Observation of Reactor Antineutrino Disappearance at RENO Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University (presented at KEK on May 17, 2012)

Outline

- Introduction
- Experimental setup & detector
- Data-taking & data set
- Calibration
- Event selection
- Efficiency & Background
- Reactor antineutrino prediction
- Systematic uncertainties
- Results
- Summary

Fermilab Today		Friday, April 6, 2012 Search	
Subscribe Contact Us			
Calendar	From symmetry breaking	Physics in a Nutshell	
Have a safe day! Friday, April 6 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Fir X-Over 4 4 p.m. Joint Experiment- Theoretical Physics Speaker: Brendan Kiburg, University of Washington Title: Muon Capture on the Proton: Final Results from the MuCap Experiment Hundre Act 0	Korean experiment confirms groundbreaking neutrino measurement	Subatomic CSI	
THERE WILL BE NO PARTICLE ASTROPHYSICS	physics, a Korean experiment has produced its own measurement confirming the earlier results.	from a Higgs boson, but an event in which a Higg boson decayed into a pair of Z bosons would loo very similar. If we find the Higgs boson, we won't	

Neutrino Oscillation

Reactor Antineutrino Oscillation

$$P(\overline{V}_e \to \overline{V}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{1.27 \Delta m_{31}^2 L}{E_v} \right)$$

PMNS Neutrino Mixing Angles and CP Violation

θ_{13} from Reactor and Accelerator Experiments

* Reactor

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Clean measurement of θ_{13} with no matter effects

* Accelerator

- mass hierarchy + CP violation + matter effects

Complementarity :

Combining results from accelerator and reactor based experiments could offer the first glimpse of δ_{CP} .

Efforts for Finding θ_{13}

Double Chooz : 1.7 σ measurement (2011)

 $sin^{2}(2\theta_{13}) = 0.086 \pm 0.041(stat.) \pm 0.030(syst.)$

Published in PRL

- Submitted on Apr. 2, and resubmitted on Apr. 6 after revision
- Accepted on Apr. 23 for publication
- Published on May 11 (Daya Bay PRL : April 27)

To be included in a new edition of Particle Data Listing this year

LEPTONS

Neutrino Mixing

(A) Neutrino fluxes and event ratios

Events (observed/expected) from reactor $\overline{\nu}_e$ experiments.

$0.944 \pm 0.016 \pm 0.040$	1 ARE	12	DCHZ	Chooz reactors
$0.920 \pm 0.009 \pm 0.014$	² AHN	12	RENO	Yonggwang reactors
$0.940 \pm 0.011 \pm 0.004$	³ AN	12	DAYA	Daya Bay, Ling Ao, Ling Ao-II reactors
$1.08\ \pm 0.21\ \pm 0.16$	⁴ DENIZ	10	TEXO	Kuo-Sheng reactor, 28 m
$0.658 \pm 0.044 \pm 0.047$	⁵ ARAKI	05	KLND	Japanese react. $\sim 180~{ m km}$
$0.611 \pm 0.085 \pm 0.041$	⁶ EGUCHI	03	KLND	Japanese react. \sim 180 km
$1.01 \ \pm 0.024 \pm 0.053$	⁷ BOEHM	01		Palo Verde react. 0.75-0.89 km
$1.01\ \pm 0.028 \pm 0.027$	⁸ APOLLONIO	99	CHOZ	Chooz reactors 1 km

(B) Three-neutrino mixing parameters

$\sin^2(2\theta_{13})$

At present time direct measurements of $\sin^2(2\,\theta_{13})$ are derived from the reactor $\overline{\nu}_e$ disappearance at distances corresponding to the Δm^2_{32} value, i.e. L $\sim~$ 1km. Alternatively, limits can also be obtained from the analysis of the solar neutrino data and accelerator-based $\nu_\mu \rightarrow~\nu_e$ experiments.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
0.098±0.013 OUR A	VERA	IGE			
$0.086 \pm 0.041 \pm 0.030$		1 ABE	12	DCHZ	Chooz reactors
$0.113 \!\pm\! 0.013 \!\pm\! 0.019$		² AHN	12	RENO	Yonggwang reactors
$0.092 \pm 0.016 \pm 0.005$		³ AN	12	DAYA	Daya Bay, Ling Ao, Ling Ao-II reactors
 • • We do not use 	the f	ollowing data for a	average	es, fits, l	imits, etc. • • •
$0.85 \begin{array}{c} +0.04 \\ -0.03 \end{array}$	68	⁴ ABE	11	FIT	KamLAND + global solar
< 0.23	95	⁵ ABE	11	FIT	Global solar
0.05 - 0.21	68	⁶ ABE	11 A	T2K	Normal mass hierarchy
0.06 - 0.25	68	⁷ ABE	11 A	T2K	Inverted mass hierarchy
0.01 - 0.09	68	⁸ ADAMSON	11D	MINS	Normal mass hierarchy
0.03 - 0.15	68	⁹ ADAMSON	11D	MINS	Inverted mass hierarchy
0.08 ± 0.03	68	¹⁰ FOGLI	11	FIT	Global neutrino data

RENO Collaboration

(12 institutions and 40 physicists)

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoveong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

이끄는 RENO 실험팀, 30여년간 관측에 실패한 마지막 중성미자 변환상수를 밝히기 위해 프랑스 중국과 치열한 경주를 벌이고 있

RENO Expected Sensivity

- CHOOZ : $R_{osc} = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (syst) $sin^2(2\theta_{13}) < 0.17$ (90% C.L.)
- RENO: statistical error: 2.8% \rightarrow 0.3% systematic error: 2.7% \rightarrow <0.5% $sin^2(2\theta_{13}) > 0.02$ (for 90% C.L.) $sin^2(2\theta_{13}) > 0.035$ (for 3 σ discovery potential)

10 times better sensitivity

Larger statistics

- More powerful reactors (multi-core RENO
- Larger detection volume
- Longer exposure
- Smaller experimental errors
 Identical multi detectors
- Lower background
 - Improved detector design
 - Increased overburden

RENO Experimental Setup

Contribution of Reactor to Neutrino Flux at Near & Far Detectors

Reactor #	Far (%)	Near (%)
1	13.73	6.78
2	15.74	14.93
3	18.09	34.19
4	18.56	27.01
5	17.80	11.50
6	16.08	5.58

 Accurate measurement of baseline distances to a precision of 10 cm using GPS and total station

Accurate determination of reduction in the reactor neutrino fluxes after a baseline distance, much better than 0.1%

RENO Detector

- 354 ID +67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

Summary of Detector Construction

- 2006. 03 : Start of the RENO project
- 2008. 06 ~ 2009. 03 : Civil construction including tunnel excavation
- 2008. 12 ~ 2009. 11 : Detector structure & buffer steel tanks completed
- 2010. 06 : Acrylic containers installed
- 2010. 06 ~ 2010. 12 : PMT test & installation
- 2011. 01 : Detector closing/ Electronics hut & control room built
- 2011.02 : Installation of DAQ electronics and HV & cabling
- 2011. 03 ~ 06 : Dry run & DAQ debugging
- 2011. 05 ~ 07 : Liquid scintillator production & filling
- 2011.07 : Detector operation & commissioning
- 2011. 08 : Start data-taking

PMT Mounting (2010. 8~10)

PMT Mounting (2010. 8~10)

Detector Closing (2011.1)

Detection of Reactor Antineutrinos

Liquid(Gd-LS/LS/MO/Water) Production & Filling (May-July 2011)

1D/3D Calibration System

 Calibration system to deploy radioactive sources in 1D & 3D directions

□ Radioactive sources : ¹³⁷Cs, ⁶⁸Ge, ⁶⁰Co, ²⁵²Cf

□ Laser injectors

Data Acquisition System

855

- 24 channel PMT input to ADC/TDC
- 0.1pC, 0.52nsec resolution
- ~2500pC/ch large dynamic range
- No dead time (w/o hardware trigger)
- Fast data transfer via Ethernet R/W

--> 1Gbps Ethernet

Data-Taking & Data Set

- Data taking began on Aug. 1, 2011 with both near and far detectors.
- Data-taking efficiency > 90%.
- Trigger rate at the threshold energy of 0.5~0.6 MeV : 80 Hz
- Data-taking period : 228 days Aug. 11, 2011 ~ Mar. 25, 2012

Data-taking efficiency

RENO's Status & Plan

• RENO was the first reactor neutrino experiments to search for θ_{13} with both near & far detectors running, from the early August 2011.

 RENO started to see a signal of reactor neutrino disappearance from the late 2011.

 According to reported schedules of the other experiments, RENO was thought to present a result first soon. We planned to publish our first results in April without a hurry and to present them in the Neutrino 2012.

• But

PMT Threshold & Gain Matching

- PMT gain : set 1.0x10⁷ using a Cs source at center
- Gain variation among PMTs : 3% for both detectors.

 PMT threshold : determined by a single photoelectron response using a Cs source at the center

Energy Calibration

Energy Scale Calibration

Slight non-linearity observed

Detector Stability & Identity

IBD Event Signature and Backgrounds

BD Event Signature
$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)
- Delayed signal (n): 8 MeV γ's from neutron's capture by Gd
 ~28 μs (0.1% Gd) in LS

Random coincidence between prompt and delayed signals (uncorrelated)

- ⁹Li/⁸He β-n followers produced by cosmic muon spallation
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)

IBD Event Selection

Random Coincidence Backgrounds

□ Calculation of accidental coincidence

$$N_{accidental} = N_{delayed} \times \left(1 - \exp^{\left[-R_{prompt}(Hz) \times \Delta T(s)\right]}\right) \pm \frac{N_{accidental}}{\sqrt{N_{delayed}}}$$

- $\Delta T = 100 \ \mu s$ time window
- Near detector :

$$R_{\text{prompt}} = 8.8 \text{ Hz}, N_{\text{delay}} = 4884/\text{day} \rightarrow BG_{accidental}^{near} = 4.30 \pm 0.06/\text{ day}$$

• Far detector :

$$R_{\text{prompt}} = 10.6 \text{ Hz}, \ N_{\text{delay}} = 643/\text{day} \rightarrow BG_{accidental}^{far} = 0.68 \pm 0.03 / day$$

⁹Li/⁸He β-n Backgrounds

□ Find prompt-delay pairs after muons, and obtain their time interval distribution with respect to the preceding muon.

⁹Li/⁸He β-n Backgrounds

Fast Neutron Backgrounds

□ Obtain a flat spectrum of fast neutron's scattering with proton, above that of the prompt signal.

Spectra & Capture Time of Delayed Signals

Summary of Final Data Sample

Detector	Near	Far
Selected events	154088	17102
Total background rate (per day)	$21.75 {\pm} 5.93$	$4.24{\pm}0.75$
IBD rate after background	$779.05 {\pm} 6.26$	$72.78 {\pm} 0.95$
subtraction (per day)		
DAQ Live time (days)	192.42	222.06
Detection efficiency (ϵ)	$0.647 {\pm} 0.014$	$0.745 {\pm} 0.014$
Accidental rate (per day)	$4.30{\pm}0.06$	$0.68 {\pm} 0.03$
⁹ Li/ ⁸ He rate (per day)	$12.45 {\pm} 5.93$	$2.59{\pm}0.75$
Fast neutron rate (per day)	$5.00{\pm}0.13$	$0.97 {\pm} 0.06$

Measured Spectra of IBD Prompt Signal

Expected Reactor Antineutrino Fluxes

Reactor neutrino flux

$$\Phi(E_v) = \frac{P_{th}}{\sum_{i \text{ otopes}} f_i \cdot E_i} \sum_{i}^{i \text{ otopes}} f_i \cdot \phi_i(E_v)$$

- P_{th} : Reactor thermal power provided by the YG nuclear power plant
- f_i: Fission fraction of each isotope determined by reactor core simulation of Westinghouse ANC
- $\phi_i(E_v)$: Neutrino spectrum of each fission isotope
 - [* P. Huber, Phys. Rev. C84, 024617 (2011)
 - T. Mueller et al., Phys. Rev. C83, 054615 (2011)]
- E_i : Energy released per fission
 - [* V. Kopeikin et al., Phys. Atom. Nucl. 67, 1982 (2004)]

Isotopes	James	Kopeikin
²³⁵ U	201.7±0.6	201.92±0.46
²³⁸ U	205.0 ± 0.9	205.52 ± 0.96
²³⁹ Pu	210.0 ± 0.9	209.99 ± 0.60
²⁴¹ Pu	212.4±1.0	213.60 ± 0.65

Observed Daily Averaged IBD Rate

Reduction of Systematic Uncertainties

- Detector related :
 - "Identical" near and far detectors
 - Careful calibration
- Reactor related :
 - Relative measurements with near and far detectors

Maury Goodman's neutrino newsletter (5/5/2012):
F. Darwin said "In Science the credit goes to the man who convinces the world, not to the man to whom the idea first occurred."
But he wishes to give credit to Russians who first proposed a two detector neutrino reactor disappearance experiment : L. Mikaelyan & V. Sinev.

Efficiency & Systematic Uncertainties

		 Over the set 				
	Reactor					
		Uncorrelated	Correlated			
	Thermal power	0.5%	_			
	Fission fraction	0.7%	—			
Prompt operate cut	Fission reaction cross section	_	1.9%			
Flack and the set	Reference energy spectra	_	0.5%			
rlasher cut	Energy per fission		0.2%			
Gd capture fraction	Combined	0.9%	2.0%			
Delayed energy cut	Detec	Detection				
Time coincidence cut	Dettee	U	<u></u>			
Spill-in	1000 1001	Uncorrelated	Correlated			
Common	IBD cross section		0.2%			
	Target protons	0.1%	0.5%			
2	Prompt energy cut	0.01%	0.1%			
Muon veto loss $(\delta_{\mu-veto})$ (11.)	Flasher cut	0.01%	0.1%			
Multiplicity cut loss (δ_{multi}) (4.	Gd capture ratio	0.1%	0.7%			
Total (6	Delayed energy cut	0.1%	0.5%			
<u> </u>	Time coincidence cut	0.01%	0.5%			
	Spill-in	0.03%	1.0%			
	Muon veto cut	0.02%	0.02%			
	Multiplicity cut	0.04%	0.06%			
	Combined (total)	0.2%	1.5%			

Reactor Antineutrino Disappearance

χ^2 Fit with Pulls

Definitive Measurement of θ_{13}

χ^2 Distributions for Uncertainties

Future Plan for Precision Measurement of θ_{13}

- Contributions of the systematic errors :
 - Background uncertainties : 0.0165 (far : 5.5%×17.7% = 0.97%, near : 2.7%×27.3% = 0.74%)
 - Reactor uncertainty (0.9%) : 0.0100
 - Detection efficiency uncertainty (0.2%) : 0.0103
 - Absolute normalization uncertainty (2.5%) : 0.0104

- Remove the backgrounds !
- Spectral shape analysis

Summary

- RENO was the first experiment to take data with both near and far detectors, from August 1, 2011.
- RENO observed a clear disappearance of reactor antineutrinos. $R = 0.920 \pm 0.009(stat.) \pm 0.014(syst.)$
- RENO measured the last, smallest mixing angle θ₁₃ unambiguously that was the most elusive puzzle of neutrino oscillations

$$\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat.) \pm 0.019(syst.)$$

- Surprisingly large !!!
 - \rightarrow A plenty of tasks ahead for neutrino physicists

Prospective Future

- A surprisingly large value of θ₁₃: (Save a lot of dollars for the future neutrino experiments which may need reconsideration of their designs!!)
- \rightarrow (1) Provides a complete picture of neutrino oscillations
 - (2) Open a bright window of understanding why there is much more matter than antimatter in the Universe today

A prospective future for neutrino physics due to a large value of θ_{13} !!!

- Our measurement will strongly promote the next round of neutrino experiments to find the CP phase.
- Complimentary measurements between accelerator experiments and reactor experiments will provide significant information on the CP phase.

RENO-50

RENO-50

L~50km experiment may be a natural extension of current Reactor- θ_{13} Experiments

* θ_{13} detectors can be used as near detector * Small background from other reactors.

RENO-50

■ 5000 tons ultra-low-radioactivity Liquid Scintillation Detector

Physics with RENO-50

Precise measurement of θ_{12}

 $\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} \sim 1.0\% (1\sigma) \text{ in a year } \leftarrow \text{ current accuracy : 5.4\%}$

- **Determination of mass hierarchy** Δm_{13}^2
- Neutrino burst from a Supernova in our Galaxy :
 - ~1500 events (@8 kpc)
- Geo-neutrinos : ~ 300 geo-neutrinos for 5 years
- Solar neutrinos : with ultra low radioacitivity
- Reactor physics : non-proliferation
- Detection of T2K beam : ~120 events/year
- Test of non-standard physics : sterile/mass varying neutrinos

RENO-50 & J-PARC Neutrino Beam

Dr. Naotoshi Okamura & Prof. K. Hagiwara

