# **Recent results from ATLAS**



Kunihiro Nagano (KEK/IPNS)

KEK Physics Seminar 17 June 2011

1



## **LHC**

● Proton-proton collider with c.m.s energy → 14 TeV -- c.m.s. energy of elementary parton-parton collision

 $\sqrt{s}_{eff}(q-q) \approx O(1) \text{ TeV}$ 

### → The real explorer for "TeV scale" physics

- -- Origin of EW symmetry breaking; SM Higgs
- -- New physics (necessary to stabilize EW scale); SUSY, Extra Dimension, etc...

\* which can bring good dark matter candidates

## ATLAS



- General purpose detector, covering  $\sim 4\pi$  solid angle
  - -- Detection capability to Higgs with mass covered seamlessly up to  $\sim 1 \text{ TeV}$
- Inner detector: combination of silicon strip / pixel detector and straw tube tracker (2 T by solenoid).
- Calorimeter: LAr for EM and had (endcap), scintillator tiles for had (barrel)
- Muon spectrometer : stand-alone measurement by using Toroid magnet 2

# LHC and ATLAS Operations in 2009, 2010



produce a large variety of physics results

# **LHC and ATLAS Operations in 2011**



## **Challenging days for Trigger**

- Event trigger rate has to be reduced from 40 MHz down to ~200 Hz → 1/500000 rejection necessary
- Under high pile-up (average 6 interactions (max 8-12) per crossing in 2011) environment
   11 vertices
- Pipelined, dead-time free, 3-levels trigger
  - -- Typical deadtime 2-3% in 2011 runs
  - -- Dynamic changes to trigger settings during a run w/o stop/start
  - -- Stopless removal/recovery of detector r/o elements
- Need to cover the wide and rich physics potentials comprehensively
  - -- Various kinds of trigger logic ("chain") e.g. inclusive, exclusive, combination....
  - -- Typically, few hundred trigger logics are deployed at any time.

The trigger system has been successfully operating in a wide range of conditions: 10<sup>27</sup> to over 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> (6 orders!)





| Trigger          | L1 Item    | L1 Rate (Hz) | EF Rate (Hz) |
|------------------|------------|--------------|--------------|
| e20_medium       | EM14       | 8500         | 50           |
| 2e12_medium      | 2EM7       | 5700         | 1            |
| g40 tight        | EM30       | 700          | 16           |
| mu18             | MU10       | 5300         | 40           |
| 2mu10            | 2MU10      | 100          | 1            |
| xe60             | XE40       | 300          | 4            |
| J180             | 375        | 200          | 6            |
| tau29medium xe35 | TAU11_XE20 | 3800         | 6            |
| tau16_e15        | TAU6_EM10  | 7500         | 6            |
| j75 xe45         | J50_XE20   | 500          | 10           |

### **Standard Model Physics**

- Hard QCD
- Electro-weak
- Top

### Jets @ LHC

• QCD validation at unexplored kinematic phase space -- We are seeing  $p_T \ge 1$  TeV and di-jets with  $M_{ij} \ge 3$  TeV !

Jet with  $p_T \ge 1$  TeV



8

### **Inclusive jet cross sections**

Anti- $k_T$ , R=0.6 (Measurement with R=0.4 was also made) :

--  $p_{T}(jet) > 20 \text{ GeV to } 1.5 \text{ TeV}$ 

--  $|y_{jet}|$  up to 4.4



- Data are consistent with NLO pQCD prediction with non-pert. corr
- Some differences observed at high  $p_T$  and large |y|

### **EW bosons** (a) LHC

• SM "candles" provide:

- -- QCD validation, with sensitivity to quark's parton density functions (PDFs)
- -- Important in-situ calibration method





$$\sigma = \sum_{pdf} \int dx_i dx_j [f_i(x_i) f_j(x_j) \\ \times \Delta \sigma(q_i q_j \to X; x_i, x_j)]$$
$$u \overline{d} \to W^+$$
$$d \overline{u} \to W^-$$

W: Event selection -- Isolated  $p_T$  (lepton) > 20 GeV --  $E_T^{miss} > 25 \text{ GeV}$  $-m_{\rm T} > 40 {\rm ~GeV}$  $m_{T} = \sqrt{2 p_{T}^{\ l} p_{T}^{\ v} (1 - \cos(\phi^{l} - \phi^{v}))}$ o009 Ge - Data 2010 (\s = 7 TeV Entries / 2.5 ( 0000 2.5  $W \rightarrow ev \mathbf{e}^{\dagger}$ 3000 L dt = 36 pb<sup>-1</sup> ATLAS Preliminar 2000 1000 60 80 100 20 120 40 m<sub>⊤</sub> [GeV]

9

### W/Z-production cross section



-- Exp: luminosity, theory: PDF

- Started to constraint PDFs!
- Measured cross sections are in agreement with theoretical predictions 10 based on NNLO QCD

iets

### **EW bosons + Jets**

### ► W+nJets cross section



- A powerful test of QCD
- Often becomes irreducible/main backgrounds for top, Higgs, SUSY, new physics searches, etc.
   → Mandatory to understand
- with real data
- → Measured cross sections are in agreement both with Multi-parton ME + PS MC models (ALPGEN, SHERPA) and also NLO calculations (MCFM, BLACKHAT-SHEPA)
- Z+nJets cross section
   See ATLAS-CONF-2011-042 11

# <u>Top</u>

• Rich physics programs



### • Experimentally:

Measurement of top quarks requires understanding of full detector performance

- -- Lepton identification
- -- E<sub>T</sub><sup>miss</sup>

of QCD

-- multi-jets -- b-tagging and also, understanding



backgrounds (W/Z+nJets etc.))

# <u>σ(ttbar) [1-lepton mode]</u>

- Br=33% : "Golden" channel
- Event Selection
  - --  $p_T^{l} > 20 \text{ GeV}, |\eta^l| < 2.5$
  - --  $E_T^{\text{miss}} > 20 (35) \text{ GeV} (\text{for e})$
  - --  $m_T(W) > 60-E_T^{miss}$  (25) GeV (for e) --  $\geq 1$  jets of  $p_T^{jet} > 25$  GeV,  $|\eta^{jet}| < 2.5$
  - W/o b-tagging
     -- Multivariable discriminant
     \* |η<sub>l</sub>|, |Q<sub>l</sub>|, aplanarity





- ► W/ b-tagging
  - -- Impact parameter based and secondary vertex based
  - -- Multivariate discriminant
    - \*  $W_{JP}$ ,  $|\eta_l|$ , aplanarity,  $H_{T,3p}$



### <u>σ(ttbar) [2-lepton mode]</u>

• Br=6% : "High purity" channel  $\rightarrow$  "Counting" taking advantage of high purity • Event Selection -- 2 opposite sign leptons with  $p_{\rm T}$   $^1\!>$  20 GeV,  $|\eta^l|\!<\!2.5$ --  $E_T^{miss} > 40 \text{ GeV}$ 000000  $-- \ge 2$  jets of  $p_T^{jet} > 20$  GeV,  $|\eta^{jet}| < 2.5$ --  $H_T = \Sigma p_T^{l} + \Sigma p_T^{jet} > 130 \text{ GeV}$  $--|M_{11} - M_7| > 10 \text{ GeV}$  $\blacktriangleright$  W/ b-tagging  $--\sigma(tt)$  and  $\varepsilon(btag)$  extracted W/o b-tagging simultaneously Events all channels ATLAS Events / 40 GeV Preliminary data a 240 ATLAS Preliminary 140 channel e+µ ATLAS tī Preliminary  $L = 35 \text{ pb}^{-1}$  data 16 '<sup>≠</sup> 120 single top ttbar = 35 pb 220 DY + jets single-top 100 DY+jets diboson 200 diboson fake leptons 80 fake leptons 10ŀ ancertainty 180 /// uncertainty 60 160 40 140 20 120 0.4 0.45 0.5 0.55 0.6 0.65 0.7  $\geq 4$ 200 400 600 800 1000 1200 2 3 €b H<sub>T</sub> [GeV] Number of jets

 $\sigma = 173 \pm 22(stat)^{+18}_{-16}(syst)^{+8}_{-7}(lumi)pb \qquad \sigma = 176 \pm 22(stat) \pm 22(syst) \pm 6(lumi)pb$ 

### **Summary of σ(ttbar)**





= 160 GeV

m<sub>top</sub> = 170 GeV

m<sub>top</sub> = 180 GeV

m<sub>top</sub> = 190 GeV

ATLAS Preliminary

1.5 2 2.5 3 3.5 4 4.5

 $\sqrt{s} = 7$  TeV Simulation

 $R_{32}$ 

Vormalized Events / 0.1

0.12

0.1

0.08

0.06

0.04

0.02

• Main result: template fit to  $R_{32}$ 

$$R_{32} = \frac{m_{top}^{reco}}{m_w^{reco}} = \frac{m_{jjb}}{m_{jj}}$$

m<sub>top</sub>: three jets with highest vector sum p<sub>T</sub>

m<sub>w</sub>: non b-tagged jets/smaller dR in top rest frame (60<m<sub>w</sub><100 GeV)

 $m_{top} = 169.3 \pm 4.0(stat) \pm 4.9(syst)GeV$ 

-- Dominant syst: ISR/FSR, JES

Template fit to  $m_{top}$  (by kine. fit)



-- Dominant syst: JES (larger),  $\rightarrow$  Simultaneous fit to JES and m<sub>top</sub>

1d TMT, KLF, µ+jets 1d TMT, KLF, comb **Tevatron July 2010** 160 170 140 150 180 190 200  $m_{top} = 174.8 \pm 2.7(stat) \pm 7.5(syst)GeV$  $m_{top} = 166.1 \pm 4.6(stat) \pm 4.4(syst)GeV$ 

• 3.7 % precision already with L=~35 pb<sup>-1</sup> (expects  $\delta m_{top} \sim 1 \text{ GeV}$  with 1fb<sup>-1</sup>)





### **Di-boson**

- Sensitivity to Triple Gauge Boson Coupling (TGC)
- Irreducible backgrounds to Higgs, Susy searches, e.g.  $H \rightarrow WW$ , ZZ







| Final State    | $eee + E_{\rm T}^{\rm miss}$ | $ee\mu + E_{\rm T}^{\rm miss}$ | $e\mu\mu + E_{\rm T}^{\rm miss}$ | $\mu\mu\mu + E_{\rm T}^{\rm miss}$ | combined                 |
|----------------|------------------------------|--------------------------------|----------------------------------|------------------------------------|--------------------------|
| Observed       | 2                            | 2                              | 2                                | 6                                  | 12                       |
| Signal         | $1.32 \pm 0.09$              | $1.76 \pm 0.10$                | $2.48 \pm 0.11$                  | $3.52 \pm 0.13$                    | $9.08 \pm 0.22 \pm 1.26$ |
| Bkg            |                              |                                |                                  |                                    |                          |
| ZZ             | $0.028 \pm 0.003$            | $0.12 \pm 0.01$                | $0.08 \pm 0.01$                  | $0.18 \pm 0.01$                    | $0.40 \pm 0.01 \pm 0.05$ |
| W/Z+jets       | $0.09 \pm 0.02$              | $0.17 \pm 0.04$                | $0.24 \pm 0.07$                  | $0.52 \pm 0.08$                    | $1.02 \pm 0.12 \pm 0.50$ |
| Тор            | -                            | 0±0.03                         | -                                | $0.35 \pm 0.18$                    | $0.35 \pm 0.18 \pm 0.05$ |
| $W/Z + \gamma$ | $0.14 \pm 0.14$              | 0 (< 0.05)                     | $0.07 \pm 0.07$                  | 0 (< 0.05)                         | $0.21 \pm 0.15 \pm 0.07$ |
| Bkg(tot)       | $0.25 \pm 0.14$              | $0.29 \pm 0.05$                | $0.39 \pm 0.10$                  | $1.05 \pm 0.19$                    | $1.98 \pm 0.27 \pm 0.67$ |
| S/B            | 5.3                          | 6.2                            | 6.3                              | 3.3                                | 4.6                      |

|                   |                                | -                                   | -                                                    |                          |
|-------------------|--------------------------------|-------------------------------------|------------------------------------------------------|--------------------------|
| Final State       | $e^+e^-E_{ m T,rel}^{ m miss}$ | $\mu^+\mu^- E_{ m T,rel}^{ m miss}$ | $e^{\pm}\mu^{\mp}E_{\mathrm{T,rel}}^{\mathrm{miss}}$ | Combined                 |
| Observed Events   | 1                              | 2                                   | 5                                                    | 8                        |
| Expected $W^+W^-$ | $0.79 \pm 0.02 \pm 0.09$       | $1.61 \pm 0.04 \pm 0.14$            | $4.45 \pm 0.06 \pm 0.44$                             | $6.85 \pm 0.07 \pm 0.66$ |
| Backgrounds       |                                |                                     |                                                      |                          |
| Drell-Yan         | $0.00 \pm 0.10 \pm 0.07$       | $0.01 \pm 0.10 \pm 0.07$            | $0.22 \pm 0.06 \pm 0.15$                             | $0.23 \pm 0.15 \pm 0.17$ |
| $WZ, ZZ, W\gamma$ | $0.05 \pm 0.01 \pm 0.01$       | $0.10 \pm 0.01 \pm 0.01$            | $0.23 \pm 0.05 \pm 0.02$                             | $0.38 \pm 0.04 \pm 0.04$ |
| W+jets            | $0.08 \pm 0.05 \pm 0.03$       | $0.00 \pm 0.29 \pm 0.10$            | $0.46 \pm 0.12 \pm 0.17$                             | $0.54 \pm 0.32 \pm 0.21$ |
| Top               | $0.04 \pm 0.02 \pm 0.02$       | $0.14 \pm 0.06 \pm 0.07$            | $0.35 \pm 0.10 \pm 0.19$                             | $0.53 \pm 0.12 \pm 0.28$ |
| Total Background  | $0.17 \pm 0.11 \pm 0.08$       | $0.25 \pm 0.31 \pm 0.15$            | $1.26 \pm 0.17 \pm 0.31$                             | $1.68 \pm 0.37 \pm 0.42$ |
| Total Background  | $0.17 \pm 0.11 \pm 0.08$       | $0.25 \pm 0.31 \pm 0.15$            | $1.26 \pm 0.17 \pm 0.31$                             | $1.68 \pm 0.37 \pm 0.42$ |

$$\sigma = 18^{+7}_{-6}(stat) \pm 3(syst) \pm 1(lumi)pb$$

$$\sigma = 41^{+20}_{-16}(stat) \pm 5(syst) \pm 1(lumi)pb$$

18

# Started to observe di-bosons (For Zγ, Wγ: see arXiv:1106.1592)

### **Summary of EW, top cross sections**



### **Higgs searches: the last missing in SM**





#### ATLAS-CONF-2011-085





• Despite low BR, significant due to excellent  $\gamma$  resolution

• Event Selection: 2 isolated  $\gamma$  with  $p_T^{\gamma} > 40$  (25) GeV



New vertex reconstruction by using photon direction at LAr -- Cope with 2011 high pileup condition





Limit down on 4.2 × SM
World best limit for H→γγ

### $H \rightarrow WW [\rightarrow lvlv]$

95% CL Limit on

- Unlike most other channels, full mass reconstruction not possible
- Event Selection: exploit differences in angular distributions (due to spin correl.)
  - + dedicated selection for H+0,1,2 jets
  - -- 2 opposite charge leptons with  $p_T^{1} > 20$  (15) GeV
  - --  $E^{\text{miss}}_{\text{T}} > 40 \text{ GeV}, |M_{\text{H}} M_{Z}| > 10 \text{ GeV}$
  - σ/σ<sub>SM</sub> --  $\Delta \varphi(ll) \le 1.3$  (1.8) for  $m_H \le 170$  ( $\ge 170$ ) GeV
- Backgrounds: estimated from control sample
  - -- W+jets: loosing lepton id
  - -- ttbar: altered jet cuts, b-tag
  - -- Di-boson: altered  $M_{II}$  and  $\Delta \varphi(II)$



23

### $\underline{\mathbf{H} \rightarrow \mathbf{WW} [ \rightarrow \mathbf{lvqq} ]}$

- One of the best channels for intermediate and high masses
- Possible to estimate  $P_Z^{\nu}$  and  $M_{WW}$  by solving  $M_W = M_{l\nu}$
- Event Selection:
  - -- 1 leptons with  $p_T^{1} > 30$  GeV, veto 2<sup>nd</sup> with  $p_T^{1} > 20$  GeV
  - --  $E^{miss}_{T} > 40 \text{ GeV}$
  - -- 2 or 3 jets with  $p_T{}^{jet}\!>\!30$  GeV,  $|\eta^{jet}|\!<\!4.5$
  - -- Veto bjet (against ttbar)



 Background normalization from fit
 -- Cross-checked using an anti-isolated lepton sample



• Excluded 11.2 × SM for  $m_{\rm H}$ =400 GeV

### $H \rightarrow ZZ [\rightarrow Ilqq, Ilvv]$





### **Higgs prospects with ~1 fb<sup>-1</sup>**

► SM Higgs

-- Conservative analysis scenario (cut based, robust systematic error estimates)



→  $3\sigma$  observation:  $139 < m_h < 180$  GeV (~50% chance to  $3\sigma$  :  $200 < m_h < 430$  GeV)

Reminder: 1 fb<sup>-1</sup> = already we have in our hand.
→ Now, no surprise if we see surprise in our data

<sup>→</sup> Exclusion:  $129 < m_h < 460 \text{ GeV}$ (~1 fb<sup>-1</sup> @ 7 TeV)

### **SUSY searches**





### **SUSY searches** (a) LHC

• SUSY @ LHC

- -- Gluino/squark pair can be produced 'strongly' via t-channel exchange → large production cross section
- -- Cascade decays to lighter ones  $\rightarrow$  multi-jet, (lepton)
- -- LSP (if Rp conserved)  $\rightarrow E_T^{miss}$
- → Event topology: Multi-jets +  $E_T^{miss}$  + (X) X=e,  $\mu$ ,  $\tau$ , $\gamma$ , b...
- Model-independent inclusive search based on event topology -- (0, 1...) lepton +  $(1, \ge 2, \ge 3, \ge 4...)$  jets +  $E_T^{miss}$  + (b-jet)...

| Channel                                                                                           | Signature                                                           | Main backgrounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| 0 leptons + jets + $E_{T,miss}$                                                                   | $\geq$ 2–4 jets, large $E_{T,\text{miss}}$ , $m_{\text{eff}}^{(*)}$ | W / Z + jets, top, QCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |  |
| 1 lepton + jets + $E_{T,miss}$                                                                    | $\geq$ 3 jets, large $E_{T,\text{miss}}$ , $m_{\text{eff}}$ , $m_T$ | top, W / Z + jets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |
| 2 leptons (SS / OS) + jets + E <sub>T,miss</sub><br>(also "flavour subtraction" OS analysis)      | large E <sub>T,miss</sub>                                           | SS: Fakes, diboson; OS: top,<br>Z + jets, also cosmics ( $\mu\mu$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |  |
| $\geq$ 3 leptons + jets + $E_{T,miss}$                                                            | $\geq$ 2 jets, $E_{T,\text{miss}}, m_{I+L} \neq m_Z$                | top, Z + jets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A. Hoecker |  |
| $^{(**)}$ 0(1) lepton + <i>b</i> -jets + $E_{T,miss}$                                             | $\geq$ 3(2) jets, $E_{T,\text{miss}}$ , $m_{\text{eff}}$ , $(m_T)$  | top, W / Z + jets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Planck 201 |  |
| 2 photons + $E_{T,miss}$                                                                          | $E_{	au,miss}$                                                      | QCD, top, $W(\gamma)$ + jets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
| + more targeted analyses for SUSY scenarios with features not covered by above inclusive searches |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |  |
| Incomplete list                                                                                   | (*) $m_{\text{eff}} = E_{T,\text{miss}} + \Sigma p_{T,\text{jets}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28         |  |
|                                                                                                   | (**) Large mixing scenario can give lig                             | which should be a provided a state of the short state of the state of |            |  |



g

g

29





# <u>Jets + mE<sub>T</sub> [0-lepton]</u>



 $\sim m_{1/2} \text{ vs } m_0$ 



- In MSUGRA/CMSSM,  $m(\tilde{g}) = m(\tilde{q}) < 950 \,\text{GeV}$  and  $m_{1/2} < 455 \,\text{GeV}$  are excluded.
- Cutting into a new territory of SUSY parameter spaces



### Jets + mE<sub>T</sub> [1-lepton]

LHCC 14/6

$$\tilde{q}_L \to q \,\tilde{\chi}^{\pm} \to q \,l^{\pm} \,\nu \,\tilde{\chi}_1^0 \tilde{g} \to q \,\bar{q'} \,\tilde{\chi}^{\pm} \to q \,\bar{q'} \,l^{\pm} \,\nu \,\tilde{\chi}_1^0$$

- Signal region --  $p_T > 25 (20) \text{ GeV for e } (\mu)$ --  $E_T^{\text{miss}} > 125 \text{ GeV}$ --  $m_T > 100 \text{ GeV}$ --  $E_T^{\text{miss}} / M_{\text{eff}} > 0.25$ Final discriminant cut --  $M_{\text{eff}} > 500 \text{ GeV}$
- Background estimation
   --W+jets
  - -- Тор
    - → Control regions + Transfer factors (TFs) from MC
  - -- QCD multi-Jets ( $E_T^{miss}$  by miss reconstruction)
    - → Control region TFs data-driven





### <u>Jets + mE<sub>T</sub> [1-lepton]</u>



 $\sim m_{1/2} \text{ vs } m_0$ 



32

### $\underline{\mathbf{e}} + \underline{\mu}$



•  $m(\tilde{v}_{\tau}) < 750 GeV$  for  $(\lambda'_{311}=0.11, \lambda'_{312}=0.07)$  excluded

33

#### **ATLAS-CONF-2011-024**

### $MSSM A/H/h \rightarrow \tau\tau$

- Event Selection -- 1 isolated  $e/\mu$  with  $p_T^{-1} > 20 \text{ GeV}$ -- 1 had  $\tau$ , charge opposite to  $e/\mu$ --  $E_T^{miss} > 20 \text{ GeV}$ 
  - $--m_{\rm T} < 30 {\rm ~GeV}$

•  $e/\mu + \tau_{had}$ 







 $m_A = 110-150 \text{ GeV} (\tan\beta = 23)$ 34

### **Other BSM searches**

### **Resonance search in M(lep-lep)**

data





# 2011 data (163 pb<sup>-1</sup>)

### **Resonance search in M(jet-jet)**

Benchmark: Excited Quark



• Excluded q\* mass range :  $0.80 < m_{q^*} < 2.49 \text{ TeV}$  38

### SUMMARY OF MASS LIMITS

Several table entries: to be updated if approved

| channel                                                   | particle       | Limits [ | TeV]                                                                                                                | channel                                                                                             | Model/particles               | Limits [TeV]             |
|-----------------------------------------------------------|----------------|----------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|
| jet+MET+X                                                 | mSUGRA g, q    | 0.950*   | if m(g)=m(q)                                                                                                        | Lep+jets                                                                                            | $1^{st}$ gen. LQ( $\beta$ =1) | 0.376                    |
| bjets+MET                                                 | gluino         | 0.590*   | if m(b) <m(g)< td=""><td>+MET</td><td><math>2^{nd}</math> gen. LQ(<math>\beta</math>=1)</td><td>0.422*</td></m(g)<> | +MET                                                                                                | $2^{nd}$ gen. LQ( $\beta$ =1) | 0.422*                   |
| Long lived<br>particles                                   | gluino         | 0.562-0  | .584*                                                                                                               | γγ+ΜΕΤ                                                                                              | UED(1/R)                      | 0.961                    |
|                                                           | stop           | 0.309*   |                                                                                                                     |                                                                                                     | Gluino (GGM)                  | 0.560                    |
|                                                           | sbottom        | 0.294*   |                                                                                                                     | YY                                                                                                  | RS graviton                   | 0.920                    |
|                                                           | slepton        | 0.110-0  | .136                                                                                                                |                                                                                                     |                               | (k/M <sub>Pl</sub> =0.1) |
|                                                           | Excited quarks | 2.49*    |                                                                                                                     | lqvlqv                                                                                              | 4 <sup>th</sup> gen. u        | 0.270                    |
| di-jets                                                   | axigluons      | 2.67*    |                                                                                                                     | * World's best limit                                                                                |                               |                          |
| di-leptons                                                | SSM Z'         | 1.407    |                                                                                                                     | 2010 data already allowed us to set<br>better limits than Tevatron/LEP searches<br>In most channels |                               |                          |
|                                                           | E6 Z'          | 1.116-1  | 259                                                                                                                 |                                                                                                     |                               |                          |
| Lep+MET                                                   | SSM W'         | 1.70     |                                                                                                                     |                                                                                                     |                               |                          |
| 50-100 times more data expected by the<br>end of 2011! 24 |                |          |                                                                                                                     |                                                                                                     | cpected by the                |                          |
|                                                           |                |          |                                                                                                                     |                                                                                                     | 24                            |                          |
| T. Lari, PLH                                              |                |          | C 2011                                                                                                              |                                                                                                     | 39                            |                          |



### **Summary and future plan**

• LHC is the explorer of the highest energy frontier, no substitute to it. Given the highest energy, search regions for new physics are being significantly extended

- Running plan:
  - -- 2011-12: Physics run @ 7 TeV
    - \* Max inst. Luminosity may increase up to  $5 \times 10^{33}$  cm<sup>-2</sup>s<sup>-1</sup>
    - \* May add a few fb<sup>-1</sup> more alredy in 2011
  - -- 2014 mid: Physics run @ 14 TeV
- KEK physics seminar on 26/July (c.f. "EPS-HEP 2011" 21-27/July) ATLAS results report by Soshi Tsuno (KEK)
  - -- Most probably, many updates with several 100 pb<sup>-1</sup> or even O(1 fb<sup>-1</sup>)
  - $\rightarrow$  Stay tuned!