

Evidence for Higgs Boson Decays to the $\tau^+\tau^-$ final state at the LHC.

Koji Nakamura (KEK) on behalf of ATLAS&CMS collaboratio

NEWS

- CERN-EP seminar : 26th Nov, 2013
 - ATLAS results on Higgs boson searches in fermion final states
 - Twiki : <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-</u> <u>CONF-2013-108/</u>
 - CONF NOTE: <u>http://cds.cern.ch/record/1632191</u>
- CERN-EP seminar : 3rd Dec, 2013
 - Direct Measurement of the Higgs Boson Fermionic Couplings at CMS
 - Twiki : <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13004TWikiUpdate</u>

 NOTE : not vet available
 - NOTE : not yet available
- $H \rightarrow \tau \tau$ Collider Cross Talk seminar : 12th Dec, 2013
 - Agenda : <u>http://indico.cern.ch/conferenceDisplay.py?confld=287044</u>
 - No materials are in the Agenda (Black board discussion)

Introduction

Phys.Lett. B716 (2012) 1-29

"These results provide conclusive evidence for the discovery of a new particle with mass 126.0 ± 0.4 (stat) ±0.4 (sys) GeV."

What is "new particle"?

7th Jan, 2014

Phys.Lett. B716 (2012) 1-29

"These results provide conclusive evidence for the discovery of a new particle with mass 126.0 ± 0.4 (stat) ±0.4 (sys) GeV."

8th Oct, 2013 : ATLAS Week @ Marrakech

What is "new particle"? The Nobel Prize in Physics 2013

Photo: Pnicolet via Wikimedia Commons François Englert

Photo: G-M Greuel via Wikimedia Commons Peter W. Higgs

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiment: at CERN's Large Hadron Collider"

A 1000

7th Jan, 2014

7th Jan, 2014

KEK Physics Seminar

Data

50

CL expected

assuming J^P = 0 *

75

100

f_{aā} (%)

What is "new particle"?

• Mass of the particle?

– 125.5±0.2(stat)±0.6(sys)

- Spin and Parity ?
 - Consistent with scalar (J^P=0⁺)
 - Excluded J^P=0⁻, 1⁺, 1⁻, 2⁺ possibility.

Coupling

- HWW, HZZ, H○γγ decays exist (>3σ)
- Observed ggF (gg H), VBF(WWH,ZZH) production process (>3σ)

→New particle must couple with Vector Bosons and probably Quarks(no direct evidence).

7th Jan, 2014

First observations of a new particle in the search for the Standard Model Higgs boson at the LHC Mass is given by Higgs Mechanism? matter particles guage particles 2nd gen. 1st gen. 3rd gen Strong Force C Q U a Gluones charm top Α up ElectroMagnetic R A S κ down strance bottom L H Deuterink neutring photon Ve) Е Ρ e neutrino Weak Forc Т NO 0 τ N electron tau W bosons 7 hasar (H)scalar particle(s) Elements of the Standard Model www.elsevier.com/locate/physletb

What is "new particle"?

Mass of the particle?

 $125.5 \pm 0.2(stat) \pm 0.6(sys)$

- Spin and Parity?
 - Consistent with scalar $(J^{P}=0^{+})$
 - Excluded $J^{P}=0^{-}$, 1⁺, 1⁻, 2⁺ possibility.
- Coupling
 - HWW, HZZ, H \bigcirc yy decaies exist (>3 σ)
 - Observed ggF (gg H), VBF(WWH,ZZH) production process (> 3σ)

 \rightarrow New particle must couple with Vector Bosons and probably Quarks(no direct evidence).

How about leptons?

- No one knows...
- Need direct lepton(τ) decay to prove lepton Yukawa coupling!!

Final important piece to call the particle as SM Higgs Boson All the fundamental particle masses are given by Higgs mechanism? VBF $H \rightarrow \tau^+ \tau^$ d

7th Jan, 2014

KEK Physics Seminar

 W^{-} H

 W^{-}

LHC and ATLAS experiment

7th Jan, 2014

Higgs production and decay @ LHC

Now we know the cross section and Branching ratio!

@125.5GeV

Process	8TeV σ [pb]	14TeV σ [pb]	ZZ		■ bb (57%) ■ cc (2.9%)
Gluon Fusion	19.1	49.9			🔳 ττ(6.2%)
Vector Boson Fusion	1.57	4.18	ww	hh	■ μμ(0.02%)
W/Z Associated	1.11	2.39			γ γ(0.23%)
tt/bb Associated	0.128	0.611	π		■ VV VV (22%) ■ 77 (2.8%)
	8TeV @125 14TeV @12	.5GeV 5GeV	ΥΥ V		others

Sensitivity for each channel

Before experiment...

arXiv:hep-ph/0402254

ATLAS 2011+2012 Full data

5fb⁻¹(7TeV)+20fb⁻¹(8TeV)

Decay channel	Expected sensitivity	Observed Sensitivity
H(124.3)→ZZ	4.4σ	6.6σ
H(126.8)→ƳƳ	4.1σ	7.4σ
H(125)→WW	3.7σ	3.8σ
H(125) → ττ	NE	W
H(125)→bb	1.6σ	0.4σ

H→ττ (Nov 2012)

5fb⁻¹(7TeV)+13fb⁻¹(8TeV)

125) → ττ	1.7σ	1.1σ
125)→ττ	1.7σ	1.1σ

• Repeated analyses by using full data $(13 \rightarrow 20 \text{ fb}^{-1})$ didn't expect reaching evidence.

7th Jan, 2014

Analysis Strategy

Analysis channels

Why is $H \rightarrow \tau \tau$ difficult? How to improve?

After di-tau candidate , S/B ratio is <0.001, while typical systeamtics of backgrounds are ~20%.

Quite different approaches were taken by ATLAS and CMS

- ATLAS (8TeV)
 - Used very simple categorization (6 categories)
 - Used MVA technique to separate signal from background. (Used MVA score as discriminant.)
- CMS (7+8TeV)
 - Split data to many categories(>50 categories) based on S/B ratio.
 - Used Cut based analysis. (Used Mass as discriminant.) except ee and μμ channel (MVA analysis).

Di-tau Mass reconstruction

- Di-tau invariant mass should be an important discriminating variable from backgrounds. But having 2-4v in a event.
- Need...
- Event by Event estimator of true di-τ mass likelihood. Full reconstruction of event kinematics.
- Solve τ E^{miss} in $\Lambda \phi(\tau, v)$
- Solve τ , E_T^{miss} in $\Delta \phi(\tau_{vis}, v)$ parameter space using $\Delta \theta_{3D}(\tau_{vis}, v)$ template from simulation as PDF.

CMS uses the similar method with Matrix element

Background estimation overview

• Most important background is $Z \rightarrow \tau \tau$ (irreducible).

$Z \rightarrow \tau \tau$ estimated by embedding method

ATLAS analysis

Categorization

- Find VBF jets with loose selection.
- Train BDT for VBF signal.

Selection	$ au_{\mathrm{lep}} au_{\mathrm{lep}}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$p_{\mathrm{T}}(j_1) > (\mathrm{GeV})$	40	50	50
$p_{\mathrm{T}}(j_2) > (\mathrm{GeV})$	30	30	30/35
$\Delta \eta(j_1, j_2) >$	2.2	3.0	2.0
b-jet veto for jet $p_{\rm T} > ({\rm GeV})$	25	30	-
$p_{\rm T}^H > ({\rm GeV})$	-	-	40
	Selection $p_{T}(j_{1}) > (GeV)$ $p_{T}(j_{2}) > (GeV)$ $\Delta \eta(j_{1}, j_{2}) >$ b-jet veto for jet $p_{T} > (GeV)$ $p_{T}^{H} > (GeV)$	Selection $\tau_{lep}\tau_{lep}$ $p_{T}(j_{1}) > (GeV)$ 40 $p_{T}(j_{2}) > (GeV)$ 30 $\Delta \eta(j_{1}, j_{2}) >$ 2.2 b-jet veto for jet $p_{T} > (GeV)$ 25 $p_{T}^{H} > (GeV)$ -	Selection $\tau_{lep}\tau_{lep}$ $\tau_{lep}\tau_{had}$ $p_{T}(j_{1}) > (GeV)$ 40 50 $p_{T}(j_{2}) > (GeV)$ 30 30 $\Delta \eta(j_{1}, j_{2}) >$ 2.2 3.0 b-jet veto for jet $p_{T} > (GeV)$ 25 30 $p_{T}^{H} > (GeV)$ - -

- Select events with high vector sum pT of tautau decay products.
- Not included non-boosted events.

	$p_{\mathrm{T}}(j_1) > (\mathrm{GeV})$	40	-	-
Boosted	$p_{\rm T}^H > ({\rm GeV})$	100	100	100
	b-jet veto for jet $p_{\rm T} > ({\rm GeV})$	25	30	-

7th Jan, 2014

BDT input variables

- Trained BDT for each 3 channels and for VBF/Boosted separately. (total 6 categories)
 - 125GeV signal MC for the signal template.
- MMC($m_{\tau\tau}$) is also included as one of the most powerful variable for the training.

VBF category

Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$	
$M_{ au au}^{MMC}$	•	•	•	
$\Delta R_{ au au}$	•	•	•	E_T''
$ \eta_{j2} - \eta_{j1} $	•	•	•	
$m_{j1,j2}$	•	•	•	P.
$\eta_{j1} \times \eta_{j2}$		•	•	
$p_T^{\rm lotal}$		•	•	
$E_T^{miss}\phi$ centrality		•	•	
$\mathit{min}(\Delta\eta_{\ell 1\ell 2, jets})$	•			
$\ell 1 imes \ell 2 \; \eta$ centrality	•			
$\Delta \eta_{j3,j1j2}$	•			
m _T		•		
$\ell \; \eta$ centrality		•		
$ au_1 \ \eta$ centrality			•	
$ au_2 \ \eta$ centrality			•	

buusieu calegi	лу	N	INC mass m _{tt} [Gev]
Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$M_{ au au}^{MMC}$	•	•	•
$E_T^{miss}\phi$ centrality	•	•	•
$\Delta R_{ au au}$		•	•
sum P _T		•	•
$P_T(au_1)/p_T(au_2)$		•	•
$m_{ au au,j1}$	•		
$m_{\ell 1,\ell 2}$	•		
$\Delta \phi_{\ell 1,\ell 2}$	•		
sphericity	•		
${ ho}_T^{\ell 1}$	•		
ρ_T^{j1}	•		
$E_T^{miss}/p_T^{\ell 2}$	•		
m_T		•	
$ au_{1x}$			•
$ au_{2x}$			•

Doostod cotogory

7th Jan, 2014

	Lep-had	Leplep	hadhad		
Ζ→ττ	Shape : Embedding Norm : <mark>Fit in SR</mark> (+ Δη CR for hadhad)				
Fake (QCD)	Fake factor Estimation (used Anti-tau CR)	Template fit method (used non-isol CR)	Shape : not OS data Norm : Fit in Δη CR		
Fake (W+jets)	Shape&Norm : data	Shape&Norm : data	MC		
Z→II (I→τ)	Shape & Norm : MC (with SF)	Shape : MC Norm : Fit in ZCR	MC(very small)		
Z→II(Jet→τ)	Shape : MC Norm : Fit in Zll CR	(80 <mll<100)< td=""><td></td></mll<100)<>			
Тор	Shape Norm : <mark>Fit</mark>	MC(very small)			
Diboson	SI	nape & Norm : MC (very sma	ll)		

: Background estimated by (at least partially) data-driven way.

Fit in XX : The CRs are included in the Profile Likelihood Fit (Fit model.)

7th Jan, 2014

NOTE: MVA(BDT) analysis has to be carefully validated : if all training variables are modeled well. → OK. (See conf note)

if all variable correlations are also modeled.

→ checked BDT score for each CRs to check all backgrounds.

• $m_{\tau\tau}$ sideband CR as Z \rightarrow tautau validation region

7th Jan, 2014

7th Jan, 2014

• Top CR by requiring at least one b-tagged jets.

→ All training variables and BDT score distributions in each CRs are modeled by estimation.

7th Jan, 2014

ATLAS results

BDT distribution in leplep SR

Highest Score bin :

BDT score

BDT score

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	0.7 ± 0.4	5.0 ± 1.5		4.6±0.6	4.5±1.7	1.8 ± 0.4	2.7±0.4	0.42
boosted	1.7 ± 0.7	0.7 ± 0.2	0.2 ± 0.1	13±1	0.8 ± 0.3	3.5 ± 0.9	2.3 ± 0.2	0.13

BDT distribution in lephad SR

Highest Score bin :

BDT score

BDT score

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	1.2 ± 0.6	7.5 ± 2.2		2.4 ± 0.4	3.5 ± 0.5	1.5 ± 0.4	1.3 ± 0.7	1.0
boosted	5.5 ± 2.1	1.3 ± 0.4	1.2 ± 0.3	18±2	5.8 ± 1.4	2.2 ± 0.3	5.5 ± 1.2	0.25

BDT distribution in hadhad SR

Highest Score bin :

BDT score

BDT score

	ggF	VBF	VH	Ζ→ττ	Fake	Others	S/B
VBF	2.0 ± 0.9	5.9 ± 1.8		5.3 ± 1.0	5.9 ± 0.9	0.6 ± 0.1	0.67
boosted	2.3 ± 0.9	0.6 ± 0.2	0.7 ± 0.2	9.7±1.6	1.4 ± 0.2	0.07 ± 0.02	0.32

7th Jan, 2014

Summary plots

Event yield as a function of log(S/B)

weighted by ln(1+S/B). for all signal region BDTscore-bins. Events / bin 10⁴ n(1+S/B) w. Events / 10 GeV ATLAS Preliminary **70**⊢ Data Background (µ=1.4) $H(125) \rightarrow \tau\tau \ (\mu=1.4$ $H \rightarrow \tau \tau VBF$ +Boosted 60 $Z \rightarrow \tau \tau$ Background (µ=0) L dt = 20.3 fb⁻¹ Others 10³ *H*(125)→ττ (μ=1.4) 50 Fakes √s = 8 TeV *H*(125)→ττ (μ=1) //// Uncert. 40 30 10² 20 10 H→ττ 10 ATLAS Preliminary Data-Bkg. $H(125) \rightarrow \tau\tau (\mu=1.4)$ $L dt = 20.3 \text{ fb}^{-1}$ $H(110) \rightarrow \tau\tau (\mu=1.8)$ 10 •••• H(150)→ ττ (μ=5.9) $\sqrt{s} = 8 \text{ TeV}$ 1 ×. -3 -2 -1 0 60 80 180 100 120 140 160 m^{MMC}_{TT} [GeV] log(S / B)

7th Jan, 2014

KEK Physics Seminar

MMC distribution where events are

Significance and Signal strength

For mH=125GeV,

Evidence of $H \rightarrow \tau \tau$ decay!

$p_0^{exp} = 6.2 \times 10^{-4} (3.2\sigma), \ p_0^{obs} = 1.9 \times 10^{-5} (4.1\sigma)$

Assuming mH=125GeV :

μ_{best}=1.4+0.5-0.4

Impact of uncertainty sources

Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	0.30
$Z \rightarrow \ell \ell$ normalization ($\tau_{\rm lep} \tau_{\rm had}$ boosted)	0.13
ggF $d\sigma/dp_T^H$	0.12
JES η calibration	0.12
Top normalization ($\tau_{lep} \tau_{had}$ VBF)	0.12
Top normalization ($\tau_{lep} \tau_{had}$ boosted)	0.12
$Z \rightarrow \ell \ell$ normalization ($\tau_{\rm lep} \tau_{\rm had}$ VBF)	0.12
QCD scale	0.07
di- $ au_{had}$ trigger efficiency	0.07
Fake backgrounds ($\tau_{lep}\tau_{lep}$)	0.07
$ au_{ m had}$ identification efficiency	0.06
$Z \rightarrow \tau^+ \tau^-$ normalization $(\tau_{\rm lep} \tau_{\rm had})$	0.06
$ au_{ m had}$ energy scale	0.06

Production dependence

Both ggF and VBF production process are consistent to the SM!

7th Jan, 2014

CMS Analysis

Categorization

- Categorize events based on different S/B ratio.
 - Introduced new high sensitivity categories.

- Each di-tau decay channels have at most 7 categ.
 - 27 categories for 8TeV
 - 24 categories for 7TeV
 - Total : 51 categories
- had + had
 mu + had
 mu + had
 r(6) categ.
 e + had
 e + had
 6(5) categ.
 mu + mu
 6(5) categ.
 MVA score discriminant
- Used MVA for ee/µµ channels

Background estimation

7th Jan, 2014

Systematic uncertainties

	Uncertainty	Affected samples	Change in acceptance	
	Tau energy scale	signal & sim. backgrounds	shape	
	Tau ID & trigger	signal & sim. backgrounds	8-19%	
	e misidentified as τ_h	$Z \rightarrow ee$	20-74%	
	μ misidentified as τ_h	$Z \rightarrow \mu \mu$	30%	
Experimental	Jet misidentified as τ_h	Z boson plus jets	20-80%	
uncertainties	Electron ID & trigger	signal & sim. backgrounds	2-6%	
	Muon ID & trigger	signal & sim. backgrounds	2-4%	
	Electron energy scale	signal & sim. backgrounds	shape	
	Jet energy scale	signal & sim. backgrounds	0-20%	
	$E_{\rm T}^{\rm miss}$ scale	signal & sim. backgrounds	1-12%	
	ε_{b-tag} b jets	signal & sim. backgrounds	0-8%	
	ε_{b-tag} light-flavoured jets	signal & sim. backgrounds	1–3%	
	Norm. Z production	Z	3%	
	$Z \rightarrow \tau \tau$ category	$Z \rightarrow \tau \tau$	2-14%	
200 N 010	Norm. W+jets	W+jets	10-100%	CMS Simulation $\sqrt{s} = 8 \text{ TeV}$ μ^{1}
Background	Norm. t ī	tĒ	8-35%	. 0.16 —— H → ττ m _H = 125 GeV
estimation	Norm. diboson	diboson	15-45%	0.14 Z→ττ
88 - 194 222 279 - DNC	Norm. QCD multijet	QCD multijet	6–70%	0.12
	Shape QCD multijet	QCD multijet	shape	0.1
	Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)	

Tau Energy Scale(TES) uncertainty is one of the dominant uncertainty unlike ATLAS.

This is simply because CMS uses the mass discriminant which is quite sensitive to the TES.

7th Jan, 2014

KEK Physics Seminar

0.02

CMS Results

Mass distribution in the signal region

• $\mu \tau_h$ channel is the most sensitive channel

 $p_t(\tau_h) > 45 \text{ GeV}$ $p_t^{\tau\tau} > 100 \text{ GeV}$

 $M_{jj} > 500 \text{ GeV } |\Delta \eta_{jj}| > 3.5$

 $\begin{array}{l} M_{jj} > 700 \ GeV, \left| \Delta \eta_{jj} \right| \ > 4 \\ p_t^{\tau\tau} > 100 \ GeV \end{array}$

7th Jan, 2014

Mass distribution in the signal region

Other VBF channels

7th Jan, 2014

Summary plots

- Calculate S/(S+B) in every bin of the mass distributions of every event category and channels.
- Weighted by S/(S+B) using 68% region around the $m_{\tau\tau}$ peak.

Significance and Signal strength

Mass measurement of the resonance?

Mass sensitivity in CMS

• Since CMS uses the mass distribution as discriminant, it is possible to measure the mass.

KEK Physics Seminar

Mass sensitivity in ATLAS

• ATLAS uses BDT score as discriminant, less sensitive to the mass measurement.

Best fit : mH=120GeV mu=1.4

But mass sensitivity is quite low.

But once we use the weighted mass plots, the mass sensitivity is similar to CMS results

Lepton universality ?

Conclusion

- Both ATLAS and CMS observed significant excess in tautau searches.
 - Result @125GeV:
 - ATLAS: 4.1σ (expected 3.2σ)
 - μ_{best}=1.4+0.5-0.4
 - CMS: 3.4 σ (expected 3.6σ)
 - $\mu_{\text{best}} = 0.87 \pm 0.29$
 - This is 4th channel which observed significant excess.
 - First strong evidence of fermion decay of the Higgs Boson!

Decay channel	Expected sensitivity	Observed Sensitivity
H(124.3)→ZZ	4.4σ	6.6σ
H(126.8)→YY	4.1σ	7.4σ
H(125)→WW	3.7σ	3.8σ
H(125) → ττ	3.2σ	4.1σ
H(125)→bb	1.6σ	0.4σ

7th Jan, 2014

Future prospect

Updated coupling measurement results are presented.

7th Jan, 2014

Future prospect

7th Jan, 2014

Backup

7th Jan, 2014

7th Jan, 2014

Previous result

Repeated analyses by using full data (13→20fb⁻¹) didn't expect reaching evidence.

Backgrounds in highest score bins (leplep)

Process/Category		VBF			Boosted	
BDT score bin edges	0.684-0.789	0.789-0.895	0.895-1.0	0.667-0.778	0.778-0.889	0.889-1.0
ggF	0.53 ± 0.26	0.8 ± 0.4	0.7 ± 0.4	5.3 ± 2.1	5.2 ± 2.0	1.7 ± 0.7
VBF	1.15 ± 0.35	2.0 ± 0.6	5.0 ± 1.5	1.01 ± 0.33	1.5 ± 0.5	0.67 ± 0.22
WH	< 0.05	< 0.05	< 0.05	0.71 ± 0.22	0.64 ± 0.20	0.16 ± 0.05
ZH	< 0.05	< 0.05	< 0.05	0.36 ± 0.11	0.32 ± 0.10	0.06 ± 0.02
$Z \rightarrow \tau^+ \tau^-$	7.6 ± 0.8	9.0 ± 0.9	4.6 ± 0.6	97 ± 7	61.5 ± 3.2	13.6 ± 1.3
Fake	2.8 ± 0.7	5.8 ± 2.0	4.5 ± 1.7	10.1 ± 3.1	15 ± 5	0.79 ± 0.29
Тор	4.0 ± 0.9	2.9 ± 0.7	1.8 ± 0.4	28 ± 7	15 ± 4	3.5 ± 0.9
Others	1.97 ± 0.26	3.3 ± 0.4	2.7 ± 0.4	24.7 ± 1.9	8.8 ± 0.6	2.34 ± 0.24
Total Background	16.3 ± 1.5	20.9 ± 2.4	13.5 ± 2.4	160 ± 7	101 ± 4	20.2 ± 1.8
Total Signal	1.7 ± 0.5	2.9 ± 0.9	5.7 ± 1.7	7.4 ± 2.4	7.7 ± 2.5	2.6 ± 0.8
S/B	0.10	0.14	0.42	0.05	0.08	0.13
Data	23	28	19	156	128	20

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	0.7 ± 0.4	5.0 ± 1.5		4.6±0.6	4.5±1.7	1.8 ± 0.4	2.7 ± 0.4	0.42
boosted	1.7 ± 0.7	0.7 ± 0.2	0.2 ± 0.1	13 ± 1	0.8 ± 0.3	3.5 ± 0.9	2.3 ± 0.2	0.13

Backgrounds in highest score bins (lephad)

Process/Category		VBF			Boosted	
BDT score bin edges	0.5-0.667	0.667-0.833	0.833-1.0	0.6-0.733	0.733-0.867	0.867-1.0
ggF	2.2 ± 0.9	3.5 ± 1.5	1.2 ± 0.6	7.7 ± 2.9	6.3 ± 2.3	5.5 ± 2.1
VBF	4.1 ± 1.2	9.2 ± 2.7	7.5 ± 2.2	1.7 ± 0.5	1.5 ± 0.5	1.3 ± 0.4
WH	< 0.05	< 0.05	< 0.05	0.95 ± 0.29	0.85 ± 0.26	0.81 ± 0.25
ZH	< 0.05	< 0.05	< 0.05	0.42 ± 0.13	0.47 ± 0.14	0.41 ± 0.12
$Z \rightarrow \tau^+ \tau^-$	28.6 ± 1.4	25.0 ± 1.6	2.41 ± 0.35	48.3 ± 3.4	26.1 ± 2.7	18.4 ± 2.0
Fake	37.7 ± 1.8	27.9 ± 2.1	3.5 ± 0.5	27 ± 4	10.8 ± 1.8	5.8 ± 1.4
Тор	6.5 ± 0.7	4.1 ± 0.8	1.5 ± 0.4	7.0 ± 0.9	5.7 ± 0.8	2.23 ± 0.33
Diboson	2.9 ± 0.4	3.0 ± 0.5	0.23 ± 0.04	4.8 ± 0.5	4.0 ± 0.5	1.69 ± 0.23
$Z \to \ell \ell (j \to \tau_{had})$	8.7 ± 1.7	3.3 ± 0.5	0.40 ± 0.10	3.8 ± 0.5	0.71 ± 0.07	< 0.05
$Z \to \ell \ell (\ell \to \tau_{had})$	2.8 ± 1.2	1.9 ± 1.2	0.7 ± 0.6	9.4 ± 1.9	4.9 ± 1.1	3.8 ± 1.2
Total Background	87.2 ± 2.7	65 ± 5	8.7 ± 2.5	101 ± 6	52 ± 4	32 ± 4
Total Signal	6.3 ± 1.8	12.7 ± 3.5	8.7 ± 2.4	10.7 ± 3.3	9.2 ± 2.8	8.0 ± 2.5
S/B	0.07	0.20	1.0	0.11	0.18	0.25
Data	90	80	18	103	64	34

	ggF	VBF	VH	Ζ→ττ	Fake	Тор	Others	S/B
VBF	1.2 ± 0.6	7.5±2.2		2.4 ± 0.4	3.5 ± 0.5	1.5 ± 0.4	1.3 ± 0.7	1.0
boosted	5.5 ± 2.1	1.3 ± 0.4	1.2 ± 0.3	18±2	5.8 ± 1.4	2.2 ± 0.3	5.5 ± 1.2	0.25

Backgrounds in highest score bins (hadhad)

Process/Category		VBF			Boosted	
BDT score bin edges	0.85-0.9	0.9-0.95	0.95-1.0	0.85-0.9	0.9-0.95	0.95-1.0
ggF	0.39 ± 0.17	0.35 ± 0.16	2.0 ± 0.9	2.2 ± 0.8	2.5 ± 1.0	2.3 ± 0.9
VBF	0.57 ± 0.18	0.72 ± 0.22	5.9 ± 1.8	0.55 ± 0.17	0.61 ± 0.19	0.57 ± 0.17
WH	< 0.05	< 0.05	< 0.05	0.34 ± 0.11	0.40 ± 0.12	0.44 ± 0.14
ZH	< 0.05	< 0.05	< 0.05	0.22 ± 0.07	0.22 ± 0.07	0.22 ± 0.07
$Z \rightarrow \tau^+ \tau^-$	3.2 ± 0.6	3.4 ± 0.7	5.3 ± 1.0	15.7 ± 1.7	12.3 ± 1.8	9.7 ± 1.6
Multijet	3.3 ± 0.6	2.9 ± 0.6	5.9 ± 0.9	5.2 ± 0.6	3.7 ± 0.5	1.40 ± 0.22
Others	0.38 ± 0.09	0.49 ± 0.12	0.64 ± 0.13	1.49 ± 0.27	2.8 ± 0.5	0.07 ± 0.02
Total Background	6.9 ± 1.3	6.8 ± 1.3	11.8 ± 2.6	22.4 ± 2.5	18.8 ± 2.8	11.2 ± 1.9
Total Signal	0.97 ± 0.29	1.09 ± 0.31	8.0 ± 2.2	3.3 ± 1.0	3.8 ± 1.2	3.6 ± 1.1
S/B	0.14	0.16	0.67	0.15	0.2	0.32
Data	6	6	19	20	16	15
ggF	VBF	VH	Ζ→ττ	Fake	Others	S/B

VBF 2.0 ± 0.9 5.9 ± 1.8 5.3 ± 1.0 5.9 ± 0.9 0.6 ± 0.1 0.67 ___ boosted 2.3 ± 0.9 0.6 ± 0.2 0.7 ± 0.2 9.7 ± 1.6 0.07 ± 0.02 0.32 1.4 ± 0.2

Full categorization chart

- For 7TeV analysis, loose and tight VBF categories are merged.
- 1jet e-had cahnnels used MET>30GeV cut.

7th Jan, 2014

Signal strength

Events split by categories

Events split by channels

