T2K実験の新しい結果 New Results from the T2K Experiment

2012/July/10 T. Ishii for the T2K collaboration

T2K Collaboration

K. Abe,⁴⁹ N. Abgrall,¹⁶ Y. Ajima,^{18,†} H. Aihara,⁴⁸ J. B. Albert,¹³ C. Andreopoulos,⁴⁷ B. Andrieu,³⁷ S. Aoki,²⁷ O. Araoka, 18,* J. Argyriades, 16 A. Ariga, 3 T. Ariga, 3 S. Assylbekov, 11 D. Autiero, 32 A. Badertscher, 15 M. Barbi, 40 G. J. Barker,⁵⁶ G. Barr,³⁶ M. Bass,¹¹ F. Bay,³ S. Bentham,²⁹ V. Berardi,²² B. E. Berger,¹¹ I. Bertram,²⁹ M. Besnier,¹⁴ J. Beucher,⁸ D. Beznosko,³⁴ S. Bhadra,⁵⁹ F. d.M. M. Blaszczyk,⁸ A. Blondel,¹⁶ C. Bojechko,⁵³ J. Bouchez,^{8,*} S. B. Boyd,⁵⁶ A. Bravar, ¹⁶ C. Bronner, ¹⁴ D. G. Brook-Roberge, ⁵ N. Buchanan, ¹¹ H. Budd, ⁴¹ D. Calvet, ⁸ S. L. Cartwright, ⁴⁴ A. Carver, ⁵ R. Castillo, ¹⁹ M. G. Catanesi, ²² A. Cazes, ³² A. Cervera, ²⁰ C. Chavez, ³⁰ S. Choi, ⁴³ G. Christodoulou, ³⁰ J. Coleman, ³⁰ W. Coleman, ³¹ G. Collazuol, ²⁴ K. Connolly, ⁵⁷ A. Curioni, ¹⁵ A. Dabrowska, ¹⁷ I. Danko, ³⁸ R. Das, ¹¹ G. S. Davies, ²⁹ S. Davis,⁵⁷ M. Day,⁴¹ G. De Rosa,²³ J. P. A. M. de André,¹⁴ P. de Perio,⁵¹ A. Delbart,⁸ C. Densham,⁴⁷ F. Di Lodovico,³⁹ S. Di Luise,¹⁵ P. Dinh Tran,¹⁴ J. Dobson,²¹ U. Dore,²⁵ O. Drapier,¹⁴ F. Dufour,¹⁶ J. Dumarchez,³⁷ S. Dytman,³⁸ M. Dziewiecki,⁵⁵ M. Dziomba,⁵⁷ S. Emery,⁸ A. Ereditato,³ L. Escudero,²⁰ L. S. Esposito,¹⁵ M. Fechner,^{13,8} A. Ferrero,¹ A. J. Finch,²⁹ E. Frank,³ Y. Fujii,^{18,†} Y. Fukuda,³³ V. Galymov,³⁹ F. C. Gannaway,³⁹ A. Gaudin,⁵³ A. Gendotti,¹⁵ M. A. George, 39 S. Giffin, 40 C. Giganti, 19 K. Gilje, 34 T. Golan, 58 M. Goldhaber, 6.* J. J. Gomez-Cadenas, 20 M. Gonin, 14 N. Grant.²⁹ A. Grant.⁴⁶ P. Gurplinger.⁵² P. Guzowski,²¹ A. Haesler,¹⁶ M. D. Haigh,³⁶ K. Hamano,⁵² C. Hansen,^{80,†} D. Hansen,³⁸ T. Hara,²⁷ P. F. Harrison,⁵⁶ B. Hartfiel,³¹ M. Hartz,^{59,51} T. Haruyama,^{18,†} T. Hasegawa,^{18,†} N. C. Hastings,⁴⁰ S. Hastings, ⁵ A. Hatzikoutelis, ²⁹ K. Hayashi, ^{18,†} Y. Hayato, ⁴⁹ C. Hearty, ^{5,8} R. L. Helmer, ⁵² R. Henderson, ⁵² N. Higashi, ^{18,†} J. Hignight,³⁴ E. Hirose,^{18,†} J. Holeczek,⁴⁵ S. Horikawa,¹⁵ A. Hyndman,³⁹ A. K. Ichikawa,²⁸ K. Ieki,²⁸ M. Ieva,¹⁹ M. Iida,^{18,+} M. Ikeda,²⁸ J. Ilic,⁴⁷ J. Imber,¹⁴ T. Ishida,^{18,+} C. Ishihara,⁴⁰ T. Ishii,^{18,+} S. J. Ives,²¹ M. Iwasaki,⁴⁸ K. Iyogi,⁴⁹ A. Izmaylov,²⁶ B. Jamieson,⁵ R. A. Johnson,¹⁰ K. K. Joo,⁹ G. V. Jover-Manas,¹⁰ C. K. Jung,³⁴ H. Kaji,⁵⁰ T. Kajita,⁵⁰ H. Kakuno,⁴⁸ J. Kameda,⁴⁹ K. Kaneyuki,^{50,4} D. Karlen,^{53,52} K. Kasami,^{18,+} I. Kato,⁵² E. Kearns,⁴ M. Khabibullin,²⁶ F. Khanam,¹¹ A. Khotjantsev,²⁶ D. Kielczewska,⁵⁴ T. Kikawa,²⁸ J. Kim,⁵ J. Y. Kim,⁹ S. B. Kim,⁴³ N. Kimura,^{18,+} B. Kirby,⁵ P. Knanam, A. Knöjäntsev, D. Kleizzewska, T. Kikawa, J. Klin, J. T. Kin, S. B. Klin, N. Kimura, "B. Kirby, J. Kisiel,⁴⁵ P. Kitching,¹ T. Kobayashi,^{18,†} G. Kogan,²¹ S. Koike,^{18,†} A. Konaka,⁵² L. L. Kormos,⁵⁹ A. Korzenev,¹⁶ K. Koseki,^{18,†} Y. Koshio,⁴⁹ Y. Kouzuma,⁴⁹ K. Kowalik,² V. Kravtsov,¹¹ I. Kreslo,³ W. Kropp,⁷ H. Kubo,²⁸ Y. Kudenko,²⁶ N. Kulkarni,³¹ R. Kurjata,⁵⁵ T. Kutter,³¹ J. Lagoda,² K. Laihem,⁴² M. Laveder,²⁴ K. P. Lee,⁵⁰ P. T. Le,³⁴ J. M. Levy,³⁷ C. Licciardi,⁴⁰ I. T. Lim,⁹ T. Lindner,⁵ R. P. Litchfield,^{56,28} M. Litos,⁴ A. Longhin,⁸ G. D. Lopez,³⁴ P. F. Loverre,²⁵ L. Ludovici,²⁵ T. Lux,¹⁹ M. Macaire,⁸ K. Mahn,⁵² Y. Makida,^{18,†} M. Malek,²¹ S. Manly,⁴¹ A. Marchionni,¹⁵ A. D. Marino,¹⁰ J. Marteau,³² J. F. Martin,^{51,4} T. Maruyama,^{18,†} T. Maryon,²⁹ J. Marzee,⁵⁵ P. Masliah,²¹ E. L. Mathie,⁴⁰ C. Matsumura,³⁵ K. Matsuoka,²⁸ W. Matveev,²⁶ K. Mavrokoridis,³⁰ C. Marzeuto,⁸ M. Metoka,²⁴ S. Mellenko,²⁵ C. McIauley,³⁰ X. S. McFarland,⁴¹ C. Matsumura,³⁴ T. Matukaha,²¹ W. Mateila,³¹ C. Markuet,⁴⁷ M. Marchionzi,²⁴ P. Michaenkei,²⁵ C. Michaenkei,²⁴ C. Matsumari,²⁴ T. Maruyama,³⁴ W. Mateile,³¹ W. Mateile,⁴⁷ O. Marzeuto,⁸ M. McCauley,³⁰ K. S. McFarland,⁴¹ C. Matsumari,³⁴ T. Marusheile,³⁰ M. Mateile,⁴⁷ A. Marchionzi,⁴² A. Michele,⁴¹ C. Matsumari,⁴⁴ T. Marusheile,⁴¹ O. Marzeuto,⁴⁴ A. Marchionzi,⁴⁴ C. Matsumari,³⁴ W. Mateile,³¹ W. Matuele,⁴⁷ M. Marchionzi,⁴⁴ A. Marchionzi,⁴⁴ D. Marzeuto,⁴⁵ D. Marzeuto,⁴⁵ D. Mateile,⁴⁵ D. Mateile,⁴⁵ D. Marzeuto,⁴⁵ D. Mateile,⁴⁶ O. Marzeuto,⁴⁵ D. Mateile,⁴⁵ D. Mate C. McGrew,³⁴ T. McLachlan,⁵⁰ M. Messina,³ W. Metcalf,³¹ C. Metelko,⁴⁷ M. Mczzetto,²⁴ P. Mijakowski,² C. A. Miller,⁵² A. Minamino,²⁸ O. Mincev,²⁶ S. Mine,⁷ A. D. Missert,¹⁰ G. Mituka,⁵⁰ M. Miura,⁴⁹ K. Mizouchi,⁵² L. Monfregola,² F. Moreau,¹⁴ B. Morgan,⁵⁶ S. Moriyama,⁴⁹ A. Muir,⁴⁶ A. Murakami,²⁸ M. Murdoch,³⁰ S. Murphy,¹⁶ J. Myslik,⁵ T. Nakadaira,^{18,†} M. Nakahata,⁴⁹ T. Nakai,³⁵ K. Nakajima,³⁵ T. Nakamoto,^{18,†} K. Nakamura,^{18,†} S. Nakayama,⁴⁹ T. Nakaya,²⁸ D. Naples,³⁸ M. L. Navin,⁴⁴ B. Nelson,³⁴ T. C. Nicholls,⁴⁷ K. Nishikawa,^{18,†} H. Nishino,⁵⁰ J. A. Nowak,³¹ M. Noy,²¹ Y. Obayashi,⁴⁹ T. Ogitsu,^{18,†} H. Ohhata,^{18,+} T. Okamura,^{18,+} K. Okumura,⁵⁰ T. Okusawa,³⁵ S. M. Oser,⁵ M. Otani,²⁸ R. A. Owen,³⁹ Y. Ovama,^{18,+} T. Ozaki,³⁵ M. Y. Pac,¹² V. Palladino,²³ V. Paolone,³⁸ P. Paul,³⁴ D. Pavne,³ G. F. Pearce, ⁴⁷ J. D. Perkin, ⁴⁴ V. Pettinacci, ¹⁵ F. Pierre, ^{8,e} E. Poplawska, ³⁹ B. Popov, ^{37,II} M. Posiadala, ⁵⁴ J.-M. Poutissou, ⁵² R. Poutissou, 52 P. Przewłocki, 2 W. Qian, 47 J. L. Raaf, 4 E. Radicioni, 22 P. N. Ratoff, 29 T. M. Raufer, 47 M. Ravonel, 16 M. Raymond,²¹ F. Retiere,⁵² A. Robert,³⁷ P. A. Rodrigues,⁴¹ E. Rondio,² J. M. Roney,⁵³ B. Rossi,³ S. Roth,⁴² A. Rubbia,¹⁵ D. Ruterbories,¹¹ S. Sabouri,⁵ R. Sacco,³⁵ K. Sakashita,^{18,+} F. Sánchez,¹⁹ A. Sarrat,⁸ K. Sasaki,^{18,+} K. Scholberg,¹³ J. Schwehr, ¹¹ M. Scotly, ³⁵ D. Sciuly, ⁵⁶ Y. Sakasha, ¹ T. Sekiguchi, ^{18,4} H. Sekiya, ⁴⁹ M. Shibata, ^{18,4} Y. Shimita, ⁵⁰ M. Shibata, ^{18,4} Y. Shimita, ⁵⁰ M. Shibata, ^{18,4} Y. Shimita, ⁵⁰ M. Shibata, ^{18,5} S. Sott, ²¹ M. Siyad, ⁴⁷ R. J. Smith, ³⁶ M. Smy, ⁷ J. T. Sobczyk, ⁵⁸ H. Sobel, ⁷ M. Sorel, ²⁰ A. Stahl, ⁴² P. Stamoulis, ²⁰ J. Steinmann, ⁴² B. Still, ⁵⁹ J. Stone, ⁴ C. Strabel, ¹⁵ L. R. Sulak, ⁴ R. Sulej, ² P. Sutcliffe, ³⁰ A. Suzuki, ²⁷ K. Suzuki, ^{18,4} S. Suzuki, ^{18,4} Y. Suzuki, ^{18,5} Y. Suzuki, ^{48,5} T. Szeglowski, ⁴⁵ M. Szeptycka, ² R. Takahashi, ²⁸ A. Takeda, ⁴ Y. Takenaga, ⁴⁹ Y. Takenaga, ⁴⁹ Y. Takenaga, ^{18,4} T. Szeglowski, ⁴⁵ M. Szeptycka, ² M. Tanaka, ^{18,4} M. Tanaka, ^{18,4} M. Tanaka, ^{18,5} M. Tana M. M. Tanaka, ^{18,†} N. Tanimoto, ⁵⁰ K. Tashiro, ³⁵ I. Taylor, ³⁴ A. Terashima, ^{18,†} D. Terhorst, ⁴² R. Terri, ³⁹ L. F. Thompson, ⁴⁴ A. Torley, ³⁰ W. Toki, ¹¹ T. Tomaru, ^{18,†} Y. Totsuka, ^{18,*} C. Touramanis, ³⁰ T. Tsukamoto, ^{18,†} M. Tzanov, ^{31,10} Y. Uchida, ²¹ K. Ueno,⁴⁹ A. Vacheret,²¹ M. Vagins,⁷ G. Vasseur,⁸ T. Wachala,¹⁷ J. J. Walding,²¹ A. V. Waldron,³⁶ C. W. Walter,¹³ P.J. Wanderer,⁶ J. Wang,⁴⁸ M. A. Ward,⁴⁴ G. P. Ward,⁴⁴ D. Wark,^{47,21} M. O. Wascko,²¹ A. Weber,^{36,47} R. Wendell,¹³ N. West, ³⁶ L. H. Whitehead, ⁵⁶ G. Wikström, ¹⁶ R. J. Wilkes, ⁵⁷ M. J. Wilking, ⁵² J. R. Wilson, ³⁹ R. J. Wilson, ¹¹ T. Wongjirad, ¹³ S. Yamada, ⁴⁹ Y. Yamada, ^{18,+} A. Yamamoto, ^{18,+} K. Yamamoto, ³⁵ Y. Yamanoi, ^{18,+} H. Yamaoka, ²D, ⁵Caravaca, Y. Kanazawa, P. Sinclair, C. Yanagisawa,^{34,1} T. Yano,²⁷ S. Yen,⁵² N. Yershov,²⁶ M. Yokoyama,⁴⁸ A. Zalewska,¹⁷ J. Zalipska,⁵ L. Zambelbi,³⁷ Perevozchikov

K. Zaremba,55 M. Ziembicki,55 E. D. Zimmerman,10 M. Zito,8 and J. Zmuda58

Canada U. Alberta U. B. Columbia U. Regina U. Toronto TRIUMF U. Victoria U. Winnipeg York U.

France **CEA Saclay IPN** Lyon LLR E. Poly. LPNHE Paris

Germany

U. Aachen

Italy

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

Japan **ICRR Kamioka ICRR RCCN** KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U. U. Tokyo

Poland

NCBJ, Warsaw T. U. Warsaw U. Silesia, Katowice U. Warsaw U. Wroklaw

INR

S Korea N. U. Chonnam U. Dongshin

Spain

U. Bern IFJ PAN, Cracow U. Geneva

Russia

N. U. Seoul

UK

Imperial C. L.

Lancaster U.

Liverpool U.

Oxford U.

Sheffield U.

STFC/RAL

Queen Mary U.L.

STFC/Daresbury Warwick U.

IFIC. Valencia IFAE, Barcelona

Switzerland

ETH Zurich

USA Boston U. Colorado S. U. U. Colorado Duke U. U.C. Irvine Louisiana S. U. U. Pittsburgh U. Rochester Stony Brook U.

U. Washington

~500 physicists from 12 countries

T2K (Tokai-to-Kamioka) experiment

T2K Main Aims:

\star Discovery of $v_{\mu} \rightarrow v_{e}$ oscillation (v_{e} appearance)

\star Precision measurement of v_{μ} disappearance

2011 v_{μ} results : Phys.Rev. D 85, 031103(R), 2012

T2K/J-PARC recovery after the BIG earthquake on March 11, 2011

On Dec.9, 2011, J-PARC LINAC operation restarted!!! On Dec.24, 2011, Neutrino events were observed at T2K-ND280!!

。復旧にご協力いただいたKEK内外の方、特に加速 器及び施設関係の皆様に深く感謝します。

09:30 Key was on.

Check of the displacement of the Tokai site relative to the Kamioka site

指息型

Coordinate of the Tokai reference point **TT** is obtained relative to the GPS-based control stations around the Kamioka area

Introduction

ニュートリノ振動

量子力学のマクロの世界への発現であり 非常に小さいニュートリノ質量を測るほとんど唯一の方法

ニュートリノの3世代混合

Physics Motivation

\bigstar Discovery of v_µ \rightarrow v_e oscill.

This is a direct detection of neutrino flavor mixing in "appearance" mode

 $\mathsf{P}(\mathsf{v}_{\mu} \rightarrow \mathsf{v}_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} \text{ L/4E})$

+ (CPV term) + (matter term) ... CPV term $\propto \sin\theta_{12} \sin\theta_{23} \sin\theta_{23} \sin\delta$

 $v_{\mu} \rightarrow v_{e}$ oscill. means θ_{13} is not zero.

Non-zero θ_{13} opens a possibility to measure CP violation in lepton sector Current knowledge on Neutrino mass & three flavor mixing

θ₁₃ measurement

sin²2θ₁₃ = 0.11 ^{+0.10}-0.06 (T2K 2011) (assuming δ_{CP} =0, sin²2θ₂₃=1, Δm^2_{32} =2.4 x 10⁻³ (NH)) p-value for θ₁₃=0 is 0.007 (2.5σ)

First indication of non-zero θ₁₃ Phys.Rev.Lett. 107, 041801, 2011

 δ is not known yet

T2K Beam Principle

Intense & high quality beam

* Off-axis v_µ beam

- Low energy narrow band beam
- E_v peak around oscillation maximum (~0.6GeV)
- Small high energy tail
 - \rightarrow reduce background events

(e.g. $NC1\pi^0$ is one of background of v_e search)

* Small intrinsic beam v_e fraction (~1%) from μ,K decays

 π , K production is measured in CERN NA61 exp. for the flux calculation

Phys.Rev.C84:034604(2011), Phys.Rev.C85:035210(2012)

Beamline Facility/Detectors

J-PARC Neutrino Beam Facility

- INGRID @ on-axis (0 degree)
- v beam monitor [rate, direction, and stability]

- ND280 @ 2.5 degree off-axis
- Normalization of Neutrino Flux
- Measurement of neutrino cross sections.
- •Dipole magnet w/ 0.2T
- FGD+TPC: Target + Particle tracking
- •**P0D**: π^0 Detector
- EM calorimeter
- Side-Muon-Range Detector

Far Detector (Super-K)

- Water Cherenkov detector w/ fiducial volume 22.5kton
- Record all the hit PMTs within $\pm 500 \mu$ sec centered at the beam arrival time
- Detector performance is well-matched at sub GeV $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-like} \leftrightarrow \mu^{-like}$
 - Good e-like
 (shower ring) /
 μ-like separation

Probability that μ is mis-id as electron is ~1%

Background: intrinsic v_e in beam

 π^0 from NC interaction

Data taking

Data Accumulation

Data for today's talk (full Run1+2+3) = 3.01 x 10²⁰ p.o.t. (Run1+2 for disappearance) Proton per pulse

Beam Quality

MUMON Angle (monitored pulse-by-pulse and controlled)

to negligible (2%) shift of the $E_{\rm V}$ peak

Near detector measurements

Off-axis detector (ND280)

Real Charged Current Quasi-Elastic event interacted in FGD1

Data analysis at Near

Flux & v int. cross section fit w/ ND measurement

- Making use of a good performance of the ND tracker (FGD+TPC), CCQE and nonQE enhanced samples are selected
- To predict neutrino events at the far detector, we make a fit to (p_µ, θ_µ) distribution for the CCQE and nonQE enhanced samples
- Fit results are extrapolated to the prediction at the far detector

By use of the ND280 information, systematic errors are improved

22

The predicted number of events and systematic uncertainties

 $\sin^2 2\theta_{10} = 0.0$ $\sin^2 2\theta_{10} = 0.1$

The predicted # of events w/ 3.01 x 10²⁰ p.o.t.

Event category

the predicted # of event distribution

	Livent category 511	1 2013 = 0.0	2013 - 0.1		_			
	Total	$3.22{\pm}0.43$	10.71 ± 1.10	unit	4000	w/c	ND280 measu	irement_
				5		w/	ND280 measu	irement
	$ u_e ext{ signal} $	0.18	7.79	trar	3000	~	$\sin^2 2\theta = 0$	
	ν_e background	1.67	1.56	arbi	2000		$\sin^2 2\theta_{13} = 0$	-
	$ u_{\mu} \text{ background}(\text{mainly NC}\pi^{0}) $) 1.21	1.21		2000		$\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (Normal hierarchy)	-
	$\overline{\nu}_{\mu} + \overline{\nu}_{e}$ background	0.16	0.16		1000		$\delta_{CP} = 0$	-
	μ \sim σ σ						3.010 × 10° p.o.t.	-
Systematic uncortainties								
	ystematic uncertain	11103		III	2000	$\sin^2 2\theta_{13} = 0.1$	_	_
	Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	$1 \tilde{k}$	1500	$\sin^2 2\theta_{23} = 1.0$ $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (Normal hierarchy)	4	
	Beam flux+ ν int.	0707	F 7 0	bitt		$\delta_{CP} = 0$		
	in T2K fit	8.1 %	5.7 %	0 <mark>19</mark>	1000	3.010 × 10 ²⁰ p.o.t.		-
	ν int. (from other exp.)	5.9~%	7.5 %	6	500	P. P.		-
	Final state interaction	3.1 %	2.4 9	2	0			
			2.1 /	4	0	5	10 15	20
	Far detector	7.1 %	3.1 %	0	Ex	pected # of sig	gnal+backgro	und events
	Total	13.4~%	10.3~%	70				
	(T2K 2011 results:	~23%	~18	%)	UNCE	ertainties	are redu	lcea
				, •,	usin	a ND280	measur	ement

big improvement from the T2K 2011 results

Data reduction at Far

Far detector events at beam timing

Events at the T2K beam timing synchronized by GPS

Fiducial volume cut (distance between recon. vertex and wall > 200cm)

26

Selection of v_e appearance events

Visible energy > 100 MeV to reject v_{μ} + $\overline{v_{\mu}}$ CC & NC background No decay-electron cut (decay electron comes from μ or π)

Selection of v_e appearance events

Force 2^{nd} ring in the PMT hits Invariant mass cut ($M_{inv} < 105 \text{ MeV/c}^2$) to reject remaining NC π^0 background

Reconstructed v energy cut ($E_{rec} < 1250 \text{ MeV}$) to reject intrinsic beam v_e

ve candidate event selection

	RUN 1+2+3 3.010 × 10 ²⁰	Data	MC Expectation w/ sin ² 2θ ₁₃ =0.1							
	РОТ		Signal vµ→ve	BG total	$CC (v_{\mu} + \bar{v}_{\mu})$	$CC(v_e+\bar{v}_e)$	NC			
	Fully contained FV at beam timing	174	12.35	165.47	117.33	7.67	40.48			
	Single ring	88	10.39	82.78	66.41	4.82	11.55			
	e-like	22	10.27	15.60	2.72	4.79	8.10			
	Evis>100MeV	21	10.04	13.53	1.76	4.75	7.01			
	No decay-e	16	8.63	10.09	0.33	3.76	6.00			
	2γ invariant mass cut	11	8.05	4.32	0.09	2.60	1.64			
	$E_v^{rec} < 1250 \text{ MeV}$	11	7.81	2.92	0.06	1.61	1.25			
	(MC $\sin^2 2\theta_{13}=0$ case)		(0.18)	(3.04)	(0.06)	(1.73)	(1.25)			
	Efficiency [%]		60.7	1.0	0.0	20.0	0.9			
of events	$ \begin{array}{c} $	11 candidate events are observed $N_{exp}=3.22\pm0.43$ for $sin^22\theta_{13}=0$ The probability (p-value) to observe 11 or more events with $\theta_{13}=0$ is 0.08% (3.2 σ)								
Number										

Evidence of ve appearance

Reconstructed v energy (MeV)

ve candidate events (Run3)

.

#9

T2K Beam Run 420024 Spill 2516122 Run 69628 Sub 1372 Event 327011631 12-04-09:20:14:06 T2K beam dt = 2506.7 ns Inner: 1776 hits, 4866 pe Outer: 4 hits, 3 pe Trigger: 0x80000007 D wall: 330.5 cm e-like, p = 435.2 MeV/c

Charge(pe) . >26.7

٠

- * 23.3-26.7 * 20.2-23.3 * 17.3-20.2 * 14.7-17.3 • 6.2-8.0 • 4.7-6.2 * 3.3- 4.7 • 2.2- 3.3 * 1.3- 2.2 • 0.7- 1.3
- 0.2- 0.7 < 0.2

T2K Beam Run 420171 Spill 2909438 Run 69678 Sub 428 Event 101211860 12-04-23:10:09:36 T2K beam dt = 2494.1 ns Inner: 1315 hits, 4407 pe Outer: 1 hits, 0 pe Trigger: 0x80000007 D_wall: 252.9 cm e-like, p = 410.4 MeV/c

Charge(pe)

.

0 mu-e decays

New ve candidate event (Run3)

visible energy : 693.4 MeV # of decay-e : 0 2γ Inv. mass : 1.2 MeV/c² recon. energy : 943.1 MeV

3.3- 4.7 2.2- 3.3 1.3- 2.2 0.7- 1.3 0.2- 0.7 < 0.2

10.5%

74.6%

32.4%

Oscillation analysis

Oscillation analysis

For the 2011 oscillation analysis, only number was used. This time, analyses which use both number and shape are also performed to get better sensitivity on θ_{13} .

- We use three analysis methods:
 - 1. Maximum likelihood Fit of the Number and 2Ddistribution of electron momentum p_e & angle θ_e
 - 2. Maximum likelihood Fit of the Number and reconstructed neutrino energy E_v^{rec} distribution
 - "Number only" analysis = Single-bin counting experiment analysis (with Feldman-Cousins technique)
- All three methods demonstrate consistent results

Oscillation parameter fit (Method 1)

Performing an extended maximum likelihood fit to extract sin²20₁₃

$$\mathcal{L}(N_{obs.}(x, \mathbf{o}, \mathbf{f})) = \mathcal{L}_{norm}(N_{obs.}; \mathbf{o}, \mathbf{f}) \times \mathcal{L}_{shape}(\mathbf{x}; \mathbf{o}, \mathbf{f}) \times \mathcal{L}_{syst.}(\mathbf{f})$$

measurements, oscillation parameters

systematic parameters

見つかった11イベントのすべての情報を使う Fit data with number + (p_e, θ_e) shape (2 dimensional) v oscillation parameters fixed:

- $\Delta m_{21}^2 = 7.6 \times 10^{-5} \,\mathrm{eV}^2$
- $\Delta m_{32}^2 = \pm 2.4 \times 10^{-3} \,\mathrm{eV}^2$
- $\sin^2 2\theta_{12} = 0.8704$, $\sin^2 2\theta_{23} = 1.0$

(p_I,θ_I)

Results

Allowed region of $sin^2 2\theta_{13}$ for each value of δ_{CP}

best fit w/ 68% CL error @δ_{CP}=0 normal hierarchy:

$$\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$$

inverted hierarchy:

 $\sin^2 2\theta_{13} = 0.116^{+0.063}_{-0.049}$

This result is consistent with number+shape (rec. E_v) method and number only method -2

Comparison w/ 2011 results

Error is reduced by analyzing full Run1+2+3 data, and new result is consistent with 2011(Run1+2) result

Disappearance analysis

v_{μ} Disappearance (Run1+2)

- 31 v_u candidate events were observed in RUN1+2 data. 103.6 events are expected in case of no oscillation. $^{+13.8}_{+13.4}$ $|\Delta m_{32}^2| = 2.65 \times 10^{-3} \text{ eV}^2, \sin^2 2\theta_{23} = 0.98$ Event selection T2K Run 1+2 Single-ring & μ -like & p_{μ} >200MeV/c & # of decay-e < 2 T2K Run 1+2 Alternate Analysis 3.5 MINOS 2011 Phys. Rev. Lett. 101, 131802 (2008) 20 $|\Delta m^2_{32}|$ (eV²/c⁴) Super-K Zenith Phys.Rev.D71:112005 (2005) Data Super-K L/E 15 Number of events No oscillation Best fit with oscillation $(\sin^2 2\theta, \Delta m^2) = (0.99, 2.6 \times 10^{-3} eV^2)$ 10 5 Phys. Rev. D 85, 031103 (2012) 15 8 10 6 08 0.85 0.95 09 Reconstructed neutrino energy(GeV) $\sin^2 2\theta_{23}$
 - Result of RUN1+2+3 data will be presented soon.

Summary & Outlook

Summary & Outlook

- We report new results on v_e appearance based on full data taken before summer shutdown (3.01 x 10²⁰ p.o.t. ~4% exposure of T2K's goal)
 - 11 candidate events is observed
 - p-value is 0.08% (equivalent to 3.2σ) **Evidence of ve appearance**
 - $-\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040} \rightarrow \text{open a possibility to measure CP}$
 - for $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (NH), $\delta_{CP}=0$, $\sin^2 2\theta_{23}=1$ violation in the lepton sector
- Apparent v_{μ} disappearance is observed and consistent contour is obtained with other experiments (1.43 x 10²⁰ p.o.t.)
- We want to accumulate ~8x10²⁰ p.o.t before the summer shutdown of 2013 in order to obtain definitive answer on v_e appearance phenomenon
- After the LINAC upgrade in 2013, we need further beam powerup to precisely measure the oscillation parameters (including θ₂₃) for exploration of the lepton sector