# Results from the first year of running of T2K

T. Nakadaira (IPNS, KEK / J-PARC) for T2K collaboration



**KEK Physics Seminar** 

#### **T2K Collaboration**



#### 12 Countries

Canada, France, Germany, Italy, Japan, Korea, Poland, Russia, Spain, Switzerland, UK, USA

59 Institutions, ~500 members. 2011/4/21

**KEK Physics Seminar** 

### Contents

- Introduction: v physics which T2K explores.
- Principal of T2K experiment
- Experimental setup of T2K
  - Generating v beam  $\rightarrow$  Observing at SK.
- Data taking status
- Oscillation analysis for 1<sup>st</sup> data-set
  - Analysis method
  - Systematic uncertainties
  - T2K oscillated v<sub>e</sub> appearance candidate?
- Next milestone

#### Introduction

#### T2K (Tokai to Kamioka) LBL $\nu$ experiment



• Searches for  $v_{\mu} \rightarrow v_{e}$  oscillation ( $v_{e}$  appearance)

• Precise measurement of  $v_{\mu} \rightarrow v_{\mu} (v_{\mu} \text{ disappearance})$ KEK Physics Seminar 2011/4/21

### Main Physics Goal



**KEK Physics Seminar** 

### Main Physics Goal

•  $P(v_{\mu} \rightarrow v_{e})$  includes the CP violation term

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\Delta m_{31}^{2} L/4E\right)$$

$$= 4J_{r} \sin \delta \sin \left(\Delta m_{21}^{2} L/2E\right) \sin^{2} \left(\Delta m_{31}^{2} L/4E\right) + \dots$$

$$- \text{ for } \nu$$

$$+ \text{ for } \overline{\nu}$$

$$J_{r} \equiv \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \cos^{2} \theta_{13} \sin \theta_{13}$$

• If  $P(v_{\mu} \rightarrow v_{e})$  is measureable size, it can be a probe to search the CP violation in lepton sector in future experiments.

#### Experimental setup of T2K

### Concept of T2K



2 detectors: Near Detector and Far detector

Generate the high intensity  $v_{\mu}$  beam

Measure the neutrino flux by Near Detector :  $N_v^{\text{ND}} = \times \Phi^{\text{ND}}(v_\mu) \times \sigma(v \text{ interaction}) \times \varepsilon^{\text{ND}}$ 

Extrapolate the flux to Far detector position:  $\Phi^{SK}(v_{\mu}) = R(SK/ND) \times \Phi^{ND}(v_{\mu})$ 

Calculate the expected the number of event as a function of oscillation probability:

 $Nve^{SK \text{ (expected)}} = P(v_{\mu} \rightarrow v_{e}) \times \Phi^{SK}(v_{\mu}) \times \sigma(v \text{ interaction}) \times \varepsilon^{ND}$ 

Determine oscillation probability by comparing the expected # of events and # of observed events.

KEK Physics Seminar

2011/4/21

measurement





**KEK Physics Seminar** 

#### Off axis beam





#### J-PARC v beam line : Primary-line



**KEK Physics Seminar** 

12

### J-PARC v beam line: secondary line



#### **Near Detectors**



**KEK Physics Seminar** 









- Good e / μ separation
- Energy reconstruction:  $\Delta E/E \sim 10\%$  ( $\leftarrow 2$ -body kinematics)





#### **GPS: Event synchronization**

#### Baseline measurement (Survey)

- $L = 295,335 \pm 0.7 \text{ m}$ 
  - $\rightarrow$  ToF of v = 985.132 ± 0.002 µsec (= vTOF)
- Expected event timing @ SK (=T<sub>SK</sub>)
   = Spill timing @ Tokai (=T<sub>beam</sub>) + vTOF.

#### DAQ synchronization

- SK signals in ±500µs timing window are recorded as "T2K beam events".
- Stability of GPS is checked by comparing 2 GPS hardware and atomic clock.
   → Require |GPS1-GPS2| < 200nsec</li>





### Event timing @ Far detector

- Candidate of Fully contained events is localized in ±100ns from the corresponding bunch timing.
  - Fully contained events ... Neutrino interact with water in the inner detector and all produced particles stop in the inner detector. (No Outer detector signal)



#### 2010 Jan~Jun(6 bunch beam)

#### Running status of T2K

#### Accumulated # of protons so far



T2K physics run: 2010, Jan~
 → Now: ~9.3×10<sup>13</sup>[p/pulse], 3.04[s] cycle
 → Beam power = 145kW

Integrated POT reaches  $1.45 \times 10^{20}$ .

- Physics results shown in this report
  - Analysis of the data taken from Jan. 2010 to Jun. 2010.

**KEK Physics Seminar** 

### Quality of neutrino beam



KEK Physics Seminar

#### Oscillation analysis for 1<sup>st</sup> data set

#### Outline of analysis $v_e$ appearance search

- 1. Calculate expected # of event as a function of oscillation parameters:  $\theta_{13}$ ,  $\Delta m_{13}^2$ 
  - $N_{\rm SK}^{\rm MC} = \int dE \, \Phi_{\rm SK}(E) \times \sigma_{\rm SK}(E) \times \varepsilon_{\rm SK}(E) \times P(\nu_{\mu} \rightarrow \nu_{e}; E; \theta_{13}, \Delta m_{13}^{2})$ 
    - $N_{\rm bkg}^{\rm MC}$  also should be estimated.
  - $\blacksquare \text{ND280} \rightarrow R_{DATA/MC} \equiv N_{\text{ND}}^{\text{DATA}}/N_{\text{ND}}^{\text{MC}}$
  - $\rightarrow N_{\rm SK}^{\rm expected} = R_{DATA/MC} \times (N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC})$
- 2. Select events  $v_e$  candidate from data.
  - Select the "good beam spill"
  - T2K event selection
    - Select Fully Contained events in Fiducial Volume
    - Ring counting  $\rightarrow$  Select CC-QE candidate
    - PID : separate  $v_e$  from  $v_\mu$  events
    - Background rejection cut  $\rightarrow N_{\rm SK}^{\rm obs}$
- 3. Estimate the oscillation parameter from  $N_{\rm SK}^{\rm expected}$  and  $N_{\rm SK}^{\rm obs}$ .

#### 1. Estimation of Expected # of event

### Background events for T2K



→ Reducing high energy v flux is important to keep S/N ratio enough high. KEK Physics Seminar
2011/4/21

### T2K: Flux prediction (Beam MC)



 (1) Hadron production by p+C interaction and secondary interaction in target is simulated using FULKA framework.

\* Pion production cross section is corrected using NA61 data  $\rightarrow$  next page.

\* Measured proton parameters is assumed.

(2) Propagation of produces hadrons ( $\pi$ , K, etc) including Horn focusing is simulated using GEANT3 framework.

\* Secondary interaction cross section is corrected using existing data by other experiments.



(3) v producing decay is simulated. Geometrical acceptance is calculated.  $\rightarrow$  v flux obtained at ND & SK, respectively



# SHINE / NA61

- SHINE experiment (CERN NA61)
  - Data was taken in 2007 and 2009.
    - p (30GeV) + C (target thin:2cm / thick: 90cm)
  - π<sup>±</sup> production model in T2K-MC is corrected by NA61 preliminary results which was released in Dec. 2009.
  - Systematic uncertainty
    - 10% : Inelastic p + C cross section
    - 20%: Pion multiplicity

#### MC(T2K): $\pi^+$ produce $\nu_\mu$ @ SK

SHINE

**NA61** 

#### NA61 2007 data: π<sup>+</sup>





**KEK Physics Seminar** 

#### Uncertainties of v interaction



**KEK Physics Seminar** 

#### Effect of systematic uncertainty of $\boldsymbol{\nu}$ flux

 $N_{\rm SK}^{\rm expected} = \left(N_{\rm ND}^{\rm DATA} / N_{\rm ND}^{\rm MC}\right) \times \left(N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC}\right)$ 

@  $\Delta m_{23}^2$ =2.4x10<sup>-3</sup> eV<sup>2</sup>, sin<sup>2</sup>2 $\theta_{23}$  = 1.0, $\delta_{CP}$ =0 sin<sup>2</sup> $\theta_{13}$ =0.1 for  $v_e$  signal

| Source               | (ve Sig.)/ND | (ve Bkg.)/ND | (ve Tot.)/ND |
|----------------------|--------------|--------------|--------------|
| Pion Multiplicity    | 10.7%        | 5.6%         | 9.1%         |
| Kaon Multiplicity    | 9.6%         | 7.2%         | 7.9%         |
| Prod. Cross Sections | 4.0%         | 0.7%         | 2.8%         |
| Proton Beam          | 1.1%         | 2.1%         | 1.4%         |
| v Beam Direction     | 0.6%         | 0.6%         | 0.6%         |
| Target Alignment     | 0.3%         | 0.2%         | 0.3%         |
| Horn Alignment       | 0.2%         | 0.1%         | 0.2%         |
| Horn Current         | 0.8%         | 0.2%         | 0.6%         |
| Total                | 15.0%        | 9.4%         | 12.5%        |
| KEK Physics Seminar  | 202          | 11/4/21      |              |

#### Systematic error of SK efficiency

$$N_{\rm SK}^{\rm expected} = \left(N_{\rm ND}^{\rm DATA} / N_{\rm ND}^{\rm MC}\right) \times \left(N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC}\right)$$

| Parameter       | Error source           | Signal  | Background |
|-----------------|------------------------|---------|------------|
| $f^{SKnorm}$    | Normalization          | 1.4 [%] | 1.4 [%]    |
| $f^{Energy}$    | Energy scale           | 0.3     | 0.5        |
| $f^{N_{ring}}$  | Ring counting          | 3.9     | 8.4        |
| $f^{PID\mu}$    | Muon PID               | 0.0     | 1.0        |
| $f^{PIDe}$      | Electron PID           | 3.8     | 8.1        |
| $f^{POLfit}$    | POLfit mass cut        | 5.1     | 8.7        |
| $f^{N_{dcy}}$   | Decay electron finding | 0.1     | 0.3        |
| $f^{\pi^0 eff}$ | $\pi^0$ rejection      | 0.0     | 5.9        |

 $\begin{array}{l} \textcircled{0}{2} \Delta m_{23}{}^2 &= 2.4 \times 10^{-3} \ eV^2 \\ \sin^2 2\theta_{23} &= 1.0 \\ \delta_{CP} = 0 \\ \sin^2 \theta_{13} &= 0.1 \ \text{for} \ v_e \ \text{signal} \end{array}$ 

Total uncertainty:  $\pm 5.2\%$  for signal  $\pm 12.3\%$  for back ground

# *R<sub>DATA/MC</sub>*:ND280: OFF axis detector



Event number: 24083 (Perfilter: 42) (Run number: 4200 (Rpl): 0 (Bublium number: 6 (Time: Bur 2010-05-21 32 33-28 JDT (Pagger Beam Rpl)



Event display of CC-candidate

#### TPC PID for particles from neutrino interactions

MC muons



2011/4/21

KEK Physics Seminar

#### ND280: Normalization DATA/MC



• # of CC inclusive  $\mu$  events  $R_{DATA/MC} = 1.061 \pm 0.028 \text{ (stat)} ^{+0.044}_{-0.038} \text{ (det. syst)} \pm 0.039 \text{ (phys. model)}$ 

 $N_{\rm SK}^{\rm expected} = \left(N_{\rm ND}^{\rm DATA} / N_{\rm ND}^{\rm MC}\right) \times \left(N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC}\right)$ 

Total uncertainty for  $N_{\rm SK}/N_{\rm ND}$ :  $\pm 2.7\% \oplus \begin{array}{c} +5.6 \\ -5.2 \end{array}$ % for background  $\pm 2.7\% \oplus \begin{array}{c} +5.6 \\ -5.2 \end{array}$ % for (signal + bkg)  $\begin{array}{c} \otimes \Delta m_{23}^2 = 2.4 \times 10^{-3} \, {\rm eV}^2 \\ \sin^2 2\theta_{23} = 1.0 \\ \delta_{\rm CP} = 0 \\ \sin^2 \theta_{13} = 0.1 \, {\rm for } v_{\rm e} \, {\rm signal} \end{array}$ 

**KEK Physics Seminar** 

#### Expected # of events at SK



#### 2.Select events $v_e$ candidate from data.

#### Analysis of 2010 Jan ~ Jun data



#### T2K event selection



#### T2K event selection

#### "good beam spill" accepted by SK = 3.23x10<sup>19</sup> POT

|                                                  |      | MC             |                                                                                                                       |
|--------------------------------------------------|------|----------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                  | Data | No oscillation | Oscillation<br>$\Delta m^2 = 2.4 \times 10^{-3} (eV^2)$<br>$\sin^2 2\theta_{23} = 1.0$<br>$\sin^2 2\theta_{13} = 0.0$ |
| <br>Fully-Contained                              | 33   | 54.5           | 24.6                                                                                                                  |
| Fiducial Volume, E <sub>vis</sub> ><br>30MeV     | 23   | 36.8           | 16.7                                                                                                                  |
| Single-ring μ-like<br>(P <sub>μ</sub> >200MeV/c) | 8    | 24.5 ±3.9      | 7.1 ±1.3                                                                                                              |
| Single-ring e-like<br>(P <sub>e</sub> >100MeV/c) | 2    | $1.5 \pm 0.7$  | $1.3 \pm 0.6$                                                                                                         |
| Multi-ring                                       | 13   | 10.2           | 8.0                                                                                                                   |

#### Background rejection for $v_e$ appearance

- # of decay electron (µ→e+v<sub>e</sub>) =0
   ■Reject vµ contamination : 1 event rejected.
- Reconstructed invariant mass assuming 2γ rings exist <105MeV</li>

Reject  $\pi^0$ 

Reconstructed v energy < 1250 MeV</li>
 Oscillation maximum at ~600 MeV





#### 3. Estimate the oscillation parameter.

### Estimation of oscillation parameter

Upper bound of  $\theta_{13}$  are evaluated by 2 independent method.

A: Feldman-Cousins B: Classical one-sided limit

Systematic uncertainties are took into account for both analysis.

90% CL upper limit at  $\Delta m_{23}^2$ =2.4×10<sup>-3</sup>eV<sup>2</sup>,  $\delta_{CP}$  = 0

| Hierarchy  |                        | Upper Limit | Sensitivity |
|------------|------------------------|-------------|-------------|
| Normal (2  | $\Delta m_{23}^2 > 0)$ | 0.50        | 0.35        |
| Inverted ( | $\Delta m_{23}^2 < 0)$ | 0.59        | 0.42        |

|   | Hierarchy                        | Upper Limit | Sensitivity |
|---|----------------------------------|-------------|-------------|
| R | Normal $(\Delta m_{23}^2 > 0)$   | 0.44        | 0.32        |
|   | Inverted $(\Delta m_{23}^2 < 0)$ | 0.53        | 0.39        |



**KEK Physics Seminar** 

#### Prospects in 2011

# Analyze all the available data: 1.45×10<sup>20</sup> POT

- The statistics is ~1/2 of the target by 2011 june which is planned in last summer: 3×10<sup>20</sup> POT=150kW ×10<sup>7</sup>s
- $\rightarrow$  Data size become about  $\times$ 4.
- Possible analysis improvements
  - New NA61 results is available.
    - $\rightarrow$  Systematic uncertainty from hadron production can be reduced.
  - Spectrum measurement in ND



### $v_{\mu}$ disappearance analysis



### Summary

- T2K searches for  $v_{\mu} \rightarrow v_{e}$  oscillation and determines v oscillation parameter:  $\theta_{13}$ .
- T2K start physics run from Jan. 2010. Integrated POT so far is 1.45×10<sup>20</sup>.
- • $v_{\mu} \rightarrow v_{e}$  oscillation analysis using 3.23×10<sup>19</sup> (2010 Jan. ~ Jun) is reported.
  - # of expected background is  $0.30 \pm 0.07$ .
  - # of observed events is 1.
- Observed  $v_{\mu}$  events are consistent with the neutrino oscillation measured by SK, K2K and MINOS.