100ギガトン次世代 ニュートリノ望遠鏡計画 (NTA)

重要なエネルギー領域を、できるだけ深く、広く、そして明確に探査すべし なのだが…

Neutrino Telescope Array (NTA)

目標基本仕様

- 実験目的: HEv天体の近傍広域探査
- 検出方法:地球かすりタウシャワー撮像法
- 検出領域:PeV-EeV
- 即時感度: v標的 100ギガトン-Weq.
- ・探査深度: z = 0.1-0.15(20億光年) 標準GRBvに対し。
- 探査視野: 高度30°×方位360°= 2π×0.5 sr
- 方向精度:<0.2°(チェレンコフ光単眼撮像の最悪例)
- 探査効率:10-20%(好天かつ月のない夜)
 日・米・台の代表によるIEBが国際共同の拡大推進中

NTAの 由来

ICRR-2000 サテライトシンポジューム

「高エネルギー宇宙の総合的理解」

多波長観測から多粒子観測へ 高エネルギーニュートリノ

宇宙線望遠鏡計画改良案(NTA)の概要

2002年1月

東京大学宇宙線研究所 佐々木 真人

1. はじめに

本稿では宇宙線望遠鏡計画(TA)とその現状を振り返り、その問題点を明らかにして、抜本的な基本設計上の改善策を提案する。

NUMBER OF TAXABLE PARTY OF TAXABLE PARTY AND TAXABLE PARTY.

v-Objects, Experiments, Energy

POA μ Rich Results & Cosmogenic ν

IceCube BG Condition

In ice: 2800 Hz compared to 1 neutrino per 10 minutes

 \rightarrow requires 10⁶ background rejection

background rejection

3段階詳細シミュレーション

- 1. 地球かすりシミュレーション: $v_{\tau} \rightarrow \tau$
 - ニュートリノ荷電相互作用 (CTEQ4)
 - 非弾性度 (Gandhi et al.)
 - τ地中でのエネルギー損失
 (Dutta et al.)
- 空気シャワーシミュレーション: τ→チェレンコフ光(大気蛍光)
 - τ崩壊 (TAUOLA)
 - 空気シャワー発生 (CORSIKA)
- 3. 検出器シミュレーション:
 - 集光·光検出
 - トリガー判定
 - 事象再構成

Astropart. Phys. in press, arXiv:1202.5656

Tau Propagation Length in Rock (MC study)

CC 相互作用ごとに非弾性度分エネルギー損失しながら、レプトン変換を繰り返す ⇒ 高いエネルギーの v₁を低いエネルギーの v₁に"変身"させて検出する。

- ⇒ 高いエネルギーの v_τ の地球による遮蔽を軽減できる。
- ⇒ 検出視野(俯角)を稼ぐことができる
- ⇒ NTAによる探査範囲が広がる

地中におけるCC散乱長 (L_{cc}^ν) に相当する俯角 (-θ_{elev})

τシャワーの方向精度(検出方法起源)

• 伝播・反応過程での方向変化

Astropart. Phys. in press, arXiv:1202.5656

- 素粒子・宇宙線分野で広く用いられ定評ある シミュレーションプログラムにより評価

過程	評価方法	精度@PeV	注釈
v_{τ} 荷電相互作用	ΡΥΤΗΙΑ	< 0.3分角	Pt: W質量で制限
τ地中伝播	GEANT4 ALLM model	<1分角	輻射プロセス重要 光核反応のみALLM モデルで評価した
τ崩壊	TAUOLA	<1分角	Pt: τ質量で制限
空気シャワー	CORSIKA	0.1°	AS軸ずれ∝ E ^{-1/2}

PeV-EeV領域では、
τシャワーは
ν_τの方向を覚えている

- 到来方向決定精度 ⇒ 重要
 - 大天頂角宇宙線BG除去
 - 超高エネルギーニュートリノ源同定

• $\sigma = 0.16^{\circ}$

⇒ Cherenkov モノ観測でも 高精度方向決定が可能

$$L = \sum_{i} N_{\rm pe}^{i} \log(p_i).$$

E>PeV τ シャワー

の方向精度良好

(cf.)

地球かすりτシャワー撮像法

宇宙線BG

- 支配的なバックグラウンド
 大天頂角からの宇宙線シャワー
- 期待されるBG量 (CORISKAにて推定)
 - Commissioning 観測
 - N_{BG} = 1.3x10⁻⁴ (197.1hr) ⇒ 無視可能
 - 本観測 (1LC)
 - 山際からの距離
 0.1°
 0.3°
 1.0°
 3.0°
 - 期待されるBG頻度 0.082/yr 0.55/yr 4.3/yr 39/yr

レイアウト概念案 <u>中央サイト</u> (Site-0) <u>周辺サイト</u> (Site-1,2,3) 1辺25kmの正三角形頂点

⇒巨大標的(100-1000km³-weq) 巨大空気(面積1000km²上空) BG遮蔽(3山の谷間)

空気を横と下から睨む複眼望遠鏡 3山に囲まれた好天候の空気中の チェレンコフ光&蛍光の両方で 出現タウを漏らさず撮像

3山に囲まれた好天候の空気中の チェレンコフ光&蛍光の両方で 出現タウを漏らさず撮像。③

Total Resolution: ~3 arcmin image in 42deg. FOV

Can Cover Mauna Kea Surface at 35km Distant

Can Cover Mauna Kea Surface at 35km Distant

NuTel at NTU

Fix and let the main part of support easily leaving the floor to rotate vertically.

Gravity center, make rotation easier.

Trick of alignment of position & tilt: make incident and reflected light overlapped.

NTA Light Collector (NTA-LC) mount baseline design (tentative)

約1年間の設計レビュー後、 Ashra-1(日米)、NuTel(台湾)、 新提案から最良な部分設計 を決定 ⇒ 設計提案書

新提案から最良な部分設計 を決定 ⇒ 設計提案書

<u>Light Collector (LC)</u> 瞳径1.5mのシュミット型 視野28度 = 焦点面50cm径

Detector Unit (DU) 同視野を睨む4個のLC 重ね合わせ ⇒ 有効瞳径=3m

⇒ NTA集光器 概念設計案~Ashra-1の1.5倍スケールアップ+同じ読み出し

Ashra-1 R0000941/E115513 トリガー事例 vs MC

Ashra-1 R0000941/E115513 拡大図 vs MC

MCは実事例を再現

Acceptance with Water & Muon vs Air & Tau

⇒ 視野30度で_{V_τ}を検出できる

Auger, PRD 79 (2009) 102001

Upper limits: 2.3events/∆ln(E) (Feldman&Cousin, PRD 57 (1998)3873) 1. [IceCube, Nature 484 (2012) 351]

- IC40+IC59 stacked 117+181GRBs
- Very strong bias for time window (28s) around Satellite Triggers to suppress huge BG

BC

2. [Hummer et al. PRL 108 (2012) 231101]
Recalicurated neutrino flux => PeV-EeV Energy Region more important

PeV-EeV Energy Region more important

3. [Murase et al. ApJ 651 (2006) L5]
• Nearby Low luminosity (LL) GRB (ex. GRB 060218/SN 2006aj) dominate total neutrino fluxes at Earth

• X or γ Satellites cannot detect

X or γ Satellites cannot detect

NTAは標準GRBv源(Hummerら再計算)を z~0.1-0.15 (20億光年)の深さまで探査可 近傍宇宙はHEvの宝庫?

近傍宇宙はHEvの宝庫?

[IceCube, Nature 484 (2012) 351] says GRB Fireball model in trouble

LETTER

doi:10.1038/nature1106

An absence of neutrinos associated with cosmic-ray acceleration in γ -ray bursts

IceCube Collaboration*

[Hummer et al. PRL 108 (2012) 231101] 1. IC-FC: IceCube Fireball Calculation 2. RFC: Revised Fireball Calculation Correction to shape: • Revised shape • Correct energy losses of secondaries • Full energy dependencies • Correction to f_{π} : Normalization of photon spectrum Rounding errors Width of ∧-resonance 3. NFC: Numerical Fireball Calculation PeV-EeV領域の重要性 alculation NTAのGRB探査の重要性

[P.Baerwald, Gamma-Ray Bursts 2012 Conference in Munich May 11, 2012]

