## Search for the Higgs Boson Produced in Association with a Vector Boson Using Like-Sign Dilepton Events at CDF



<u>Outline</u> 1. Introduction 2. Backgrounds 3. Multivariate Analysis (Boosted Decision Trees) 4. Results & Summary



# Introduction



★ Higgs Boson was only undiscovered
 elementary particle in the Standard Model
 (SM).

★ 5 sigma discovery is announced in July 2012 at LHC (consistent to SM Higgs).

★ Need to investigate various channels.
 ★ VH production is a strong channel at the Tevatron (relatively large cross section).
 ★ Final state with like-sign charge <sub>σ</sub> combination

 $VH \to VWW \to \ell^{\pm}\ell^{\pm} + X$ 

is very clean channel!

★ Also, this channel can be investigated Beyond SM (e.g. Fermiophobic (FP) Higgs, which cannot couple to fermions.)



 $m_h$  [GeV]



# **Tevatron & CDF Detector**

- $\bigstar \sqrt{s} = 1.96$  TeV  $p\bar{p}$  collisions at CDF and D0
- ★ Data taking was finished in last September
- $\bigstar$  Delivered: ~ 12 fb<sup>-1</sup>
- ★ CDF Data taped: ~ $10 \, \text{fb}^{-1}$





CDF Detector: general purpose detector





\*Data: 9.4 fb<sup>-1</sup> collected by CDF (Full Dataset)
\*Central leptons (Electron & Muon) + Forward Muons
\*Minimum kinematical requirement for the 1st and 2nd leptons (maximizing signal acceptance)

 $\checkmark$  1st electron:  $E_T > 20 \text{ GeV } \& p_T > 10 \text{ GeV}$ 

**\***1st muon:  $p_T > 20 \text{ GeV}$ 

✓ 2nd lepton:

 $E_T^{\ell_2} > 6 \text{ GeV } \& p_T > 6 \text{ GeV}/c$ 

**★**Isolation cuts

\*Track quality cuts (including silicon hits)

\*Lepton identification cuts based on likelihood method

\*Z veto, dilepton mass cut, Like-sign charge combination



# Backgrounds



- Fake leptons (data-driven) (Details are shown in later)
  - $\checkmark$  Punch-through hadrons
  - $\checkmark$ Non-prompt leptons
  - Fake =  $R_{\text{fake}} \times (\# \text{ of isolated tracks})$
- Residual Conversions (data-driven) (Details are shown in later)

 $\Rightarrow$ RC =  $R_{\rm RC} \times$  (# of conversions)

- SM backgrounds (MC) (Details are shown in later)
  - $\checkmark$ WZ, ZZ
  - $\checkmark$  Data/MC scale factors are estimated using Z->ll control samples.



θ±

₽Ŧ





- •MC simulations are not perfect. --> Need Data/MC scale factors. •Sample:  $Z \rightarrow \ell^{\pm} \ell^{\mp}$  (Data, MC),  $81 < M_{\ell\ell} < 101 \text{ GeV}$
- •Scale factors depend on lepton pT.
- •Scale factors for the forward & stubless muons are optimized in





# **OS Dilepton Region**



#### OS Dilepton Region ( $M_{\ell\ell} < 81, M_{\ell\ell} > 101$ )







- •S: Z-> ll candidates in high-pT lepton data
- •B: lepton passing our preselections (in jet samples)
- •Construct Likelihood as C = S/(S + B)

$$\mathcal{S} = \prod_{n_i} S_{\text{PDF}}(n_i) \qquad \mathcal{B} = \prod_{n_i} B_{\text{PDF}}(n_i)$$

- $S(B)_{PDF}(n_i)$ : Probability density function for variable
- •variables: calorimeter energy, track-quality information, ...
- •Commonly used method, especially CDF B-physics Group







•Fake lepton components:

★Interactive $\pi^{\pm}, \pi^{0}$ + track, punch-through hadrons ★Semileptonic decay of heavy-flavor hadrons, decay-in-flight  $\pi^{\pm}, K^{\pm}$ 

•6-dim parametrization

 $\bigstar$  lepton pT, pseudorapidity,  $\Delta \phi(E_T, \ell)$ , ...

Data (jet samples) & MC (for electroweak-process subtraction) usedEstimation:

 $N_{\text{fake}} = R_{\text{fake}} \times N_{\text{track}}, \qquad R_{\text{fake}} = R_{\text{abs}} \times f_{\text{norm}}(p_T, \Delta \phi, ...)$ 



## **Fake Rates for Electrons**





D. Yamato (Osaka City Univ.)

## **Validation for Fake Lepton** 2nd lepton ID failed region: fake-lepton validation









# **Residual Photon Conversion**



Photon-conversion events favor asymmetrical energy sharing.
Partner-track tend to have low-pT.
Enhance residual photon conversion backgrounds.

•Estimation:

$$N_{\rm res} = R_{\rm res} \times N_{\rm conv}$$
$$R_{\rm res} = \frac{N_{\rm res}}{N_{\rm conv}} = \frac{1 - \varepsilon_{\rm conv}}{\varepsilon_{\rm conv}}$$
$$\varepsilon_{\rm conv} = \varepsilon_{\rm rel}(p_T) \times \varepsilon_{\rm abs}$$



D. Yamato (Osaka City Univ.)



# **Residual Photon Conversion**



#### Relative Part

## Absolute Part



Compare Data with MCDifference in low-pT regionReach plateau above 1 GeV/c

•Nominal Conversion Tagging  $|\delta_{xy}| < 0.2 \text{ cm}$  $|\Delta(\cot \theta)| < 0.04$ 

•Alternative Tagging Method (CES Method)

★Central Electromagnetic Strips (CES) hit information



**Conversion Efficiency & RC Rate** 



D. Yamato (Osaka City Univ.)







★To get more sensitivity, we employ multivariate technique.
★Boosted Decision Trees (BDT)

True/False decision in each splitting (Decision Tree)

Boosting can pick up misclassified events w/ weighting each event
Output from many trees, combine w/ error rates





# Input Variables (Selected)



![](_page_16_Figure_3.jpeg)

![](_page_16_Figure_4.jpeg)

![](_page_16_Figure_5.jpeg)

![](_page_16_Figure_6.jpeg)

Jet multiplicity

![](_page_16_Figure_8.jpeg)

![](_page_17_Picture_0.jpeg)

## Expected & Data

![](_page_17_Picture_2.jpeg)

| $Vh \rightarrow VW^*W^* \rightarrow l^{\pm}l^{\pm} + X$ | CDF Run-II Preliminary: 9.4 fb <sup>-1</sup> |                  |                        |                  |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------|------------------|------------------------|------------------|--|--|--|--|--|
|                                                         | Lepton ID Side-Band                          | Zero Silicon     | OS                     | Signal           |  |  |  |  |  |
| Fakes                                                   | $4493.9 \pm 594.6$                           | $15.7 \pm 2.53$  | $674.8 \pm 107.6$      | $631.9 \pm 51.4$ |  |  |  |  |  |
| Photon-conversions                                      | $123.1 \pm 34.1$                             | $91.7 \pm 13.0$  | $192.5 \pm 39.6$       | $49.5 \pm 12.1$  |  |  |  |  |  |
| Total                                                   | $4616.9 \pm 595.6$                           | $107.4 \pm 13.2$ | $867.3 \pm 114.7$      | $681.4 \pm 52.8$ |  |  |  |  |  |
| $Z/\gamma^* \rightarrow ee$                             | -                                            | -                | $19841.4 {\pm} 1503.9$ | -                |  |  |  |  |  |
| $Z/\gamma^* \rightarrow \mu\mu$                         | -                                            | -                | $30327.3 \pm 2296.2$   | -                |  |  |  |  |  |
| $Z/\gamma^* \rightarrow \tau \tau$                      | -                                            | -                | $4071.3 \pm 310.2$     | -                |  |  |  |  |  |
| $t\overline{t}$                                         | -                                            | -                | $269.2 \pm 20.4$       | -                |  |  |  |  |  |
| WW                                                      | -                                            | -                | $399.2 \pm 30.2$       |                  |  |  |  |  |  |
| WZ                                                      | $2.1 \pm 0.3$                                | -                | $27.3 \pm 3.4$         | $13.1 \pm 1.6$   |  |  |  |  |  |
| ZZ                                                      | $0.4{\pm}0.1$                                | -                | $23.7 \pm 3.0$         | $1.7 \pm 0.2$    |  |  |  |  |  |
| Total MC                                                | $2.5 \pm 0.3$                                | -                | $54959.4 \pm 4159.2$   | $14.8 \pm 1.7$   |  |  |  |  |  |
| Fermiophobic higgs (Wh110)                              | $0.88 \pm 0.10$                              | -                | $6.31 \pm 0.71$        | $5.09 \pm 0.59$  |  |  |  |  |  |
| Fermiophobic higgs (Zh110)                              | $0.10 \pm 0.01$                              | -                | $2.33 {\pm} 0.27$      | $0.53 \pm 0.06$  |  |  |  |  |  |
| Fermiophobic Total (110)                                | $0.98 {\pm} 0.10$                            | -                | $8.64 \pm 0.76$        | $5.62 \pm 0.59$  |  |  |  |  |  |
| SM higgs (Wh160)                                        | $0.19 \pm 0.02$                              | -                | $2.46 \pm 0.28$        | $1.51 \pm 0.17$  |  |  |  |  |  |
| SM higgs (Zh160)                                        | $0.028 \pm 0.003$                            | -                | $1.15 \pm 0.13$        | $0.18 \pm 0.02$  |  |  |  |  |  |
| SM Total (160)                                          | $0.21 \pm 0.02$                              | -                | $3.61 {\pm} 0.31$      | $1.69 \pm 0.17$  |  |  |  |  |  |
| Total expected                                          | $4619.4 \pm 595.6$                           | $107.4 \pm 13.2$ | $55826.7 \pm 4214.6$   | $696.1 \pm 52.8$ |  |  |  |  |  |
| Data                                                    | 4598                                         | 127              | 51243                  | 624              |  |  |  |  |  |

D. Yamato (Osaka City Univ.)

![](_page_18_Picture_0.jpeg)

# WH Systematic Uncertainties

![](_page_18_Picture_2.jpeg)

| $Wh \rightarrow WW^*W^* \rightarrow l^{\pm}l^{\pm}$ - | +X    |       |       |       |       | CD    | F Run-l | I Prelin | ninary: 9 | $0.4 \text{ fb}^{-1}$ |
|-------------------------------------------------------|-------|-------|-------|-------|-------|-------|---------|----------|-----------|-----------------------|
| Higgs Mass $(\text{GeV}/c^2)$                         | 110   | 120   | 130   | 140   | 150   | 160   | 170     | 180      | 190       | 200                   |
| Statistics                                            | 0.8%  | 0.8%  | 0.8%  | 0.7%  | 0.7%  | 0.7%  | 0.7%    | 0.7%     | 0.7%      | 0.7%                  |
| PDF                                                   | 2.2%  | 1.9%  | 1.6%  | 1.6%  | 1.4%  | 1.2%  | 1.4%    | 1.1%     | 0.8%      | 0.7%                  |
| ISR                                                   | 4.0%  | 4.0%  | 4.0%  | 4.0%  | 4.0%  | 4.0%  | 4.0%    | 4.0%     | 4.0%      | 4.0%                  |
| FSR                                                   | 5.3%  | 5.3%  | 5.3%  | 5.3%  | 5.3%  | 5.3%  | 5.3%    | 5.3%     | 5.3%      | 5.3%                  |
| $Z/\gamma^*$                                          | 4.6%  | 4.6%  | 4.6%  | 4.6%  | 4.6%  | 4.6%  | 4.6%    | 4.6%     | 4.6%      | 4.6%                  |
| Cross Section                                         | 5.0%  | 5.0%  | 5.0%  | 5.0%  | 5.0%  | 5.0%  | 5.0%    | 5.0%     | 5.0%      | 5.0%                  |
| Luminosity                                            | 6.0%  | 6.0%  | 6.0%  | 6.0%  | 6.0%  | 6.0%  | 6.0%    | 6.0%     | 6.0%      | 6.0%                  |
| Total                                                 | 11.5% | 11.4% | 11.4% | 11.4% | 11.3% | 11.3% | 11.3%   | 11.3%    | 11.3%     | 11.3%                 |

- •PDF: Estimated by reweighting method
- $Z/\gamma^*$ : Data/MC difference when SF estimations •Cross Section: Theoretical uncertainty (5%)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_2.jpeg)

| $Vh \rightarrow VW^*W^* \rightarrow l^{\pm}l^{\pm} + X$ |              | CDF Run-II Prelin          | ninary: 9 | $0.4 \text{ fb}^{-1}$ |
|---------------------------------------------------------|--------------|----------------------------|-----------|-----------------------|
|                                                         | Fake leptons | Residual photon-conversion | WZ        | ZZ                    |
| Statistics                                              | 2.1%         | 11.1%                      | 0.7%      | 2.1%                  |
| Fake rate                                               | 7.9%         | -                          | -         | -                     |
| Residual conversion rate                                | -            | 22.0%                      | -         | -                     |
| $\mathrm{Z}/\gamma^{*}$                                 | -            | -                          | 4.6%      | 4.6%                  |
| Cross Section                                           | -            | -                          | 10.0%     | 10.0%                 |
| Luminosity                                              | -            | -                          | 6.0%      | 6.0%                  |
| Total                                                   | 8.2%         | 24.7%                      | 12.6%     | 12.7%                 |

- •Fake Rate: including the differences between jet samples
- •Cross Section: Theoretical, ISR/FSR, PDF uncertainties

![](_page_20_Picture_0.jpeg)

# **Results (SM)**

![](_page_20_Picture_2.jpeg)

No significant differences between data & expected backgrounds
We set 95% Confidence Level limit on the SM Higgs

![](_page_20_Figure_4.jpeg)

![](_page_21_Picture_0.jpeg)

# **Results (Fermiophobic)**

![](_page_21_Picture_2.jpeg)

No significant differences between data & expected backgrounds
We set 95% Confidence Level limit on Fermiophobic Higgs

![](_page_21_Figure_4.jpeg)

D. Yamato (Osaka City Univ.)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_2.jpeg)

Data 9.4 fb<sup>-1</sup> used for Higgs search (Full dataset)
No significant discrepancies between data & expected
BDT method applied to get more sensitivity, and we get the 95% C.L. Limit:

▶8.3 × (SM Higgs 160) (Expected limit: 6.0)
▶4.4 × (FP Higgs 110) (Expected limit: 2.6)
Plan

✓ WZ/ZZ Measurements

✓ Like-Sign Dilepton Characteristic Search ★Heavy Majorana Neutrino Back Up

![](_page_24_Picture_0.jpeg)

# **Tevatron 2012 Winter Result**

![](_page_24_Picture_2.jpeg)

#### Tevatron Run II Preliminary, $L \le 10.0 \text{ fb}^{-1}$

![](_page_24_Figure_4.jpeg)

![](_page_25_Picture_0.jpeg)

## **CDF Results 2012**

![](_page_25_Picture_2.jpeg)

![](_page_25_Figure_3.jpeg)

#### D. Yamato (Osaka City Univ.)

![](_page_26_Picture_0.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_0.jpeg)

## **CDF Detector**

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

D. Yamato (Osaka City Univ.)

# Input Variables (Selected, Log)

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_2.jpeg)

 $\varepsilon_{\rm conv}$ : conversion tagging eff.

# Estimated by using data & MCResidual conversion rate:

 $R_{\rm resco} = \frac{1 - \varepsilon_{\rm conv}}{\varepsilon_{\rm conv}}$ 

•Split to

$$\varepsilon_{\rm conv} = \varepsilon_{\rm rel}(p_T) \times \varepsilon_{\rm abs}$$

Relative part: high-pT region fitting -> low-pT compared to obsp level with data (pT relative eff. part).
Absolute part is derived by using CES method.

![](_page_30_Figure_0.jpeg)

![](_page_30_Picture_2.jpeg)

#### •MetSpec:

Missing E\_T if delta phi(MET, lepton or jet) > pi/2
Missing E\_T times sin(delta phi(MET, lepton or jet)) if delta phi(MET, lepton or jet) < pi/2</li>

•Sphericity:

 $\blacksquare$  To look at event shapes.

➡Sphericity tensor:

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\mathbf{p}_{i}|^{2}}$$

 $\boldsymbol{O}$ 

Eigenvalues  $\lambda_1, \lambda_2, \lambda_3$   $\lambda_1 \ge \lambda_2 \ge \lambda_3, \lambda_1 + \lambda_2 + \lambda_3 = 1$ Sphericity:

$$S = \frac{3}{2}(\lambda_2 + \lambda_3)$$

![](_page_31_Picture_0.jpeg)

# **SM Higgs Limit**

![](_page_31_Picture_2.jpeg)

| $Vh \rightarrow VW^*W^* \rightarrow V$ | - X        |            | CI        | )F Run     | -II Preliminary: 7.6 fb <sup><math>-1</math></sup> |                     |
|----------------------------------------|------------|------------|-----------|------------|----------------------------------------------------|---------------------|
| Mass $(\text{GeV}/c^2)$                |            | (Expe      | ected lim | it)/SI     | М                                                  | (Observed limit)/SM |
|                                        | $-2\sigma$ | $-1\sigma$ | Median    | $+1\sigma$ | $+2\sigma$                                         |                     |
| 110                                    | 38.7       | 50.3       | 70.4      | 99.6       | 138.5                                              | 87.0                |
| 120                                    | 15.8       | 20.5       | 28.5      | 40.4       | 56.3                                               | 33.8                |
| 130                                    | 8.8        | 11.4       | 15.8      | 22.4       | 30.9                                               | 19.4                |
| 140                                    | 6.5        | 8.5        | 12.0      | 16.9       | 23.3                                               | 13.5                |
| 150                                    | 5.5        | 7.3        | 10.1      | 14.5       | 19.9                                               | 12.7                |
| 160                                    | 5.6        | 7.3        | 10.2      | 14.5       | 20.0                                               | 10.5                |
| 170                                    | 6.3        | 8.2        | 11.3      | 16.0       | 22.2                                               | 12.6                |
| 180                                    | 7.5        | 9.6        | 13.3      | 18.8       | 25.8                                               | 15.1                |
| 190                                    | 10.1       | 12.9       | 17.8      | 25.3       | 35.3                                               | 19.9                |
| 200                                    | 12.5       | 15.8       | 21.6      | 30.4       | 42.5                                               | 26.4                |

| $Vh \rightarrow VW^*W^* \rightarrow V$ | - X        | CDF Run-II Preliminary: 9.4 $fb^{-1}$ |           |            |            |                     |
|----------------------------------------|------------|---------------------------------------|-----------|------------|------------|---------------------|
| Mass $(\text{GeV}/c^2)$                | (          | Expe                                  | cted limi | t)/SN      | Λ          | (Observed limit)/SM |
|                                        | $-2\sigma$ | $-1\sigma$                            | Median    | $+1\sigma$ | $+2\sigma$ |                     |
| 110                                    | 24.9       | 32.8                                  | 45.8      | 65.1       | 89.0       | 77.2                |
| 120                                    | 10.0       | 13.2                                  | 18.3      | 26.1       | 36.2       | 32.5                |
| 130                                    | 5.5        | 7.2                                   | 10.0      | 14.1       | 19.9       | 16.4                |
| 140                                    | 3.8        | 5.0                                   | 6.9       | 9.7        | 13.4       | 11.4                |
| 150                                    | 3.3        | 4.3                                   | 6.0       | 8.5        | 11.8       | 8.3                 |
| 160                                    | 3.3        | 4.3                                   | 5.9       | 8.4        | 11.6       | 9.2                 |
| 170                                    | 3.7        | 4.7                                   | 6.5       | 9.2        | 12.9       | 10.4                |
| 180                                    | 4.5        | 5.7                                   | 7.9       | 11.2       | 15.6       | 11.4                |
| 190                                    | 6.0        | 7.7                                   | 10.6      | 15.0       | 20.8       | 16.4                |
| 200                                    | 7.6        | 9.7                                   | 13.3      | 18.9       | 26.5       | 20.2                |

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_6.jpeg)

![](_page_31_Figure_7.jpeg)

![](_page_32_Picture_0.jpeg)

# Fermiophobic Higgs Limit

![](_page_32_Picture_2.jpeg)

| _ | $Vh \rightarrow VW^*W^* \rightarrow V$ | $l^{\pm}l^{\pm}$ + | - X        |           | CDI        | F Run      | -II Preliminary: 7.6 $fb^{-1}$ |
|---|----------------------------------------|--------------------|------------|-----------|------------|------------|--------------------------------|
| - | Mass $(\text{GeV}/c^2)$                | (                  | Expe       | cted limi | t)/FI      | D          | (Observed limit)/FP            |
|   |                                        | $-2\sigma$         | $-1\sigma$ | Median    | $+1\sigma$ | $+2\sigma$ |                                |
|   | 110                                    | 2.4                | 3.3        | 4.8       | 6.7        | 9.1        | 4.7                            |
|   | 120                                    | 2.8                | 3.8        | 5.4       | 7.6        | 10.2       | 5.3                            |
|   | 130                                    | 3.2                | 4.3        | 6.2       | 8.7        | 11.8       | 6.6                            |
|   | 140                                    | 3.9                | 5.1        | 7.3       | 10.2       | 14.1       | 7.7                            |
|   | 150                                    | 4.5                | 5.8        | 8.2       | 11.7       | 15.8       | 9.9                            |
|   | 160                                    | 5.3                | 7.0        | 9.8       | 13.9       | 19.3       | 10.0                           |
|   | 170                                    | 6.2                | 8.1        | 11.2      | 15.8       | 21.8       | 12.4                           |
|   | 180                                    | 7.4                | 9.5        | 13.2      | 18.7       | 25.6       | 15.0                           |
|   | 190                                    | 10.1               | 12.9       | 17.8      | 25.3       | 35.2       | 19.9                           |
|   | 200                                    | 12.4               | 15.8       | 21.6      | 30.4       | 42.4       | 26.4                           |

| $Vh \rightarrow VW^*W^* \rightarrow V$ | $l^{\pm}l^{\pm} +$ | - X        |           | CDI        | 7 Run-     | II Preliminary: 9.4 $fb^{-1}$ |
|----------------------------------------|--------------------|------------|-----------|------------|------------|-------------------------------|
| Mass $(\text{GeV}/c^2)$                | (                  | Expe       | cted limi | t)/FI      | )          | (Observed limit)/FP           |
|                                        | $-2\sigma$         | $-1\sigma$ | Median    | $+1\sigma$ | $+2\sigma$ |                               |
| 110                                    | 1.4                | 1.9        | 2.6       | 3.7        | 5.0        | 4.4                           |
| 120                                    | 1.6                | 2.2        | 3.0       | 4.3        | 6.0        | 5.3                           |
| 130                                    | 1.9                | 2.5        | 3.5       | 4.9        | 7.0        | 5.8                           |
| 140                                    | 2.2                | 2.9        | 4.0       | 5.6        | 7.8        | 6.6                           |
| 150                                    | 2.6                | 3.4        | 4.7       | 6.7        | 9.3        | 6.6                           |
| 160                                    | 3.1                | 4.1        | 5.6       | 8.0        | 11.1       | 8.8                           |
| 170                                    | 3.6                | 4.7        | 6.4       | 9.1        | 12.8       | 10.3                          |
| 180                                    | 4.4                | 5.7        | 7.8       | 11.1       | 15.5       | 11.3                          |
| 190                                    | 6.0                | 7.7        | 10.6      | 15.0       | 20.7       | 16.3                          |
| 200                                    | 7.5                | 9.7        | 13.3      | 18.9       | 26.5       | 20.1                          |

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_6.jpeg)