Reactor neutrinos

The ultimate measurement?

Pau Novella CNRS/APC

P. Novella, Theta13 @ KEK 2012

Overview

- Neutrino oscillations and the last mixing angle
- Reactor neutrinos as a probe to θ_{13}
- Unrevealing θ_{13} with reactor neutrino data
- Experimental results: critical view
- Towards the ultimate value of θ_{13}

Neutrino Oscillations and the last mixing angle

In the beginning...

- 1930 Pauli postulates v
- 1956: reactor neutrinos detected
- 1990's: neutrino oscillations...

Physics Beyond the Standard Model

Today...

Reactors play a major role again!

Neutrino mixing

P. Novella, Theta13 @ KEK 2012

Neutrino Oscillations

If neutrinos are massive and have different masses...

Oscillation parameters: $(\theta_{12}, \theta_{13}, \theta_{23}), (\Delta m_{21}^2, \Delta m_{31}^2), \delta$

Neutrino Sources

First Generation Of Experiments

Exploring the sectors...

P. Novella, Theta13 @ KEK 2012

Interference sector as of 2010: SBL Reactor experiments

3v Global Analysis in 2010

Global fit for 3-flavour scenario
Preference for θ₁₃ ≠ 0
First hint of θ₁₃: sin²(θ₁₃) ~ 0.01-0.02

First direct indications: MINOS

First direct indications: T2K

First results on v_μ disappearance with 1.4x10²⁰ pot
 v_e appearance: 6 events over background of 1.5 (2.5σ)
 NH (δ=0) sin²(2θ₁₃)=0.11 and 0.03<sin²(2θ₁₃)<0.28 @ 90% C.L.
 IH (δ=0) sin²(2θ₁₃)=0.14 and 0.04<sin²(2θ₁₃)<0.34 @ 90% C.L.
 The 5σ appearance result is expected by June 2013!

Published in Phys. Rev. Lett. 107, 041801 (2011)

P. Novella, Theta13 @ KEK 2012

Reactor Neutrinos as a probe to θ₁₃

Nuclear Reactors as a v source

• \overline{v} Neutrino flux: sum of all fission products from ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu

• Flux depends on fuel composition (f(t)): $1GW_{th} \rightarrow 2 \times 10^{20} \sqrt{v/s}$

ILL spectra (reference last 25 years)

Reactor neutrino oscillation

θ_{13} : Why reactor neutrinos?

In contrast to accelerator experiments...

$$P_{ee}(E_{\overline{\nu}_e}, L, \Delta m_{31}^2, \theta_{13}) = 1 - \sin^2(2\theta_{13})\sin^2\left(1.27\frac{\Delta m_{31}^2[10^{-3} \text{ eV}^2]L[\text{km}]}{E_{\overline{\nu}_e}[\text{MeV}]}\right)$$

- No parameter correlations
- Pure v_{e} beam
- Low energy

- No matter effects
- Cheap, as source exists
- High flux and large xsection

P. Novella, Theta13 @ KEK 2012

Expected oscillation signal

Setting up the experiment

Unrevealing θ₁₃ with reactor neutrinos

Reactor neutrino experiments

IBD detection in Gd-doped scint. Multi-detector setups

P. Novella, Theta13 @ KEK 2012

The Double Chooz Experiment

Daya Bay and RENO

	Power	Target		
	17.3 GW	16 tons		
Ne	ar	Fa	r	
90 m/130 wme		1.38 km/460 wme		

P. Novella, Theta13 @ KEK 2012

Detector technology

Detector Design: Double Chooz

Far Detector operating since early 2011

P. Novella, Theta13 @ KEK 2012

Detector Design: DB and RENO

Daya Bay:

- Muon IV: Water pool (no scint.)
- Muon OV: RPCs

RENO:

- No Outer Muon veto
- IV: water (no scint.)

P. Novella, Theta13 @ KEK 2012

Neutrino Selection

- Prompt signal energy cut
- Delayed signal energy cut

AT between prompt-delayed Multiplicity cut

Backgrounds

• μ related + radiactivity

Uncorrelated:

0

- Radioactivity + neutron-like sigan

Correlated:

- Fast neutrons: p recoil + n capture
- Stopping-μ: μ + Michel electron
- cosmogenic isotopes (⁹Li): n-β decay

238T

232**Th**

Tagged by OV and IV

Experimental results on θ_{13} :

Critical view

Double Chooz first results

600

500

400

300

100

50

Data - Predicted)/(0.5 MeV)

- Events/(0.5 MeV) 9 • First results on θ_{13} from reactor experiments
 - 100 days of data, FD only, Nov 2011
 - Rate + Shape analysis

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041 \text{ (stat)} \pm 0.030 \text{ (syst)}$

- DC released new results on 2012
 - Smaller systematic in detector response
 - Larger background reduction ۲
 - OV+ dedicated showering muon veto

Energy [MeV]

ouble Chooz Data No Oscillation

l ithium-9

Accidentals

ents/(0.5 MeV) 20

Best Fit: sin²(20,,) = 0.086

Fast n and Stopping µ

for $\Delta m_{13}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ Summed Backgrounds (see inset)

8 10 1 Energy [MeV

Summary of 2012 results

	sin²(2θ ₁₃)	days	arXiv
DC-I(rate+shape) $0.086 \pm 0.05 \mid (0.04 \mid stat \pm 0.030 \text{ sys})$		96.8	1112.6353
DB(rate only)	0.092±0.017(0.016 ^{stat} ±0.005 ^{sys})	55	1203.1669
RENO(rate only)	0.113±0.023(0.013 ^{stat} ±0.019 ^{sys})	229	1204.0626
DC-II(rate only)	0.170±0.053(0.035 ^{stat} ±0.040 ^{sys})	251	1207.6632
DC-II(rate+shape)	0.109±0.039(0.030 ^{stat} ±0.025 ^{sys})	251	1207.6632
DB-II(rate only)	0.089±0.011(0.010 ^{stat} ±0.005 ^{sys})	126	Nu2012

P. Novella, Theta13 @ KEK 2012

"Missing" piece: L/E analysis

- Spectral shape fit is a must to measure θ_{13} :
 - Compatibility with θ_{13} -driven oscillation
 - Rate analysis: any deficit interpreted as θ_{13}
 - Background model may bias the value of θ_{13}

So far, only in Double Chooz:

- Spectral fit to θ_{13} and backgrounds
- Consistent with θ_{13} oscillation

"Missing" piece: L/E analysis

Double Chooz

- R+S analysis
- N_{obs}/N_{exp}: MC
- short E/L: no rise

- R-only analysis
- "Healthy" shape
- Longer BL: rise

- R-only analysis
- Unique shape (?)

 $- \theta_{13}$?

All experiments show a feature around 6 MeV (?)

- Rate-Only: this deficit *impacts* the θ_{13} value...

"Missing" piece: backgrounds

- Once correlated systematics are canceled (multi-detector setup)...
 - Backgrounds are one of the main systematics sources
 - Need an accurate Rate+Shape knowledge
 - Fast-n and cosmogenics might bias θ_{13}

Accidentals

Random coincidences of β-decay + n-like
coincidences in off-time window
Very well known: no impact on θ₁₃
δBG/Signal ~0

S = signal rate B = background rate

FAR DET.	Rate (d ⁻¹)	δ B/B (%)	B/S (%)	δ B/S (%)	S(d⁻¹)
DC	0.261±0.002	0.8%	0.6%	0	45
DB	3.30±0.03	0.9%	4.7%	0	70
RENO	0.68 ±0.03	4.4%	0.9%	0	73

Fast neutrons and stop- μ

Fast-n: proton recoil+ n-capture

\mathbf{FD}	Rate (d ⁻¹)	δ B/B (%)	B/S (%)	δ B/S (%)
DC	0.67 ± 0.20	30%	1.5%	0.4%
DB	0.04 ± 0.04	100%	0%	0%
RENO	0.97.±0.06	6%	1.3%	0%

- Stop-μ: muon + Michel e (DC, RENO?)
- **DB** and **RENO**:
 - Flat distribution, extrap. from E>12
 - possible bias up to 25%
 - If slope, bias on θ_{13} !
 - **DC**: Fit to IV and OV tagged events (<12MeV!)
 - Best fit: slope, consistent with flat
 - θ_{13} Fit: pull for rate consistent

Cosmogenics

• Spallation products from μ : β -n emitters (⁹Li,⁸He)

DC, DB, RENO:

- Rate estimated from time distribution w.r.t to last muon
- DC: rate+shape in θ₁₃ fit
 Shape: MC(KamLAND) + DC data
 - Consistent fit pull, error reduced

FAR DET.	Rate (d ⁻¹)	δ B/B (%)	B/S (%)	δ B/S (%)
DC	1.25 ± 0.54	43%	2.7%	1.2%
DC fit	1.00±0.29	29%	2.2%	0.6%
DB	0.16±0.11	69%	0.2%	0.2%
RENO	2.59 ± 0.75	29%	3.5%	1.0%

Large δBG/Signal: The most important background

Total background

FAR DET.	Rate (d ⁻¹)	δ B/B (%)	B/S (%)	δ B/S (%)
DC	2.2±0.6	27	4.9	1.3
DC fit	1.9±0.3	17	4.2	0.7
DB*	3.7±0.2	3.4	5.3	0.3
RENO	4.2±0.8	19	5.8	1.0

*DB: extra bkg of 0.2±0.2 events/day from Am-C calibration source

- Day Bay: impressive δB/S (almost no cosmogenics and fast-n background)
- DC: best B/S and unique in providing x-checks:
 - Pulls in a shape-constrained θ_{13} fit
 - Two integration periods (2R-1R) in θ_{13} fit
 - Fit of the Observed vs expected rate and reactor-off data

Total DC background Observed vs Expected Candidates

Data: not background subtracted

Total DC background Observed vs Expected Candidates

- 2011 Reactor-off data: 0.84 day
 - Direct total BKG measurement:
 - BKG rate = 2.2 events/day
 - Consistent with estimation:
 - 2.2 ±0.6 event/day
- Best fit extrapolation @ N_{exp} = 0:
 - 2.9 ± 1.1 event/day
 - Independent BG measurement!

Total DC background Reactor-Off data

²⁰¹¹ and 2012 reactor-off data samples: 7.53 days

arXiv:1210.3748

The Ultimate value of θ_{13}

- Backgrounds
- Systematics
- Predictions

Current limiting systematics

Rate Systematics: FD only

Without canceling the correlated systematics...

Error (%)	DC	DB	RENO
Reactor	1.7	3.0	2.0
Efficiency	1.0	1.9	1.5
BKG	0.7	0.3	1.1
TOTAL	(2.1)	3.6	2.7

Normalization uncertainties

- Double Chooz: the best one-detector experiment
 - most accurate knowledge on reactor fluxes
 - The smallest detection systematics

Rate Systematics: FD + ND

• Canceling the correlated systematics with the ND...

- Daya Bay: so far the best multi-detector experiment
 - Limited by the uncorrelated reactor systematics
- Double Chooz: expected competitive with DB
 - Room for improvement in background uncertainty

The dominant systematic

P. Novella, Theta13 @ KEK 2012

Uncorrelated flux uncertainty

- Each ND sees different reactors
- DB geometry: 0.8%/√6 = 0.3% (?)
- RENO: 0.9%
- Limiting systematic in Daya Bay and RENO

- ND sees 1 *virtual* reactor
 - isoflux
- Error: 0.1% (under study)

Towards the ultimate Θ_{13} value

Ultimate = systematics limited, reliable background model, and R+S fit

- Daya Bay: the most precise result so far
 - Precision limited by uncor. flux uncertainty (0.8%)
 - Also limited ways to test the background model
 - Oscillation shape results not yet available
- RENO: good precision, but *debatable* numbers and results
 - Precision limited by uncor. flux uncertainty (0.9%)
 - Also limited by backgrounds (1%): No OV, no scint. IV (can improve?)
- **Double Chooz**: shape results, precise background model (can improve!)
 - The best FD-only experiment: good prospects for FD+ND
 - Not limited by uncorrelated flux uncertainty
 - ND not yet available: long time to get enough stats

Improving DC backgrounds

- More reactor Off-Off data?
- Cosmogenics:
 - Getting more statistics
 - Fitting ⁹Li R+S in θ_{13} fit
- Correlated background (FN/SM)
 - Getting larger stats sample
 - Fully exploiting the IV tagging (FN)
 - Use of the outer muon veto (SM)

The ultimate θ_{13} value?

P. Novella, Theta13 @ KEK 2012

The ultimate θ_{13} value?

Beyond the "standard"

θ_{13} analysis

Double Chooz n-H analysis

Neutrino selection based on n captures in H, instead of Gd (F. Suekane)

- Provides x2 signal statistics (NT + GC)
- Data sample completely independent
 - Systematic uncertainty very different
 - Excellent x-check of Gd analysis result
- Better constrain on θ_{13} by combining H+Gd?.

- Delayed IBD signal below 3.5 MeV
- Extended ΔT cut
- Dominant background: Accidentals
 - But uncertainty very small!.

Double Chooz: n-H results

P. Novella, Theta13 @ KEK 2012

All in all...

Summary

- Reactor experiments have proven $\theta_{13} > 0$
 - Daya Bay, RENO and Double Chooz
 - DB: $>5\sigma$, DC: shape analysis, backgrounds
- Is this the end of the road?
 - Accuracy vs precision: beyond the # of σ
- The most accurate θ_{13} :
 - Oscillation shape analysis
 - Improved background model
 - Reduced uncorr. reactor flux sys?

Summary (II)

The Ultimate measurement still to come!

- DB: powerful setup and great performance
 - 8 different detectors, high fluxes, small backgrounds, ...
 - Limited by reactor flux uncertainties
- RENO: large exposure, *debatable* numbers
 - Limited by flux uncertainty (background also?)
 - Difficult to predict its evolution
- Double Chooz: can be competitive with DB
 - Very precise knowledge of the background, reactor-off
 - Simple baseline: L/E, negligible flux systematic (ND+FD)
 - n-H analysis: improve precision on θ_{13} ?
 - No Near Detector yet... so need to wait!

Thank you

Photo: Lola Garrido

P. Novella, Theta13 @ KEK 2012