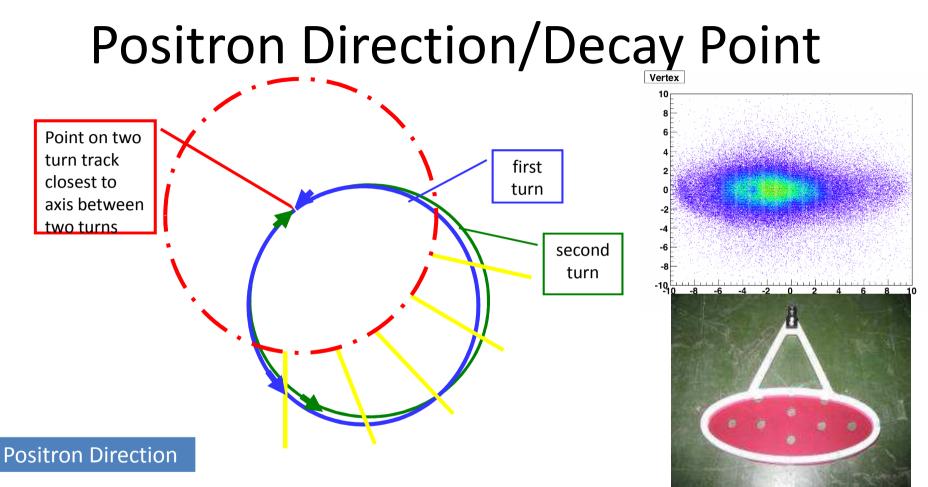
- 1.3 x 10⁻¹¹

• The 90% CL upper limit obtained for the sideband data:

 $-(0.9 - 2.1) \times 10^{-11}$


Likelihood Analysis

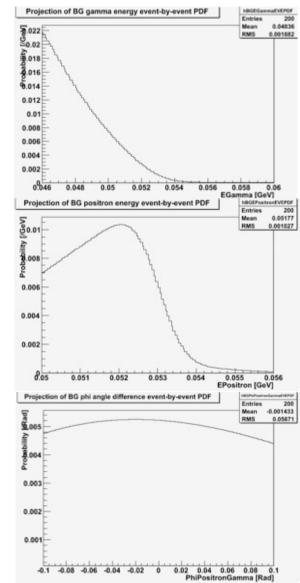
- The number of $\mu \rightarrow e\gamma$ events is determined by means of a maximum likelihood fit in
 - $-46 \text{ MeV} < \text{E}_{\gamma} < 60 \text{ MeV}$
 - $-50 \text{ MeV} < \text{E}_{e} < 56 \text{ MeV}$
 - $-|t_{e\gamma}| < 1$ nsec
 - $|\theta_{e\gamma}| < 100$ mrad, $|\phi_{e\gamma}| < 100$ mrad


$$\mathcal{L}(N_{\rm sig}, N_{\rm RMD}, N_{\rm BG}) = \frac{N^{N_{\rm obs}} \exp^{-N}}{N_{\rm obs}!} \prod_{i=1}^{N_{\rm obs}} \left[\frac{N_{\rm sig}}{N} S + \frac{N_{\rm RMD}}{N} R + \frac{N_{\rm BG}}{N} B \right]$$

Evaluation of Probability Density Fi

- Signal PDF
 - E γ : exponential gaussian with σ map
 - CEX data
 - Energy dependence w/o pileup tail
 - Ee: core + two tail components
 - Michel Edge
 - $-~\Delta \theta :$ combined resolution between γ and $e^{\scriptscriptstyle +}$
 - $(\sigma_u \oplus \sigma_w) \oplus \sigma_{\theta e} \oplus (\sigma_x, \sigma_y)$
 - $\sigma_{\theta e}$ is evaluated to be 20mrad
 - $\Delta \phi$: combined resolution between γ and e⁺
 - $\sigma_v \oplus \sigma_{\phi e} \oplus (\sigma_x, \sigma_y)$
 - $\sigma_{\phi e}$ is evaluated to be 10.6mrad
 - t_{eγ}: gaussian
 - RD and energy dependence

9/Sep/2009

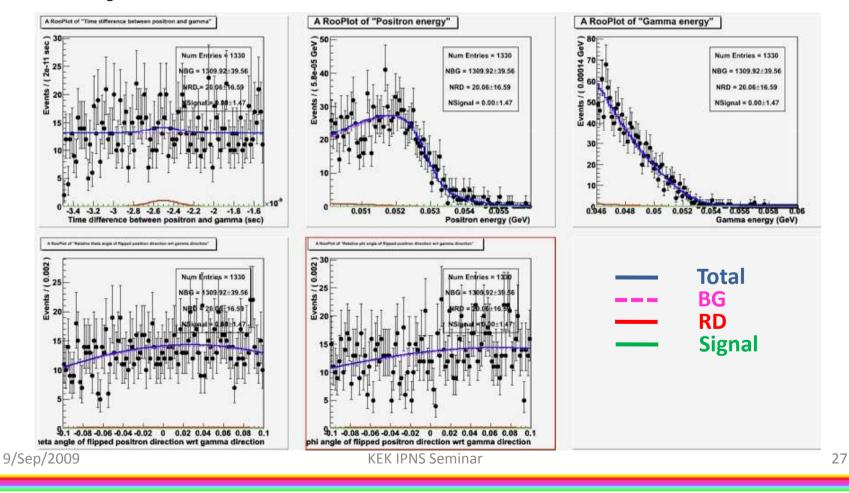

- Using two turn track
- Get point between two turns closest to the spectrometer axis, R₀
- Fit each turn individually, calculate state vector at φ of R₀
- Calculate $\delta \phi_p$, $\delta \theta_p$ between turn 1 & turn 2, interpret this as $\sqrt{2}$ times the resolution
 - $-\delta\phi_p=10mrad, \delta\theta_p=18mrad$

9/Sep/2009

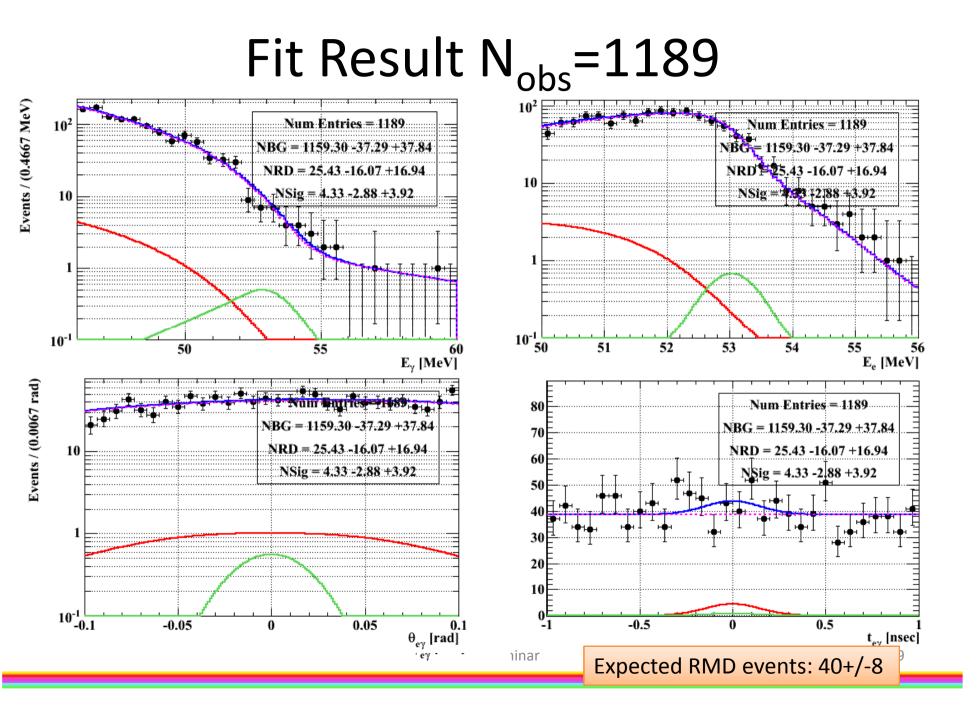
Evaluation of PDFs cont'd

• BG

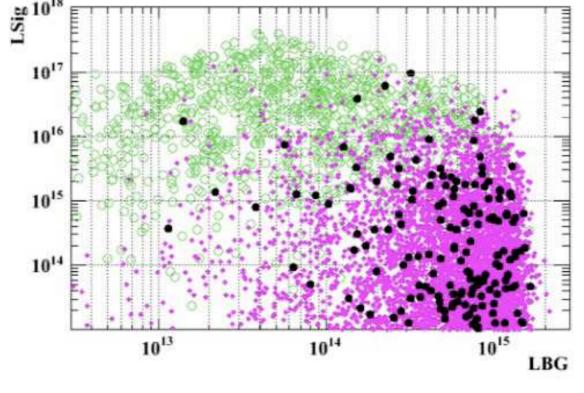
- E γ : Model of BG spectrum
 - fitted to measured spectrum
 - Pileup included
- Ee: core + two tail components
 - Michel spectrum
- $\Delta \theta, \Delta \phi$:
 - Measured at side-bands
- $t_{e\gamma}$: Flat distribution
- RD
 - Theoretical spectrum convoluted with signal response functions except $t_{e\gamma}$
 - t_{eγ}
 - Same PDF as for signal

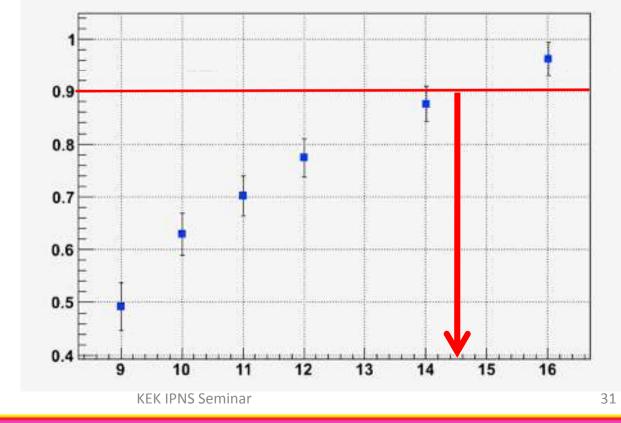


9/Sep/2009


Test of Likelihood Analysis Before Opening the Box

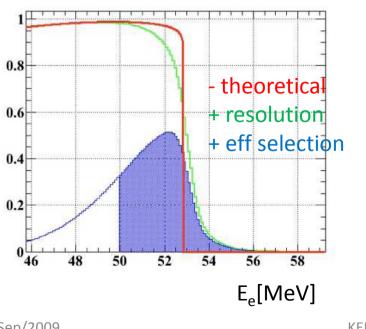
 $- N_{signal} = 0 + / -1.47$




Likelihood Variable Distribution

- Data (1189 events)
- BG (toy MC 40000 events)
- Signal (toy MC 1000 events)

C.L. Calculation


- Feldman-Cousins approach
- N_{sig} < 14.7 @ 90% CL
 - Systematic errors included: gamma and positron E scale

Normalization

$$\mathrm{BR}(\mu^+ \to \mathrm{e}^+ \gamma) = \frac{N_{\mathrm{sig}}}{N_{e\nu\bar{\nu}}} \times \frac{f_{e\nu\bar{\nu}}^E}{P} \times \frac{\epsilon_{e\nu\bar{\nu}}^{trig}}{\epsilon_{e\gamma}^{trig}} \times \frac{A_{e\nu\bar{\nu}}^{TC}}{A_{e\gamma}^{TC}} \times \frac{\epsilon_{e\nu\bar{\nu}}^{DC}}{\epsilon_{e\gamma}^{DC}} \times \frac{1}{A_{e\gamma}^{LXe}} \times \frac{1}{\epsilon_{e\gamma}^{LXe}}$$

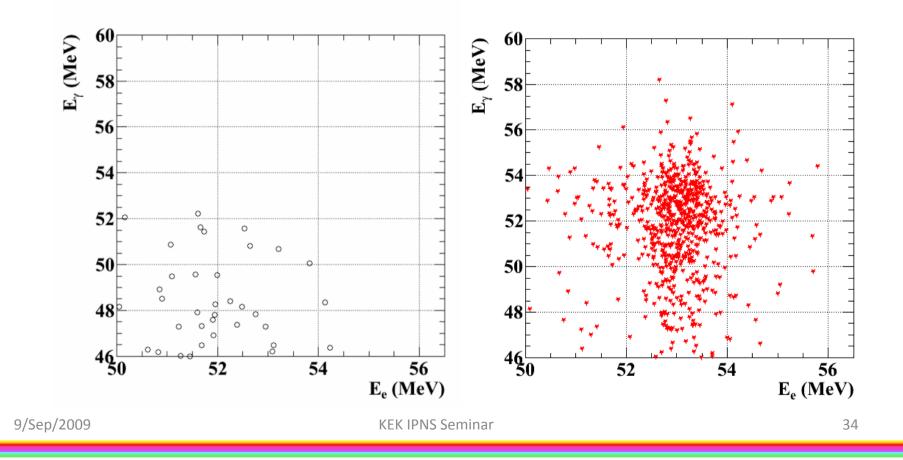
- To minimize DC instability effect on normalization
- Use ratios to cancel ambiguity in the 1st-order approximation lacksquare
- $50 \text{ MeV} < E_{p} < 56 \text{ MeV}$ ${\color{black}\bullet}$

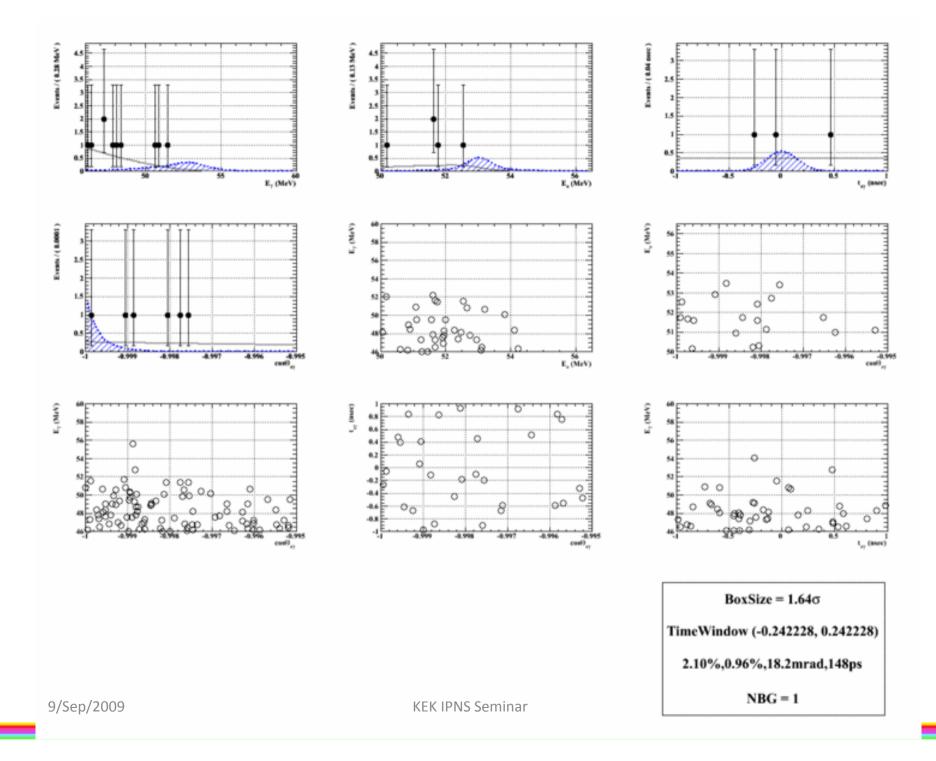
= 0.101 \pm 0.006, fraction of Michel positron $f^E_{e\nu\bar{\nu}}$ spectrum above 50MeV

 $\frac{\epsilon_{e\nu\bar\nu}^{trig}}{\epsilon_{e\gamma}^{trig}}$ = 0.66 \pm 0.03, Ratio of signal-to-Michel trigger efficiencies

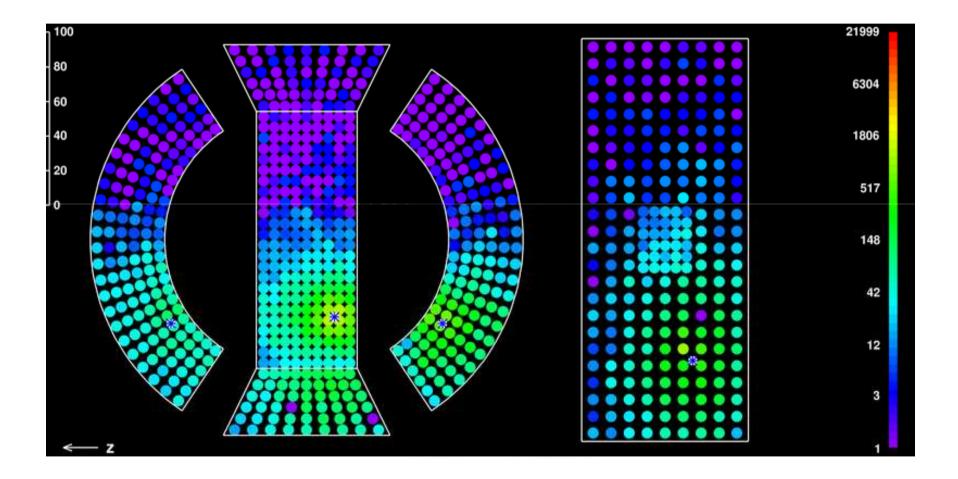
 $\frac{A_{e\nu\bar{\nu}}^{TC}}{A_{e\gamma}^{TC}} \frac{\epsilon_{e\nu\bar{\nu}}^{DC}}{\epsilon_{e\nu\bar{\nu}}^{DC}}$ = 1.11 \pm 0.02, Ratio of signal-to-Michel DCH-TC matching efficiency

= 1.02 ± 0.005 , Ratio of signal-to-Michel DCH reconstruction efficiency and acceptance

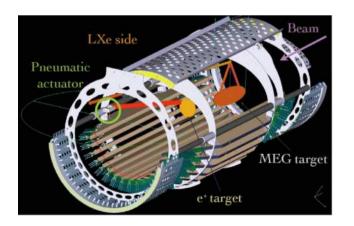

9/Sep/2009


• Br ($\mu \rightarrow e \gamma$) < 3.0x10⁻¹¹ at 90% C.L.

- including systematic uncertainty on the normalization
- Probability to obtain this limit given the average expected limit of 1.3x10⁻¹¹ is 5%


Event Distribution in 90% Box

• Event selection with 1.64σ on all variables

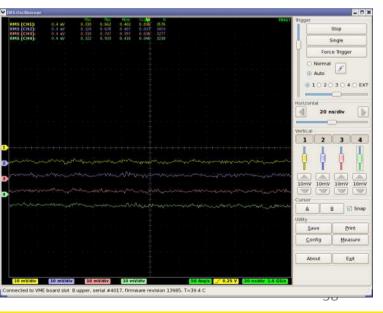


Observed Event

Detector Preparation toward 2009 Run

- DC
 - Overhaul of all modules
 - Long term test in helium atmosphere
 - Installation in the magnet on 1/Sep completed
- TC
 - New calibration source on each bar
 - Fiber counter




9/Sep/2009

Detector Preparation cont'd

KEK IPNS Seminar

- Lxe
 - Installation of a new getter pump
 - Installation of a new Liquid Pump/Purifier
 - 180 L/hour circulation
 - No electric noise
 - Higher Light yield is confirmed (x1.4)
 - Better time resolution is expected
- DAQ
 - New waveform digitizer, DRS4
 - Better linearity and stability, lower noise
 - Better time/energy resolutions

Summary

- Br ($\mu \rightarrow e \gamma$) < 3.0x10⁻¹¹ at 90% C.L.
 - Suffered from larger background than expected
 - Tails in positron measurements & gamma pile-up
- More data in 2009 and also in 2010
 - Detector overhaul and modification
 - 8.6 weeks in 2009
 - longer in 2010

. . .