Recent results from ATLAS

Kunihiro Nagano
(KEK/IPNS)

KEK Physics Seminar
17 June 2011
LHC

● Proton-proton collider with c.m.s. energy \rightarrow 14 TeV
 -- c.m.s. energy of elementary parton-parton collision
 \[\sqrt{s_{\text{eff}}} (q - q) \approx O(1) \text{ TeV} \]

➡ The real explorer for “TeV scale” physics
 -- Origin of EW symmetry breaking; SM Higgs
 -- New physics (necessary to stabilize EW scale);
 SUSY, Extra Dimension, etc…
 * which can bring good dark matter candidates

ATLAS

● General purpose detector, covering $\sim 4\pi$ solid angle
 -- Detection capability to Higgs with mass covered seamlessly up to ~ 1 TeV
● Inner detector: combination of silicon strip / pixel detector and straw tube tracker (2 T by solenoid).
● Calorimeter: LAr for EM and had (endcap), scintillator tiles for had (barrel)
● Muon spectrometer: stand-alone measurement by using Toroid magnet
LHC and ATLAS Operations in 2009, 2010

- Year 2009: $\sqrt{s}=0.9, 2.36$ TeV : $\sim 12\, \mu\text{b}^{-1}$
- Year 2010: $\sqrt{s}=7$ TeV
 $\sim 45\, \text{pb}^{-1}$ collected by ATLAS

- $\sim 92\%$ data-taking efficiency
- ~ 97-100% detector elements were in operation

► Today’s talk:
-- Full data set ($\sim 40\, \text{pb}^{-1}$) allows ATLAS to produce a large variety of physics results
LHC and ATLAS Operations in 2011

- Delivered luminosity: 1.0 fb\(^{-1}\)
- ATLAS ready recorded: 0.95 fb\(^{-1}\)
- Data taking efficiency > 95%

Now LHC is not only highest-energy, but also highest-luminosity hadron collider! (At \(10^{33}\) cm\(^{-2}\)s\(^{-1}\), 1 SM Higgs with 150 GeV mass is produced every 83 seconds)

- Max inst. luminosity: \(1.26 \times 10^{33}\) cm\(^{-2}\) s\(^{-1}\)

Today’s talk also includes:
-- Some hot results using up to \(~200\) pb\(^{-1}\) (New at PLHC2011, 6-11/June)
Challenging days for Trigger

- Event trigger rate has to be reduced from 40 MHz down to ~200 Hz → 1/500000 rejection necessary
- Under high pile-up (average 6 interactions (max 8-12) per crossing in 2011) environment
- Pipelined, dead-time free, 3-levels trigger
 -- Typical deadtime 2-3% in 2011 runs
 -- Dynamic changes to trigger settings during a run w/o stop/start
 -- Stopless removal/recovery of detector r/o elements
- Need to cover the wide and rich physics potentials comprehensively
 -- Various kinds of trigger logic (“chain”)
 e.g. inclusive, exclusive, combination…
 -- Typically, few hundred trigger logics are deployed at any time.

11 vertices with 1 Z → μμ

The trigger system has been successfully operating in a wide range of conditions: 10^{27} to over 10^{33} cm^{-2}s^{-1} (6 orders!)
Standard Model Physics

- Hard QCD
- Electro-weak
- Top
Jets @ LHC

- QCD validation at unexplored kinematic phase space
 -- We are seeing $p_T \geq 1$ TeV and di-jets with $M_{jj} \geq 3$ TeV!
Inclusive jet cross sections

- Anti-k_T, $R=0.6$ (Measurement with $R=0.4$ was also made):
 - $p_T(jet)>20$ GeV to 1.5 TeV
 - $|y_{jet}|$ up to 4.4

- Data are consistent with NLO pQCD prediction with non-pert. corr
- Some differences observed at high p_T and large $|y|$
EW bosons @ LHC

- SM “candles” provide:
 -- QCD validation, with sensitivity to quark’s parton density functions (PDFs)
 -- Important in-situ calibration method

- Z: Event selection
 -- p_T (lepton) > 20 GeV
 -- Oppositely charged pair

- Di-muon invariant mass
 -- $M_{\mu\mu}$ spanned to ~3 orders, several familiar resonances

- W: Event selection
 -- Isolated p_T (lepton) > 20 GeV
 -- E_T^{miss} > 25 GeV
 -- $m_T > 40$ GeV

\[
\sigma = \sum_{i,j} \int dx_i dx_j [f_i(x_i) f_j(x_j) \Delta \sigma(q_i q_j \rightarrow X; x_i, x_j)]
\]

\[
\begin{align*}
\overline{u}d & \rightarrow W^+ \\
\overline{d}u & \rightarrow W^-
\end{align*}
\]
W/Z-production cross section

- Ratio of W to Z cross sections:
 $\sigma(W)/\sigma(Z/\gamma^*)$

- In the cross section ratio, both exp/theory uncertainties partially cancel
 -- Exp: luminosity, theory: PDF

- Measured cross sections are in agreement with theoretical predictions based on NNLO QCD

- Started to constraint PDFs!
EW bosons + Jets

- **W+nJets cross section**
 - A powerful test of QCD
 - Often becomes irreducible/main backgrounds for top, Higgs, SUSY, new physics searches, etc.
 - Mandatory to understand with real data

- **Z+nJets cross section**
 - Measured cross sections are in agreement both with Multi-parton ME + PS MC models (ALPGEN, SHERPA) and also NLO calculations (MCFM, BLACKHAT-SHEPA)

- See ATLAS-CONF-2011-042
Top

- Rich physics programs

- Experimentally:
 Measurement of top quarks requires understanding of full detector performance
 -- Lepton identification
 -- E_T^{miss}
 -- multi-jets
 -- b-tagging
 and also, understanding of QCD backgrounds (W/Z+nJets etc.)
σ(ttbar) [1-lepton mode]

- **Br=33%** : “Golden” channel
- **Event Selection**
 - $p_T > 20$ GeV, $|\eta|<2.5$
 - $E_T^{\text{miss}} > 20$ (35) GeV (for e)
 - $m_T(W) > 60-E_T^{\text{miss}}$ (25) GeV (for e)
 - ≥ 1 jets of $p_T^{\text{jet}} > 25$ GeV, $|\eta^{\text{jet}}| < 2.5$

- **W/ b-tagging**
 - Impact parameter based and secondary vertex based
 - Multivariate discriminant
 - W_{JP}, $|\eta|$, aplanarity, $H_{T,3p}$

- **W/o b-tagging**
 - Multivariable discriminant
 - $|\eta|$, $|Q|$, aplanarity

\[\sigma = 171 \pm 17^{+20}_{-17} (\text{stat}) + 6 (\text{lumi}) \, \text{pb}\]
\[\sigma = 186 \pm 10^{+21}_{-19} (\text{stat}) + 6^{+13}_{-13} (\text{lumi}) \, \text{pb}\]
\[\sigma(\text{ttbar}) \text{ [2-lepton mode]} \]

- Br=6\% : “High purity” channel \(\rightarrow\) “Counting” taking advantage of high purity
- Event Selection
 - 2 opposite sign leptons with \(p_T > 20 \text{ GeV, } |\eta| < 2.5\)
 - \(E_T^{\text{miss}} > 40 \text{ GeV}\)
 - \(\geq 2 \text{ jets of } p_T^{\text{jet}} > 20 \text{ GeV, } |\eta^{\text{jet}}| < 2.5\)
 - \(H_T = \Sigma p_T^{l} + \Sigma p_T^{\text{jet}} > 130 \text{ GeV}\)
 - \(|M_{ll} - M_Z| > 10 \text{ GeV}\)

\[\sigma = 173 \pm 22(\text{stat})^{+18}_{-16}(\text{syst})^{+8}_{-7}(\text{lumi}) \text{ pb} \quad \sigma = 176 \pm 22(\text{stat}) \pm 22(\text{syst}) \pm 6(\text{lumi}) \text{ pb} \]
Summary of σ(ttbar)

$\sigma = 180 \pm 9 \text{(stat)} \pm 15 \text{(syst)} \pm 6 \text{(lumi)} \text{pb}$

- 10% precision already with $L = \sim 35 \text{ pb}^{-1}$
Top mass

- Main result: template fit to R_{32}

$$R_{32} = \frac{m_{\text{top}}^{\text{reco}}}{m_{W}^{\text{reco}}} = \frac{m_{jjb}}{m_{jj}}$$

- m_{top}: three jets with highest vector sum p_T
- m_{W}: non b-tagged jets/smaller dR in top rest frame ($60 < m_{W} < 100$ GeV)

$$m_{\text{top}} = 169.3 \pm 4.0(\text{stat}) \pm 4.9(\text{syst})\text{GeV}$$

- Dominant syst: ISR/FSR, JES

- Template fit to m_{top} (by kine. fit)

- Dominant syst: JES (larger),

\Rightarrow Simultaneous fit to JES and m_{top}

- 3.7 % precision already with $L = 35$ pb$^{-1}$ (expects $\delta m_{\text{top}} \sim 1$ GeV with 1 fb$^{-1}$)
Di-boson

- Sensitivity to Triple Gauge Boson Coupling (TGC)
- Irreducible backgrounds to Higgs, Susy searches, e.g. $H \rightarrow WW, ZZ$
2011 data (205 pb⁻¹)

Di-boson production [WZ, WW]

- 2 opposite sign leptons with $p_T > 20$ GeV
- $|M_{ll} - M_Z| < 10$ GeV
- $E_{\text{miss}, T} > 40$ GeV
- 3rd lepton $p_T > 20$ GeV

$\sigma(WZ)$

- 2 opposite sign leptons with $p_T > 20$ GeV
- 0 jet of $p_T > 20$ GeV
- $|M_{ll} - M_Z| > 10$ GeV
- $E_{\text{miss}, T, \text{rel}} > 40$ GeV

$\sigma(WW)$

- 2 opposite sign leptons with $p_T > 20$ GeV
- 3rd lepton $p_T > 20$ GeV
- $|M_{ll} - M_Z| < 10$ GeV
- $E_{\text{miss}, T} > 40$ GeV

\[\sigma = 18^{+7}_{-6}(\text{stat}) \pm 3(\text{syst}) \pm 1(\text{lumi}) \text{pb} \]

\[\sigma = 41^{+20}_{-16}(\text{stat}) \pm 5(\text{syst}) \pm 1(\text{lumi}) \text{pb} \]

- Started to observe di-bosons
 (For $Z\gamma$, $W\gamma$: see arXiv:1106.1592)
Summary of EW, top cross sections

- Observation of t-channel single top production (ATLAS-CONF-2011-088)
Higgs searches: the last missing in SM
2011 data
(209 pb⁻¹)

$\text{H} \rightarrow \gamma\gamma$

- Despite low BR, significant due to excellent γ resolution
- Event Selection: 2 isolated γ with $p_T \gamma > 40$ (25) GeV
- Backgrounds
 -- Loosened γ-id.
 to normalize bkgd from jets
 -- “double-sideband”

- New vertex reconstruction by using photon direction at LAr
 -- Cope with 2011 high pileup condition

- Limit down on $4.2 \times \text{SM}$
- World best limit for $\text{H} \rightarrow \gamma\gamma$
H\rightarrowWW [\rightarrowlvlv]

- Unlike most other channels, full mass reconstruction not possible
- Event Selection: exploit differences in angular distributions (due to spin correl.) + dedicated selection for H+0,1,2 jets
 - 2 opposite charge leptons with $p_T > 20$ (15) GeV
 - $E_{T\text{miss}} > 40$ GeV, $|M_{ll} - M_Z| > 10$ GeV
 - $\Delta\phi(ll) < 1.3$ (1.8) for $m_H < 170$ (> 170) GeV
- Backgrounds: estimated from control sample
 - W+jets: loosing lepton id
 - ttbar: altered jet cuts, b-tag
 - Di-boson: altered M_{ll} and $\Delta\phi(ll)$

- Limit down on $1.2 \times SM$
- Approaching Tevatron excluded region
One of the best channels for intermediate and high masses

Possible to estimate $P_{Z\nu}$ and M_{WW} by solving $M_W = M_{\nu^\nu}$

Event Selection:

- 1 leptons with $p_T^{l} > 30 \text{ GeV}$
- veto 2$^\text{nd}$ with $p_T^{l} > 20 \text{ GeV}$
- $E_T^{\text{miss}} > 40 \text{ GeV}$
- 2 or 3 jets with $p_T^{\text{jet}} > 30 \text{ GeV}$, $|\eta^{\text{jet}}| < 4.5$
- Veto bjet (against ttbar)

Background normalization from fit
- Cross-checked using an anti-isolated lepton sample

Excluded $11.2 \times \text{ SM}$ for $m_H = 400 \text{ GeV}$
$H \rightarrow ZZ \rightarrow llqq, llvv$

- **$llvv$**
 - $E_{\text{miss}} > 66$ GeV
 - Veto bjet
 - $76 < M_{ll} < 106$ GeV

 Final discriminant
 \[m_T \]

- **$llqq$**
 - $E_{\text{miss}} < 50$ GeV
 - $70 < |M_{jj}| < 105$ GeV
 - $76 < M_{ll} < 106$ GeV

 Final discriminant
 \[m_{lljj} \]

ATLAS Preliminary

ATLAS Preliminary

- Observed (PCL)
- Expected (PCL)
- $H \rightarrow ZZ \rightarrow llvv$
- $\int L dt=35 \text{ pb}^{-1}, \sqrt{s}=7$ TeV

- 95% C.L. limit on $\sigma \rho_{SM}^2$

- Most sensitive channel in 200-400 GeV
- Excluded $10.5 \times \text{SM}$ for $m_H=300$ GeV

ATLAS Preliminary

- Observed (PCL)
- Expected (PCL)
- $H \rightarrow ZZ \rightarrow llqq$
- $\int L dt=35 \text{ pb}^{-1}, \sqrt{s}=7$ TeV

- 95% C.L. limit on $\sigma \rho_{SM}^2$

- Good sensitivity in 200-600 GeV

ATLAS-CONF-2011-026
Exclusion limits

1. Individual channels

2. Combination

3. SM4

Atlas approaching SM ($x1.6$ SM) Tevatron excl. limit

SM4 excluded for $m_H : 140-185$ GeV

M. Escalier, PLHC 11/June

arXiv:1106.2748
Higgs prospects with $\sim 1 \text{ fb}^{-1}$

- SM Higgs
 -- Conservative analysis scenario (cut based, robust systematic error estimates)

- Observation sensitivity (median)
- 95% CL exclusion

\rightarrow 3σ observation: $139 < m_h < 180$ GeV
($\sim 50\%$ chance to $3\sigma : 200 < m_h < 430$ GeV)

\rightarrow Exclusion: $129 < m_h < 460$ GeV
($\sim 1 \text{ fb}^{-1} @ 7$ TeV)

- Reminder: $1 \text{ fb}^{-1} = \text{already we have in our hand.}$
 \rightarrow Now, no surprise if we see surprise in our data
SUSY searches

S. Heinemeyer, Feb/2011
“Prediction for LHC” (fit on EW, B rare, g-2)
SUSY searches @ LHC

- SUSY @ LHC
 -- Gluino/squark pair can be produced ‘strongly’
 via t-channel exchange → large production cross section
 -- Cascade decays to lighter ones → multi-jet, (lepton)
 -- LSP (if Rp conserved) → E_T^{miss}
 ➔ Event topology: Multi-jets + E_T^{miss} + (X) X=e, μ, τ,γ, b…

- Model-independent inclusive search based on event topology
 -- (0, 1…) lepton + (1, ≥2, ≥3, ≥4…) jets + E_T^{miss} + (b-jet)…

<table>
<thead>
<tr>
<th>Channel</th>
<th>Signature</th>
<th>Main backgrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 leptons + jets + E_T^{miss}</td>
<td>≥ 2–4 jets, large E_T^{miss}, m_{eff} (*)</td>
<td>W / Z + jets, top, QCD</td>
</tr>
<tr>
<td>1 lepton + jets + E_T^{miss}</td>
<td>≥ 3 jets, large E_T^{miss}, m_{eff}, m_T</td>
<td>top, W / Z + jets</td>
</tr>
<tr>
<td>2 leptons (SS / OS) + jets + E_T^{miss} (also “flavour subtraction” OS analysis)</td>
<td>large E_T^{miss}</td>
<td>SS: Fakes, diboson; OS: top, $Z +$ jets, also cosmics ($\mu\mu$)</td>
</tr>
<tr>
<td>≥ 3 leptons + jets + E_T^{miss}</td>
<td>≥ 2 jets, E_T^{miss}, m_{H^\pm} ≠ m_Z</td>
<td>top, $Z +$ jets</td>
</tr>
<tr>
<td>(***) 0(1) lepton + b-jets + E_T^{miss}</td>
<td>≥ 3 jets, E_T^{miss}, m_{eff}, (m_T)</td>
<td>top, W / Z + jets</td>
</tr>
<tr>
<td>2 photons + E_T^{miss}</td>
<td>E_T^{miss}</td>
<td>QCD, top, $W(\gamma)$ + jets</td>
</tr>
</tbody>
</table>

Incomplete list

(*) $m_{\text{eff}} = E_T^{\text{miss}} + \Sigma p_T\text{jets}$

(***) Large mixing scenario can give light sbottom, stop with: $\tilde{g} \rightarrow \tilde{b}b$, $\tilde{t} \rightarrow \tilde{t}t$

A. Hoecker
Planck 2011
Jets + mE_T [0-lepton]

- **Signal region**
 - $E_T^{\text{miss}} > 130$ GeV
 - $\Delta\phi(\text{jet}, E_T^{\text{miss}}) > 0.4$
 - $E_T^{\text{miss}} / M_{\text{eff}} > 0.3$ (0.25 for nJet ≥ 3)
 - $p_T^{\text{jet}} > 130$ (40) GeV (for sub-leading)

- **Final discriminant cut:**
 - $M_{\text{eff}} > 1000$ GeV

- **Background estimation**
 - $Z+$jets (irreducible, $Z\rightarrow\nu\nu$)
 - $W+$jets
 - Top ($tt \rightarrow b\bar{b}\tau vqq$)
 - Control regions + Transfer factors (TFs) from MC
 - QCD multi-Jets (E_T^{miss} by miss reconstruction)
 - Control region (Δφ inverted)
 - TFs data-driven
• In MSUGRA/CMSSM,
 \(m(\tilde{g}) = m(\tilde{q}) < 950 \text{ GeV} \) and \(m_{1/2} < 455 \text{ GeV} \) are excluded.

• Cutting into a new territory of SUSY parameter spaces
Jets + \text{mE}_T \text{[1-lepton]}

- **Signal region**
 - $p_T > 25 \ (20) \text{ GeV}$ for e (μ)
 - $E_T^{\text{miss}} > 125 \text{ GeV}$
 - $m_T > 100 \text{ GeV}$
 - $E_T^{\text{miss}} / M_{\text{eff}} > 0.25$

- **Final discriminant cut**
 - $M_{\text{eff}} > 500 \text{ GeV}$

- **Background estimation**
 - W+jets
 - Top
 - Control regions + Transfer factors (TFs) from MC
 - QCD multi-Jets (E_T^{miss} by miss reconstruction)
 - Control region
 - TFs data-driven
Jets + m_{E_T} [1-lepton]

$\mu_{1/2}$ vs m_0

2011 data (165 pb$^{-1}$)
New @ LHCC 14/6
Benchmark: R-parity violating SUSY

\[\bar{d}d \xrightarrow{\lambda'_{311}} \tilde{\nu}_\tau \xrightarrow{\lambda'_{321}} e^\pm \mu^\mp \]

- Very clean signals: isolated, \(p_T \) > 20 GeV

- \(m(\tilde{\nu}_\tau) < 750 \text{GeV} \) for \((\lambda'_{311}=0.11, \lambda'_{312}=0.07) \) excluded
MSSM A/H/h → ττ

- e/μ + τ_{had}

Event Selection:
- 1 isolated e/μ with p_T > 20 GeV
- 1 had τ, charge opposite to e/μ
- E_T^{miss} > 20 GeV
- m_T < 30 GeV

Background estimation:
- Z(→ττ)+jets: embedding technique
- W+jets: control sample + OS/SS

Excluded:
m_A = 110-150 GeV (tanβ = 23)
Other BSM searches
Resonance search in $M(\text{lep-lep})$

- Sequential Standard Model (SSM)
 -- Z': same coupling to fermion as Z

$\Rightarrow M(Z') < 1.408$ TeV excluded.
Resonance search in $M(\text{lep-mE}_T)$

Benchmark: W'
- Sequential Standard Model (SSM)
 - W': same coupling to fermion as W

$\Rightarrow M(W') < 1.70 \text{ TeV excluded.}$
Resonance search in M(jet-jet)

- Benchmark: Excited Quark

- Fit with smooth function
 \[\frac{dN}{dx} = p_1 (1-x)^{p_2} x^{p_3 + p_4 \ln x} + \text{BumpHunter} \]

- Excluded q* mass range: \(0.80 < m_{q^*} < 2.49 \text{ TeV} \)

\[\sqrt{s} = 7 \text{ TeV}, \int L \, dt = 163 \text{ pb}^{-1} \]

Expected 95% CL upper limit:

- Observed 95% CL upper limit
- 68% and 95% bands

ATLAS Preliminary

\[\int L \, dt = 163 \text{ pb}^{-1} \]

\[\sqrt{s} = 7 \text{ TeV} \]
SUMMARY OF MASS LIMITS

Several table entries: to be updated if approved

<table>
<thead>
<tr>
<th>Channel</th>
<th>Particle</th>
<th>Limits [TeV]</th>
<th>Channel</th>
<th>Model/particles</th>
<th>Limits [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>jet+MET+X</td>
<td>mSUGRA g, q</td>
<td>0.950* if m(g)=m(q)</td>
<td>Lep+jets+MET</td>
<td>1st gen. LQ(β=1)</td>
<td>0.376</td>
</tr>
<tr>
<td>bjets+MET</td>
<td>gluino</td>
<td>0.590* if m(b)<m(g)</td>
<td>2nd gen. LQ(β=1)</td>
<td>0.422*</td>
<td></td>
</tr>
<tr>
<td>Long lived particles</td>
<td>gluino</td>
<td>0.562-0.584*</td>
<td>γγ+MET</td>
<td>UED(1/R)</td>
<td>0.961</td>
</tr>
<tr>
<td></td>
<td>stop</td>
<td>0.309*</td>
<td>Gluino (GGM)</td>
<td></td>
<td>0.560</td>
</tr>
<tr>
<td></td>
<td>sbottom</td>
<td>0.294*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>slepton</td>
<td>0.110-0.136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>di-jets</td>
<td>Excited quarks</td>
<td>2.49*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>axigluons</td>
<td>2.67*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>di-leptons</td>
<td>SSM Z'</td>
<td>1.407</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E6 Z'</td>
<td>1.116-1.259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lep+MET</td>
<td>SSM W'</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* World’s best limit

2010 data already allowed us to set better limits than Tevatron/LEP searches in most channels

50-100 times more data expected by the end of 2011!
Summary and future plan

- LHC is the explorer of the highest energy frontier, no substitute to it. Given the highest energy, search regions for new physics are being significantly extended

- Running plan:
 -- 2011-12: Physics run @ 7 TeV
 * Max inst. Luminosity may increase up to 5×10^{33} cm$^{-2}$s$^{-1}$
 * May add a few fb$^{-1}$ more already in 2011
 -- 2014 mid: Physics run @ 14 TeV

- KEK physics seminar on 26/July (c.f. “EPS-HEP 2011” 21-27/July)
 ATLAS results report by Soshi Tsuno (KEK)
 -- Most probably, many updates with several 100 pb$^{-1}$ or even O(1 fb$^{-1}$)
 Stay tuned!