

Latest Results on the Standard Model Higgs in ATLAS

Koji Nakamura (KEK) on behalf of ATLAS collaboration

20th Nov, 2013

We had fruitful discussions in Japan

http://www.icepp.s.u-tokyo.ac.jp/hcp2012/

HC2012 - Higgs Coupling 2012 Tokyo in Japan

http://www.icepp.s.u-tokyo.ac.jp/hc2012/

20th Nov, 2013

LHC and ATLAS experiment

- 7TeV collisions are Started in March 2010.
- Upgraded CM energy to 8TeV in 2012.
- Extremely successful operation for these 2.5 years.

20th Nov, 2013

Historical observation

First observations of a new particle in the search for the Standard Model Higgs boson at the LHC CMS ATLAS s = 7-8 Tel .elsevier.com/locate/physletb

Phys.Lett. B716 (2012) 1-29

"These results provide conclusive evidence for the discovery of a new particle with mass 126.0 ± 0.4 (stat) ±0.4 (sys) GeV."

But what's the new particle?

20th Nov, 2013

Post Observation

20th Nov, 2013

Post Observation

12th July, 2012 KEK seminar

We had progress on this.

Today's topic How coupling measurements are started? What are $H \rightarrow \tau \tau$ and bb going on?

20th Nov, 2013

Post ICHEP results

• Coupling measurements in Sep 2012 :

ATLAS-CONF-2012-127

- Updated searches for each channels in Nov 2012 :
 - $-(H \rightarrow WW)$
 - Η→ ττ
 - $-H \rightarrow bb$
 - (combination)

Will be updated to :

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

Coupling measurement

Higgs production and decay @ LHC

Mar 3rd, 2011

Open discussion meeting

Channels included in the measurement

Higgs Boson	Subsequent	Sub-Channels		Dof		
Decay	Decay			Kel.		
$2011 \sqrt{s} = 7 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$		[10]		
$H \rightarrow \gamma \gamma$	_	10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$		[11]		
$H \to WW^{(*)}$	lνlv	$\{ee, e\mu, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low, high pile-up}\}$	4.7	[12]		
$H \to \tau \tau$	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	4.7			
	$\tau_{\rm lep} \tau_{\rm had}$	$\{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ge 20 \text{ GeV}\}$	47	[13]		
		$\oplus \{e, \mu\} \otimes \{1 \text{-jet}\} \oplus \{\ell\} \otimes \{2 \text{-jet}\}$	4.7			
	$ au_{ m had} au_{ m had}$	{ 1 -jet}	4.7			
$VH \rightarrow Vbb$	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	4.6			
	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	4.7	[14]		
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	4.7			
$2012 \sqrt{s} = 8 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	5.8	[10]		
$H \rightarrow \gamma \gamma$	_	10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	5.9	[11]		
$H \to WW^{(*)}$	evμv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	5.8	[15]		

20th Nov, 2013

Signal strength for each channel

20th Nov, 2013

Signal strength for each channel

Coupling measurement : Notation

20th Nov, 2013

Production process dependent µ

We can measure the ratio of Boson and Fermion coupling using different production processes with the same decay mode.

20th Nov, 2013

Production process dependent µ

20th Nov, 2013

Coupling with Gauge boson

We saw clear excess on the both WW and ZZ decay channels so meaningful HVV measurement could be presented

$$\lambda_{WZ} = \kappa_W / \kappa_Z = \int_{gg}^{g} \int_{gg}^{H \to WW} \int_{gg}^{W^*} \int_{gg}^{g} \int_{$$

Coupling with Fermion

Lepton v.s. quark

May be this is too early to discuss since not yet observed bb and tt

Up type v.s. down type

 $\kappa_d = \kappa_b = \kappa_\tau$ $\kappa_l = \kappa_\tau$ $\kappa_{\mu} = \kappa_{t}$ $\kappa_q = \kappa_b = \kappa_t$ $\lambda_{du} = \kappa_d / \kappa_u$ $\lambda_{lq} = \kappa_l / \kappa_q$ (^{b|}ν)∨ ui z-ATLAS Preliminary ATLAS Preliminary <u>data</u> -2 ln $\Lambda(\lambda_{\perp})$ <u>data</u> -2 ln $\Lambda(\lambda_{du})$ $\sqrt{s} = 7 \text{TeV}, \int \text{Ldt} = 4.8 \text{ fb}^{-1}$ $\sqrt{s} = 7$ TeV, $\int Ldt = 4.8 \text{ fb}^{-1}$ $\sqrt{s} = 8$ TeV, \int Ldt = 5.8-5.9 fb⁻¹ exp. -2 ln $\Lambda(\lambda_{in})$ $\sqrt{s} = 8$ TeV, $\int Ldt = 5.8-5.9 \text{ fb}^{-1} \dots \text{ exp. -2 ln } \Lambda(\lambda_{du})$ 6 $\lambda_{du} \in [-1.2, 1.2]$ λ_{lq} ∈ [-1.3, 1.3] 0 -2 3 n -2 2 λ_{lq} λ_{du}

20th Nov, 2013

-2 In $\Lambda(\lambda_{du})$

More global view

20th Nov, 2013

New results for each channel

20th Nov, 2013

$H \rightarrow W(Iv)W(Iv)$ channel in ATLAS

- One of the highest sensitivity channel.
- Contributed to the observation a lot.
- May probe production mechanism dependence
 - VBF H→qqWW
 - $\vee H \rightarrow \vee W W$
 - ttH→ttWW
- Analysis is assuming/using spin 0, this means that it's quite sensitive to the spin measurement.

For HCP, only different flavor leptons channels with 0/1jet are updated.

Event selection & background estimation

Z+jets :

MET vs mll

Mainly for met correction.

ATLAS Preliminary

s=7 TeV

Ldt = 4.7 fb⁻¹

1400 .

1200

1000

800

600

400

two leptons + Missing ET

Signal region

ggF : 0,1 jet

W+jets/Wy* :

Fake lepton background. Prepare Loose lepton CR And multiplied by Fake rate.

WW control region

Mar 3rd, 2011

Open discussion meeting

$H \rightarrow WW$ results.

20th Nov, 2013

H→bb searches in ATLAS

Show the results with 4.6fb⁻¹(7TeV) and 13fb⁻¹ (8TeV) data

Background and estimation

Shapes are obtained by MC and normalized to data by Control region. Multi-jet background was determined by data-driven way. WZ/ZZ($Z \rightarrow$ bb) resonant backgrounds fully rely on the MC.

High sensitivity categories

1 lepton

2 lepton

0 lepton

20th Nov, 2013

After background subtraction

20th Nov, 2013

Results : combined limit and p0

- Calculated limit and significance using MMC distribution as the discriminant.
- To extract signal, Profile likelihood was used.

Expected:1.9xSM Observed:1.8xSM Expected:15% Observed:64% $_{(\mu=0)}^{(\mu=0)}$ Best fit value of Signal Strength (μ) is -0.4±0.7±0.8

20th Nov, 2013

$H \rightarrow \tau \tau$ searches in ATLAS

Three Higgs production processes are considered in this analysis.

- Separate analysis for three different $\tau\tau$ decay $\stackrel{100}{m}$ decay
 - lep-lep = II4v : (ee)+eµ+µµ
 - lep-had = $I\tau_{had}3v : e\tau_{had} + \mu\tau_{had}$
 - had-had = $\tau_{had}\tau_{had}\nu\nu$: ($\tau_{had}\tau_{had}$)
- Combined all three channels to search for $H \rightarrow \tau \tau$ signature.

Show the results with 4.6fb⁻¹(7TeV) and 13fb⁻¹ (8TeV) data

 $\sqrt{s} = 8TeV$

WW $\rightarrow l^{\pm} v q \overline{q}^{\dagger}$ WW $\rightarrow l^{\pm} v \overline{v}$

 $ZZ \rightarrow l^{\dagger}l q \bar{q}$

 $ZZ \rightarrow |^{\dagger} \overline{v} \overline{v}$ $ZZ \rightarrow |^{\dagger} |^{\dagger} \overline{v}$

200

150

250

M_µ [GeV]

Di-tau Mass reconstruction

- Di-tau invariant mass should be a important discriminating variable from backgrounds. But having 2-4v in a events.
- Need...
- Event by Event estimator of true di-τ mass likelihood. Full reconstruction of event kinematics.

Missing Mass Calculator(MMC)

• Solve τ , E_{T}^{miss} in $\Delta \phi(\tau_{vis}, v)$ parameter space using $\Delta \theta_{3D}(\tau_{vis}, v)$ template from simulation as PDF.

Background and estimation

- Opposite sign tau decay products are required.
- High Missing ET and low MT cuts are added.

QCD and W+Jets – Estimated from Same Sign events(lephad) -- Template fit by loose selection (lep-lep,hadhad)

$Z(\rightarrow \tau\tau)$ +jets modeling validation

HCP 2012

Results: discriminant distributions

20th Nov, 2013

Results : combined limit and p0

- Calculated limit and significance using MMC distribution as the discriminant.
- To extract signal, Profile likelihood was used.

13th Nov, 2012

HCP 2012

Summary of production dependence

20th Nov, 2013

Summary of production dependence

What we achieved post-observation

20th Nov, 2013

We observed something in July

Indeed the observation was clear! (6σ)

20th Nov, 2013

We observed something in July

• But still not sure what it is.

With full data in 2012

LHC after 2yr shutdown

20th Nov, 2013

Open question : next generation exp.

How easy to see who is sitting on the plane ? Do we have enough motivation for the cost?

20th Nov, 2013

Other measurement

$$\kappa_{F} = \kappa_{t} + \kappa_{t} = \kappa_{t} + \kappa_{t} + \kappa_{t}$$

$$\kappa_{ZZ} = \kappa_{T} + \kappa_{$$

20th Nov, 2013

Systematic Uncertainties.

- Systematic uncertainties for $Z \rightarrow \tau \tau$ background and Signal.
- Dominant systematics are Embedding, Tau Energy Scale and Jet Energy Scale. Both Shape and Normalization variation are taken into account.

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$			
$Z \to \tau^+ \tau^-$						
Embedding	1–4% (S)	2–4% (S)	1–4% (S)			
Tau Energy Scale	-	4–15% (S)	3–8% (S)			
Tau Identification	_	4–5%	1-2%			
Trigger Efficiency	2–4%	2–5%	2-4%			
Normalisation	4.7%	4% (non-VBF), 16% (VBF)	9-10%			
Signal						
Jet Energy Scale	1.0–5.0% (S)	3–9% (S)	2–4% (S)			
Tau Energy Scale	_	2–9% (S)	4-6% (S)			
Tau Identification	_	4–5%	10%			
Theory	7.9–28%	18-23%	3-20%			
Trigger Efficiency	small	small	5%			

13th Nov, 2012