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Outline
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• Physics at CLIC
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• Beyond the CDR
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The CLIC 
accelerator
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CLIC and ILC
e+e- collisions at high energies → linear accelerators

International Linear Collider (ILC):
• Based on superconducting
RF cavities (like XFEL)
• Gradient: 32 MV/m
• Energy: 500 GeV,
upgradable to 1 TeV
• Detector studies focussed
mostly on up to 500 GeV,
work for 1 TeV ongoing

Compact Linear
Collider (CLIC):
• Based on 2-beam acceleration scheme
• Operated at room temperature
• Gradient: 100 MV/m
• Energy: 3 TeV, staged construction in steps
starting from few hundred GeV possible
• Detector study focusses on 3 TeV, 
investigation of lower energies in progress

Luminosities: few 1034 cm-2s-1
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2-beam acceleration scheme

Drive beam supplies RF power:
• 12 GHz bunch structure
• Low energy:
2.4 GeV – 240 MeV
• High current: 100 A

Main beam for physics:
• High energy: 9 GeV – 1.5 TeV
• Current: 1.2 A
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CLIC accelerator complex

Main beam
generation
complex

Main beam

Drive beam
generation
complex

Drive beam
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CLIC status

• Conceptual Design Report (CDR) stage just finished
• Moving towards a technical design phase

Three volumes of the CLIC CDR:
1. Accelerator:

- No show-stoppers identified
- Accelerating gradient in reach
- Officially presented to CERN SPC,
final text editing ongoing

2. Physics and detectors:
- Published: http://arxiv.org/abs/1202.5940

3. Strategic CDR volume:
- Energy staging, cost, …
- In progress, ready summer 2012

Signatories list of the CDR:
http://indico.cern.ch/conferenceDisplay.py?confId=136364
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Selected CLIC parameters

Drive timing
requirements
for CLIC detector

CLIC at 3 TeV

L (cm-2s-1) 5.9 · 1034

Bunch separation 0.5 ns

#Bunches / train 312

Train duration 156 ns

Train rep. rate 50 Hz

Crossing angle 20 mrad

Particles / bunch 3.72 · 109

σ
x
/σ

y
 (nm) ≈ 45 / 1

σ
z 
(μm) 44

Very small beam profile
at the interaction point
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Luminosity spectrum

Significant energy loss at the interaction point due to Beamstrahlung

Full luminosity: L = 5.9 · 1034 cm-2s-1

In the most energetic 1% (“peak luminosity”):
L

0.01
 = 2.0 · 1034 cm-2s-1

Most physics processes are studies
well above the production threshold
→ Profit from (almost) full luminosity

s '=4⋅E1⋅E2
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Beam related backgrounds

• e+e- pairs
• γγ → hadrons
• Beam halo muons

Coherent e+e- pairs:
7 · 108 per BX, very forward
Incoherent e+e- pairs:
3 · 105 per BX, rather forward
→ Detector design issue
(high occupancies)

γγ → hadrons
• “Only” 3.2 per BX
• Main background
in calorimeters and trackers
→ Impact on physics BX = bunch crossing
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Physics at CLIC
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CLIC physics potential
Advantage of e+e- collisions:
• Defined initial state
• Precision measurements possible due to clean conditions
• Well suited for weakly interacting states (e.g. sleptons, gauginos)
• Polarised (electron) beam
→ Complementary / enhanced discovery
reach compared to the LHC

Examples highlighted in the CDR:
• Higgs physics (SM and non-SM)
• Top physics
• SUSY
• Higgs strong interactions
• Z'
• Contact interactions
• Extra dimensions
• …

All studies shown in the
following are based on full detector simulation (Geant4)
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SM Higgs production

s-channel: ~ 
1/s

t-channel: ~ 
log(s)

s-channel: ~ 
1/s

At √s = 3 TeV:

• WW fusion
(e+e- → Hv

e
v

e
) dominant

• Highest peak
luminosity available

M
h
 = 120 GeV
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Example Higgs observables

σ(h → μ+μ-) → ±15% (stat.) σ(h → bb) → ±0.22% (stat.)

3 TeV
2 ab-1

3 TeV
2 ab-1
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Resolving new physics models
Precision measurements at CLIC allow to discriminate between new physics
models, e.g. following first observations at the LHC
Example: SUSY breaking models with nearly degenerate mass spectra
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Overview of physics reach

Indicative discovery reach:
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Detector 
requirements
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Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 E
E

~3.5−5% for E=1000−50GeV

 d 0=a2b2⋅GeV 2/  p2sin3 , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, h → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

√s = 500 GeV
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Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 d 0=a2b2⋅GeV 2/  p2sin3 , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, h → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

 E
E

~3.5−5% for E=1000−50GeV
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Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 d 0=a2b2⋅GeV 2/  p2sin3 , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, h → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

 E
E

~3.5−5% for E=1000−50GeV
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General readout considerations

3.2 γγ → hadr. interactions
per bunch crossing:

• 19 TeV in the calorimeters
per 156 ns bunch train

• 5000 tracks with a total
momentum of 7.3 TeV

Triggerless readout of full bunch train:
• Time-stamping in tracking detectors and calorimeters
• Multi-hit storage / readout
• Filtering algorithms at reconstruction level (→ later)
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The CLIC_ILD and
CLIC_SiD detectors
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Detector overview
Instrumented return
yoke for muon ID

Strong
solenoids
(4-5 T)

3.) Fine grained
(PFA) calorimetry,
1+7.5 λ

2.) Main trackers:
TPC+silicon (CLIC_ILD),
all-silion (CLIC_SiD)

1.) Low-mass
vertex detector
with 20 x 20 μm2

pixels

Complex forward region
with final beam focusing
(not discussed in this talk)

Beam

Beam

≈ 7 m
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CLIC detector concepts
Based on validated ILC designs, adapted and optimised to the CLIC conditions:
• Denser HCAL in the barrel (Tungsten, 7.5 λ)
• Redesign of the vertex and forward detectors (backgrounds)
• Precise timing capabilities of most subdetectors

CLIC_ILD
CLIC_SiD
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Vertex detectors
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Vertex detector requirements

CLIC_ILD:
Vertex & forward tracking

Requirements:
• 20 x 20 μm2 pixel size
• Material: 0.2% X

0
 per layer:

- Very thin materials / sensors
- Low-power design, power pulsing, low-mass cooling

• Time stamping precision: ≈10 ns (to reject backgrounds)
• Radiation level: ≈1010 n

eq
 /cm2 /yr (10-4 of LHC) 
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Vertex detector backgrounds
Incoherent pair background determines:
Locations of vertex detector & forward tracking disks, design of beam pipe

CLIC_ILD

Beam pipe

Barrel VTX

• Pair background mostly at low radii

• Inner radius of barrel vertex detector:
31 mm (CLIC_ILD), 27 mm (CLIC_SiD)

• Barrel: up to 1.9% train occupancy / pixel
• Forward: up to 2.9% train occupancy / pixel
(including safety factors of 5)



08/06/2012 Philipp Roloff KEK Physics Seminar 28

Vertex detector cooling
Vertex detector: P ≈ 500 W → need low mass cooling solutions

Forced (dry) air flow:
• Baseline for barrel region
• No extra material
• FEM studies show
encouraging first results

Options in forward disks:
• Evaporative CO

2
 cooling

(high pressure → thick tubes)
• Water cooling (sub-atmospheric
pressure)

Micro-channel cooling:
• Ongoing R&D (e.g. NA62 upgrade) 
• Integrate cooling channels in Silicon
• May be suitable for regions with insufficient air flow
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Pixel sensor options I
1.) Hybrid technologies:

• Thinned high-resistivity fully depleted sensors
• Fast, low-power highly integrated readout chip
• Low mass interconnects

Pros: - Factorisation of sensor + readout R&D
→ Readout chips profit fully from
advancing industry standards

Cons: - Interconnect difficult / expensive → needs R&D
- Harder to reduce material

• Thinned high-resistivity fully depleted sensors:
- 50 μm active thickness
- ALICE pixel upgrade → meets CLIC goals

•  Fast low-power readout chips:
- Timepix3 (≈2013) in 130 nm IBM CMOS:

• 55 x 55 μm2 pixels
• 1.5 ns time resolution → exceeds CLIC goals
• P ≈ 10 μW / pixel

- CLICPix (≈2015) in 65 nm, 20 x 20 μm2 pixels
- CLICPix demonstrator prototypes (≈2013): 64x64 pixel array
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Pixel sensor options II
2.) Integrated technologies:

• Sensor and readout combined in one chip
• Charge collection in epitaxial layer
Pros: - Allows for very low material solutions

- Synergy with R&D for ILC detectors
Cons: - Harder to achieve good time resolution and sufficient S/N

• Several active R&D programs (targeted to ILC requirements)
• Attempts to reach faster signal collection and ns time-stamping capability
(compatible with CLIC requirements):

- MIMOSA CMOS with high-resistivity epitaxial layers
- Chronopixel CMOS
- INMAPS
- High voltage CMOS

3.) New technologies: • Silicon-On-Insulator (SOI)
• Full 3D-integrated pixel sensors
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Tracking
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Tracking in CLIC_ILD

TPC + silicon tracking in 4T field Time
projection
chamber
(TPC)

Performance goal on
momentum resolution
achieved
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Occupancies in the TPC

Plots are for Gas Electron Multiplier (GEM) + Pad readout, voxels of 25 ns

→ A TPC at CLIC may need a larger inner radius or very small pads
Similar study with micromegas + pixel readout is starting

The readout time of the TPC is much longer than a CLIC bunch train
→ The TPC integrates the background of a full train at CLIC
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Tracking in CLIC_SiD
All silicon tracker in 5T field:
• Vertex detector and tracker
viewed as one system
• Combined seeding and tracking

Two readout (KPiX) chips bump
bonded to the sensor

Performance goal on
momentum resolution
achieved
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Calorimetry
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Calorimetry and PFA

Detector design driven by jet energy resolution and background rejection
→ Fine-grained calorimetry + particle flow analysis (PFA)

What is PFA?
Typical jet composition:
• 60% charged particles
• 30% photons
• 10% neutral hadrons

Always use the best
available measurement:
• charged particles
→ tracking detectors:
• photons → ECAL:
• neutrals → HCAL:

Hardware and software!
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Calorimetry: technology

ECAL:
• Silicon pads or scintillator
• Tungsten absorber
• Cell sizes: 25 mm2 (CLIC_ILD)

13 mm2 (CLIC_SiD)
• 30 layers in depth
• 23 X

0
 and 1 λ

HCAL:
• Several options for sensors
• Tungsten (barrel), steel (forward)
• Cell sizes: 9 cm2 (analog)

1 cm2 (digital)
• 60 - 75 layers in depth
• 7.5 λ

SiD ECAL
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Time development in hadronic showers

• In steel 90% of the energy is recorded within 6 ns (corrected for time-of-flight)
• In tungsten only 82% of the energy is deposited within 25 ns:
(much larger component of the energy in nuclear fragments)
→ Energy resolution degrades if not the majority of calorimeter hits is read

→ Need to integrate over ≈100 ns in the reconstruction, keeping the background 
level low

Steel-Scint HCAL W-Scint HCAL
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Test beam measurements
using tungsten absorbers

Main purpose: Validation of Geant4 simulation
for hadronic showers in tungsten

CERN-PS & SPS,
mixed beams 1-300 GeV

2010 & 2011:
Analog readout:
• Scintillator tiles 3x3 cm2

• Read out by SiPM

2012 (ongoing):
Digital (1-bit) readout:
• RPCs as active medium
• Fine segmentation with
1x1 cm2 pads
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Background suppression and 
event reconstruction
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Background suppression

Triggerless readout of full bunch train:

t
0
 of physics event

1.) Identify t
0
 of physics event in offline event filter

• Define reconstruction window around t
0

• All hits and tracks in this window are passed to the reconstruction
→ Physics objects with precise p

T
 and cluster time information

2.) Apply cluster-based timing cuts
• Cuts depend on particle-type, p

T
 and detector region

→ Protects physics objects at high p
T

tCluster
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Time windows and hit resolutions

Used in the reconstruction software for CDR simulations:

• CLIC hardware requirements
• Achievable in the calorimeters with a
sampling every ≈ 25 ns
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Impact of the timing cuts

e+e- → H+H- → tbbt (8 jet final state)

1.2 TeV background
in the reconstruction
window

100 GeV background
after (tight) timing cuts
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Jet reconstruction at CLIC I

Timing
cuts

Two jets + missing energy

• Using Durham k
T
 à la LEP

→ Timing cuts are effective,
but not sufficient
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Jet reconstruction at CLIC II

Timing
cuts

Two jets + missing energy

• Using Durham k
T
 à la LEP

→ Timing cuts are effective,
but not sufficient

• “hadron collider” k
T
, R = 0.7

→ Background significantly
reduced further
→ Need timing cut + jet finding
for background reduction 
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Physics benchmark 
studies
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Test of the di-jet mass reconstruction

Chargino and neutralino pair production:

82%

17%

Reconstruct W±/Z/h in hadronic decays
→ four jets and missing energy

Precision on the measured
gaugino masses (few hundred GeV):
1 - 1.5%
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Test of the lepton reconstruction

• Slepton production very clean at CLIC
• SUSY “model II”: slepton masses ≈ 1 TeV
• Investigated channels include:

• Leptons and
missing energy
• Masses from
endpoints of
energy spectra

Example: Smuons
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Complex final states
Heavy Higgs bosons: Flavour tagging crucial!
e+e- → HA → bbbb
e+e- → H+H- → tbbt

Accuracy of the heavy Higgs mass measurements: ≈ 0.3%



08/06/2012 Philipp Roloff KEK Physics Seminar 50

More detector benchmarks

• Full physics simulation and reconstruction with pileup from 
beam background (γγ → hadr.)

• Seven channels chosen to cover various crucial aspects of
detector performance (jet measurements, missing energy,
isolated leptons, flavour tagging, ...)
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CLIC energy staging
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CLIC energy staging
Majority of CDR studies done at 3 TeV:
• Most challenging beam-induced backgrounds in the detectors
• Ultimate physics reach

Interesting physics (may) exist at various energies:
• Few 100 GeV: 
Precision SM measurements: Higgs, top,...
• Still unknown:
Beyond Standard Model physics, 
potentially various thresholds 
from few 100 GeV to few TeV
→ Both require high luminosities!

• Significant luminosity penalty when running far below the nominal energy

• Possibility to start physics during construction phase for higher energies
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A possible scenario
Three energy stages:
• Exact energies to be determined by
future results
• At 1.4 TeV only one drive beam
complex needed
→ Natural intermediate stage
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Ongoing benchmark studies
for the CLIC CDR Vol. 3

Stage 1: E
CMS

 = 500 GeV, L = 500 fb-1

• Top threshold scan (350 GeV)
• Higgs mass from ZH events (350 and 500 GeV)

Stage 2: E
CMS

 = 1400 GeV, L = 1.5 ab-1

• Higgs self-coupling
• Several SUSY studies using a specific model

Stage 3: E
CMS

 = 3 TeV, L = 2 ab-1

• Higgs self-coupling
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Higgs studies for Vol. 3
At 350 GeV and 500 GeV:
• Higgs mass and cross section from ZH events
• Measurement of Z recoil allows
measurement without assumption on Higgs
decay modes

At 1.4 TeV and 3 TeV:
• Measure the HH final state
→ allows extraction of the Higgs self-coupling

• Only possible at high energy (cross section)
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SUSY model for staged energy studies

Stage 2:
• light gauginos
• sleptons
• squarks and
charged Higgs
too heavy

Quite different experimental challenges compared to the studies
at 3 TeV, because SUSY particles produced close to threshold
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Stau pair production

signal and backgrounds selected candidates

Requires identification of tau leptons!

Mass precision: ≈11 GeV

e+e- 1
+ 1

-+- 1
0 1

0
M(    ) = 517 GeV1

+
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Beyond the CDR
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Next phase: 2012 - 2016

Physics studies:
• Follow up on 8 TeV and 14 TeV LHC results
• Full exploration of SM physics potential (Higgs, top)
• More detailed understanding of reach for new physics
• Refinement of strategy for CLIC energy staging

Detector optimisation:
• General detector optimisation & simulation studies in close relation
with detector R&D

Detector R&D:
• Implementation examples demonstrating the required functionality
→ see next slide
• Strong overlap with ILC detector R&D programme
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Detector R&D

Vertex detector:
Demonstration module that meets the requirements

Main trackers:
Demonstration modules, including manageable occupancies in the event reconstruction

Calorimeters:
Demonstration modules, technological prototypes & cost mitigation

Electronics:
Demonstrators, in particular in view of power pulsing

Magnet systems:
Demonstrators of conductor technology, safety systems, etc.

Engineering and detector integration:
Engineering design and detector integration harmonised with hardware R&D demonstrators

→ Considered feasible in a 5-year R&D program
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Summary and 
conclusions
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Summary and conclusions

• Main message of the CLIC physics and detector CDR:
Physics at a 3 TeV CLIC e+e- collider can be measured with
high precision, despite challenging background conditions

• Backgrounds studied in detail:
- Require high granularity in space and time
- Define detector requirements and guide future R&D 

• The performance of the CLIC detector concepts was
demonstrated using detector benchmark reactions

• Next project phase (5 years):
- CLIC detector R&D (within the international LC R&D program)
- Further physics studies (LHC input) + detector optimisation
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Backup slides
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Vertex detector layouts

CLIC_ILD: 3 double layers, 1.84 · 109 pixels

CLIC_SiD: 5 single layers, 2.76 · 109 pixels
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Examples for hybrid approach

Thinned high-resistivity fully depleted sensors:
• 50 μm active width
• Example: ALICE pixel upgrade → meets CLIC goals

Fast low-power readout chips:
• Timepix3 (2012) in 130 nm IBM CMOS:

- 55 x 55 μm2 pixels
- 1.5 ns time resolution → exceeds CLIC goals
- P ≈ 350 mW / cm2 → meets CLIC goals
(with power pulsing)

• CLICPix (prototypes ≈2014) in 65 nm:
- 20 x 20 μm2 pixels

Low-mass interconnects between senor+readout:
• Cost driver → needs further R&D
• Technologies: Through-Silicon Vias (TSV),
3D interconnects, edgeless sensors,
stitching of CMOS arrays
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Examples for integrated approach

• Several active R&D programs (targeted to ILC requirements)

• Attempts to reach faster signal collection and ns time-stamping capability
(compatible with CLIC requirements):

- MIMOSA CMOS chip family (currently 350 nm):
developing high-resistivity epitaxial layers, smaller feature sizes
- Chronopixel CMOS sensors with fully depleted epitaxial layer
- INMAPS technology: deep p-well barrier protects n-well charge collector,
improves charge collection, allows for high-resistivity epitaxial layer and
full featured CMOS MAPS technology
- High voltage CMOS: CMOS signal processing electronics embedded
in reverse-biased deep n-well that acts as signal collecting electrode
- Silicon-On-Insulator (SOI): ≈200 nm SiO

2
 isolation layer separates

charge collection and readout functionality
- Full 3D-integrated pixel sensors: Thinned high-resistivity sensitive tier
coupled to additional tiers with advanced analog+digital functionality
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HCAL resolution
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PFO based timing cuts



08/06/2012 Philipp Roloff KEK Physics Seminar 69

Influence of pileup
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W+W- and ZZ
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