

WH—Ivbb using DLM and Discriminant Analysis at CDF Masakazu Kurata, Shinhong Kim University of Tsukuba Kunitaka Kondo

Waseda University

On behalf of the CDF Collaboration

KEKセミナー, 09/04/2012

Outline

- Introduction
- Tevatron & CDF detector
- Event selection
 - > b-tagging
- DLM analysis
- Discriminant Analysis using DLM
 - > Result from DLM input variables
 - > Strategy for the final discriminant
- Systematics error on signal & backgrounds
 Final result
- Summary of CDF Higgs Search

Introduction Higgs associate W \rightarrow WH \rightarrow lvbb process is a strong channel at Tevatron

- It is a golden channel for low mass(m_H<135GeV) because Higgs dominantly decays into b quark pair(b-tagging is >50% efficient)
- By requiring one lepton, large QCD background can be suppressed
- The process is distinct from other backgrounds

q

q

1.0F

0.1

100

ΖH

120

WH analysis and DLM

- At CDF, various techniques used to search for WH process:
 - > The purpose is to separate signal from backgrounds
 - Neural Network
 - > Matrix Element
- Main challenge: develop a technique to separate signal from backgrounds
 - > We developed a new technique for extracting signal information
 - > Establish Dynamical Likelihood Method(DLM)
 - > We calculate a discriminant based on DLM to evaluate upper limit on cross section for WH
- DLM was used for top analysis so far
 - > Top mass measurement
 - ttbar resonance search

Tevatron

- pp collision $\Theta \sqrt{s} = 1.96 \text{TeV}$
- Run-II Operation: from Summer 2001 to Autumn 2011
 - > Last Run was on Sep. 30, 2011
- Two multi purpose Detectors: CDF & DO

- Luminosity
 - > 12fb⁻¹ delivered
 - > 10fb⁻¹ collected

CDF detector Multipurpose detector

- Top/EWK measurements, Higgs and New Phenomena searches, B physics
- Silicon Finding secondary vertex: b-tagging
- > COT precision tracking
- > Calorimeter
 - EM for e/y measurement
 - Had jet energy
- > Solenoid 1.5T field
- > Muon system

Event selection and data Event selection is based on the standard criteria of WH analysis at CDF

- Use the events with central lepton or plug electron good quality Isolated track
- > Selection cuts: 2jets + 1 lepton + large MET
 - Jet: 2jets with Et>20GeV and |n_{det}|<2.0
 - Lepton: Et>20 GeV and require tight lepton selection or Isolated track Selection
 - Missing Et>20GeV (for central electron & Isolated Track) Et>25 GeV (for plug) Et>10GeV (for muon)
- > b-tag to reject large background events
 - 5 b-tag categories: Double tag(3 categories) and Single tag(2)
- Data and Monte Carlo
 - Data: Full dataset evaluate expected sensitivity for 9.4 fb⁻¹
 - MC: Pythia or MadGraph+Pythia (for EWK) Alpgen+Pythia (for W+jets)

b-tagging

 b-tagging is the important point to search for Higgs boson at CDF

> By 2010, CDF had 5 types of b-taggers

Incorporating the knowledge of previous taggers into one

- The Higgs Optimized b-Identification Tagger(HOBIT)
 - A multivariate b-tagger
- > HOBIT is trained with VH and W+LF MC samples

- b-tagging on the analysis
 For HOBIT, several operation points (9) were provided
- For the analysis, only 2 points are used:
 - > Tight output>0.98
 - > Loose output>0.72
- Using these operation points, 5 orthogonal tagging categories are composed: TT, TL, LL, T, L
- Improvement of the result is >12% with HOBIT

Operation Point	LF tag	HOBIT Eff.
Tight	~1%	45%
Loose	~6%	70%

Dynamical Likelihood Method We use DLM method to separate signal and Backgrounds

- DLM is a method to extract signal events from data by evaluating matrix elements as likelihood function.
 - DLM is applicable to processes for which matrix elements can be calculated theoretically : WH, Single top, Wbb
- Formulation:

Likelihood function of DLM:

$$L_{path}(\alpha, x \mid y) = N \frac{d\sigma}{d\Phi} w(x \mid y)$$
$$\overline{L} = \frac{1}{n_{path}} \sum_{k}^{n_{path}} L_{path}^{(k)}(\alpha, x \mid y)$$

w(x|y): transfer function \Rightarrow a probability density function for x (parton momenta) when y (observed quantities) is given.

Relationship between parton level and detector measurement

Summary of DLMBasic idea of DLM

- Given the single event, Parton level Momenta set can be obtained randomly according to the probability of Transfer Functions(P.D.F)
- > We can calculate Matrix Element using parton level momenta set.
- We can treat statistically by accumulating the results of many parton level momenta sets
- > Likelihood of each momenta set is given by

$$L_{path}(\alpha, x \mid y) = N \frac{d\sigma}{d\Phi} w(x \mid y)$$

$$L_{joint} = \frac{1}{n_{event}} \sum_{i}^{n_{event}} \overline{L_{eve}} @each Higgs mass$$

For the better discrimination of signal and backgrounds,

- Shape information should be obtained from Type II
 - Because the signal shape is quite different from backgrounds
- Absolute value information should be obtained from Type I
 - Basically, signal likelihood is higher than backgrounds at whole Higgs mass range

seem good

Property of Type-I & Type-II

- Linearity check MC mass input vs. DLM expected Higgs mass
 - > Linearity is well reserved when using Type II

Shape check- TypeII has shaper distribution than Type I

Input variable candidates for MVA Extract the signal feature with 2 points

- > Higgs mass dependence shape
 - Evaluate Localized Moment use up to 6th order

 $\int (m_H - m_{H0})^n \cdot f_{event}(m_H) dm_H$ nth-order moment

- As m_{H0}, expected mass of signal from DLM is used
- > Absolute value of likelihood
 - Several kinds of likelihood can be obtained from DLM result with signal Matrix Element
 - Maximum likelihood on Higgs mass dependence
 - Likelihood@ DLM expected Higgs mass
 - Higgs part likelihood @ maximum likelihood of overall Matrix Element
 - W part liielihood @ maximum likelihood of overall Matrix element
 - Likelihoods as a result of DLM with Wbb & singletop(s-ch) Matrix Element
 - All the parameters(mass, width, etc) in the Matrix Element are set

Localized moment around signal Localized moment around signal expected mass for each process

> $\int (m_H - m_{H0})^n \cdot f_{event}(m_H) dm_H$ nth-order moment

Up to 6th order

Localized moment Distribution check with pretag events

- > Up to 6th order
- > 3rd, 4th and 5th order moments have strong separation power
 - These moments are adopted as the input variables by most of the discriminants

Localized moment Signal region - most sensitive category(TT)

- > Up to 6th order
- > 3rd, 4th and 5th order moments have strong separation power
 - These moments are adopted as the input variables by most of the discriminants

m..(GeV/c

Likelihood - from signal M.E Comparison of the distribution

Likelihoods - from signal M.E For the sample before b-tag

Likelihoods - from signal M.E Signal region - most sensitive category(TT)

DLM with Singletop & Wbb bases
 To improve performance, DLM is used with background matrix elements:

- > Singletop (sch, leading order)
- > Wbb(leading order)
- Optimize transfer functions for each background process using MC
- Same procedure when performing DLM with signal ME(1.0 × 10⁶paths)
- Background processes don't have any dependence of certain variable. So they only have the expectation value of likelihood (this means the integration of phase space)

 Likelihood - from Wbb & Stop M.E
 Comparison of the distribution
 Perform DLM using Wbb(leading order) or singletop(s-ch) Matrix Elements

Likelihood - from Wbb & Stop M.E DLM result of the sample before b-tag Perform DLM using Wbb(leading order) or singletop(s-ch) Matrix Elements

Likelihood - from Wbb & Stop M.E
DLM result of the sample before b-tag
Perform DLM using Wbb(leading order) or singletop(s-ch) Matrix Elements
Signal region - most sensitive category(TT)

DLM Analysis - TT DLM Analysis - TT L=9.4fb⁻¹ L=9.4fb⁻¹ **CDF Run-II Preliminary CDF Run-II Preliminary** WH→lvbb: central WH→lvbb: central 100 Number of events data Number of events 🗕 data 70 signal(120)×10 signal(120)×10 Top related Top related 60 Diboson Diboson 80 Wbb stop Z+jets Z+jets 50 W + HF W + HF W+LF W+LF 60 non-W QCD non-W QCD 40 30 40 20 20 10 35 4 log(L_{stop} 45 5 log(L_{Wbb} 30 35 5 10 20 25 30 40 15 20 25 40 15 50

Making discriminant for double tag case Using Support Vector Machine to separate signal from background

- > 3-type discriminants are made using SVM
 - Signal vs. ttbar (d_{ttbar}) or Wbb (d_{Wbb}) or singletop(s-ch) (d_{stop})

Final discriminant is obtained by calculating weighted harmonic average of those 3-type discriminants:

Apply to the sample before b-tag

Output result after training Apply TT tag SVM discriminant to pretag

Making discriminant for 1 tag case Almost same method as double tag case

- 5-type discriminants are made using SVM
 - Signal vs. ttbar (d_{ttbar})
 - Signal vs. Wbb (d_{Wbb})
 - Signal vs. singletop(s-ch) (d_{stopsch})
 - Signal vs. singletop(t-ch) (d_{stoptch})
 - Signal vs. Wc (d_{Wc})
- > harmonic average is used as final discriminanat: $d_{final} = \frac{a+b+c+d+e}{\frac{a}{d_{ttbar}} + \frac{b}{d_{Wbb}} + \frac{c}{d_{stop}} + \frac{d}{d_{stoptch}} + \frac{d}{d_{st$

Apply to the sample before b-tag

Final discriminant applied to data and the prediction

KEKゼミノ─ ZUIZ/U9/U4

Systematics summary on signal

Source	Error (%)				
	TT	TL	LL	Т	L
Stat.	0.7	0.7	0.7	0.4	0.4
JES	2.4	1.4	1.0	1.6	2.2
ISR/FSR	5.2	3.8	5.7	3.4	2.9
PDF	1.4	1.4	1.2	1.1	0.7
b-tagging	8.0	7.2	6.4	4.0	3.2
Luminosity	6	6	6	6	6
Lepton ID SF	2	2	2	2	2
Trigger	~ 1	~ 1	~ 1	~ 1	~ 1

Table 11: Summary of systematic uncertainties on the acceptance in central lepton events

Source	Error (%)				
	TT	TL	LL	Т	L
Stat.	1.7	1.9	1.9	1.0	1.0
JES	1.4	1.2	3.4	4.6	2.2
ISR/FSR	12.6	4.1	5.6	3.4	2.8
PDF	2.9	2.5	1.2	1.1	1.0
b-tagging	8.0	7.2	6.4	4.0	3.2
Luminosity	6	6	6	6	6
Lepton ID SF	2	2	2	2	2
Trigger	~ 1	~ 1	~ 1	~ 1	~ 1

Table 12: Summary of systematic uncertainties on the acceptance in PHX electron events

Source	Error (%)				
	TT	TL	LL	Т	L
Stat.	1.7	1.2	1.2	1.0	1.0
JES	4.0	3.8	6.4	1.0	2.2
ISR/FSR	3.7	3.2	2.8	1.6	2.2
PDF	1.2	1.2	0.8	0.8	0.9
b-tagging	8.0	7.2	6.4	4.0	3.2
Luminosity	6	6	6	6	6
Track Reco.	4.95	4.95	4.95	4.95	4.95
Trigger	2	2	2	2	2

Table 13: Summary of systematic uncertainties on the acceptance in Isolated Track events

Main source on signal:

- Luminosity
- b-tagging uncertainty

Systematics summary on backgrounds Typical value – Eroor varies for each tag category & lepton type

Source	Error (%)							
	$t\overline{t}$	singletop	$W + b\overline{b}$	$W + c\overline{c}$	Mistag	Diboson	Z+jets	nonW
JES	4-7	1-3	6-8	8-10		2-6	3-6	
ISR/FSR	4-9	1-3						
PDF	1-2	1				3	5	
HF fraction			38	38				
Mistag rate					28			
Z+jets cross section							7	
Fit								40
Luminosity	6	6				6	6	
Trigger(central & plug)	1	1				1	1	
Trigger(Isolated Track)	2	2				2	2	
Lepton ID (central & plug)	2	2				2	2	
Reconstruction (Isolated Track)	4.95	4.95				4.95	4.95	
b-tag(TT)	8.0	8.0	8.0	8.0		8.0	8.0	
b-tag(TL)	7.2	7.2	7.2	7.2		7.2	7.2	
b-tag(LL)	6.4	6.4	6.4	4,3		6.4	6.4	
b-tag(T)	4.0	4.0	4.0	4.0		4.0	4.0	
b-tag(L)	3.2	3.2	3.2	4,3		3.2	3.2	

Table 4: Summary of systematic uncertainties on the backgrounds

Main source on backgrounds:

- Heavy Flavor Fraction uncertainty
- nonW(Fake) uncertainty
- **B-tagging**
- luminosity

The preliminary result of upper limit

@m_H=125GeV Exp. 2.97 × SM Obs. 5.05 × SM

$m_H({ m GeV})$	Obs.	-2σ	-1σ	median	$+1\sigma$	$+2\sigma$
100	2.05	0.60	0.91	1.54	2.57	4.22
115	3.89	0.67	1.00	1.64	2.69	4.01
110	4.27	0.76	1.19	1.97	3.26	5.18
115	3.59	0.97	1.45	2.39	3.92	5.83
120	5.87	1.10	1.66	2.78	4.61	6.95
125	5.05	1.35	1.90	2.97	4.76	7.34
130	7.64	1.72	2.58	4.03	6.50	10.19
135	9.37	2.33	3.44	5.67	9.24	14.49
140	10.39	3.01	4.77	7.83	12.85	19.11
145	19.52	4.95	7.10	11.11	18.08	26.15
150	33.92	5.98	8.96	14.59	23.09	33.98

Table 1: The numbers of the upper limit of Higgs production cross section

Summary on the Analysis

- DLM is being established to analyze $WH \rightarrow Ivbb$ process
 - > Signal information can be extracted effectively
 - > Performance check is OK for Higgs analysis
- New b-tagging algorithm boost the Higgs acceptance
 - > HOBIT improve the result of >12% from old b-taggers
- Expected upper limit is calculated using Discriminant
 - Discriminants are obtained by Support Vector Machine and incorporate SVM output into the final discriminant
- The result is comparable to the other WH analysis
 - > 2.97 × SM(Exp.), while $5.05 \times SM(Obs.) @m_{H}=125GeV$
- Plan to be published

Summary of Higgs search at CDF

Channels of CDF analysis

- To improve the sensitivity, many Higgs production/decay channels are analyzed at CDF \rightarrow combine the results
- Dominant processes are:
 - Low mass (m_H<135GeV)
 VH process and H→bb

> High mass (m_H>135GeV)
 gluon fusion and H→WW→lvlv

Other processes contribute
 ~10%

Channel	Luminosy used
WH→Ivbb	9.45
ZH→lvbb	9.45
ZH→vvbb	9.45
WH→I∨TT/ZH→IITT	8.3
H→TT	6.2
Н→үү	10.0
VH→jjbb	9.45
ttH→WWbbbb	9.45
H→WW→I∨I∨	9.7
H→WW→Ivtv	9.7
$H \rightarrow VWW \rightarrow H + X$	9.7
$H \rightarrow VWW \rightarrow \pm \pm + X$	9.7
H→ZZ→IIII	9.7

KEKセミナー

2012/09/04

General Strategy for the analyses

- Maximize the acceptance triggers & leptons
- Separation of signal from backgrounds
 - > Optimize MVA technique
 - Neural Net, Boosted Decision Tree, Matrix Element, etc.
 - Some analyses use MVA output into another MVA
- Improve b-jet energy measurement (low mass analyses)
 - b-jet energy correction based on NN
- Improve b-tagging HOBIT
 - > Algorithms based on MVA.
- Divide analysis sample into high/low purity subsamples, and combine them at last
 - Divide due to lepton and b-tag quality

CDF Higgs result

- Exclusion:
 - > m_H<96.9GeV
 - > 148.8GeV<m_H<175.2GeV
- Largest excess: 2.6σ@120GeV

Excess significance Is the excess consistent with background only assumption?

Contribution of each channel So many channels are analyzed for better sensitivity

Tevatron Higgs result

<u>Decay Mode(H</u>→bb, H→WW)

Summary

Most of the channels use Full dataset for Higgs search

- > CDF excludes $m_H < 96.9 \text{ GeV} \& 153.8 \text{ GeV} < m_H < 176.1 \text{ GeV}$
- The largest excess is 2.60@120GeV at CDF
- > Global significance at CDF is 2.10
- Tevatron excludes 100GeV<m_H<103GeV & 147GeV<m_H<180GeV</p>
- > 2.50 excess is seen at 115GeV<m_H<135GeV at Tevatron
- > On $H \rightarrow$ bb search, the evidence of Higgs can be seen

Results are available:

- > Tevatron:
 - <u>http://tevnphwg.fnal.gov/results/SM_Higgs_Summer_12/</u>
 - <u>http://tevnphwg.fnal.gov/results/Higgs_bb_Summer_12/</u>
- > CDF
 - <u>http://www-cdf.fnal.gov/physics/new/hdg/Results.html</u>

Backups

HOBIT validation HOBITagger Validation plot

How to parameterize T.F. Transfer variables(T.V.): variables to analyze easier

Variable	Use for analyzing T.F.
Et	$\mathcal{E}_{-} = \frac{Et(parton) - Et(measure)}{Et(measure)}$
	S_{Et} $Et(parton)$
φ	$\xi_{\phi} = \phi$ (measure)- ϕ (parton)
η	ξ _η =η(measure)-η(parton)

Make each Transfer Function at 3 Higgs mass ranges:

- Low mass(m_H<=120GeV)</p>
- Middle mass(120<m_H<140GeV)
- > High Mass(m_H>=140GeV)
 - This division is because there was a mass dependence of transfer function when checking expected mass
- ξ distribution has Et and η dependence due to detector resolution —parameterization
 - So divide transfer variables into each Et(n) bin and obtain Et(n) dependence of all the fitting parameters

Transfer functions
 They have Energy and angular dependence
 ⇒parameterize with Et and η

Divide into each Et bin and obtain Et dependence of all the fitting parameters

e.g.) Et dependence of jets

b-jet resolution

- b-jets property is quite different from light flavored jets
- Use MVA technique to improve the b-jet resolution ~20% improvement

 $CDF: ZH \rightarrow l^+l^-b\bar{b}$ Channel

$CDF: ZH \rightarrow l^+l^-b\overline{b}$ Channel

Localized moment Distribution with High stat. tag category(T)

- > Central leptons
- Localized moment around Higgs expected mass of m_H=120GeV case(117.01GeV)

Likelihoods - from signal M.E. Distribution of High stat. tag category(T)

> mH=120GeV

Likelihood - from Wbb & Stop M.E
 Distribution check - high stat. tag category(T)

> Perform DLM using Wbb(leading order) or singletop(s-ch) Matrix Elements

Old b-tagging technique

- B hadrons fly from primary vertex, and produce secondary vertex
 - > Secvtx tag finding secondary vertex
 - > Jetprob use impact parameter d₀ and no secondary vertex required
 - > Other taggers based on N.N.

