Towards Neutrino mass spectroscopy using atoms

M. Yoshimura @Okayama University Experimental aspects N. Sasao

- Why atoms for neutrino physics
- Unique way to distinguish Majorana from Dirac, and to determine the smallest neutrino mass
- Relic 1.9 K neutrino detection is feasible

SPAN project

1

m.yoshimura 09/2014

Search for the missing link of micro- and macro- worlds

Introduction

• What have been, and have not been, determined in neutrino experiments so far

 Remaining important questions on neutrino properties to probe physics beyond the standard theory and cosmology

Present status of neutrino physics

Important questions left in neutrino physics

- Absolute mass scale and the smallest mass (oscillation experiments are sensitive to mass squared differences alone)
- Majorana vs Dirac distinction
- CPV phase (Majorana case has 2 extra phases)

 α, β, δ (KM – type)

These are relevant to explanation of matter-antimatter imbalance of universe.

We shall experimentally achieve all of these goals.

Our Okayama group has proposed an entirely new method using atoms, initiated R&D works and succeeded in establishing the huge rate enhancement in QED process, along with theoretical works.

Significance of Majorana neutrinos

• Plausible scenario of lepto-genesis

Heavy Majorana decay resposibe for generation of lepton asymmetry, being converted to baryon asymmetry via strong electroweak B, L violation keeping B-L conserved.

Prerequisite: ordinary neutrinos are also Majorana. New CPV sources related to heavy partners of mass >> Fermi scale

• Seesaw mechanism and an important step for construction of grand unified theory $\frac{m^2}{M}$

Lepto-genesis

- Leading theory to explain the matter-antimatter imbalance of our universe
- Prerequisite: lepton number violation or Majorana type of mass, CP violation
- Sensitivity to low energy parameters Davidsson-Ibarra, NPB648, 345(2003)
 CP asymmetry in leptogeneis

$$\approx \frac{3y_1^2}{4\pi} \left(-2(\frac{m_3}{m_2})^3 s_{13}^2 \sin 2(\delta + \alpha - \beta) + \frac{m_1}{m_2} \sin(2\alpha) \right)$$

+ (high energy phases inaccessible in low energy experiments) Ours are sensitive to α , $\beta - \delta$; the same as in lepto – genesis m.yoshimura 09/2014

 $\varphi_{\vec{p},h}(x) = c(\vec{p},h)e^{-ip\cdot x}u(\vec{p},h) + c^{\dagger}(\vec{p},h)e^{ip\cdot x}\sqrt{\frac{E_p + hp}{E_p - hp}}(-i\sigma_2)u^*(\vec{p},h),$ $u(\vec{p},h) = \frac{1}{2} \sqrt{\frac{E_p - hp}{pE_p(p+hp_3)}} \begin{pmatrix} p+hp_3\\ h(p_1+ip_2) \end{pmatrix}.$ 2 neutrino wave functions are anti-symmetrized Dirac eq.: degenerate 2 Majorana $(i\partial_t - i\vec{\sigma}\cdot\vec{\nabla})\varphi = m\chi, \quad (i\partial_t + i\vec{\sigma}\cdot\vec{\nabla})\chi = m\varphi$ 2-component in weak process involved $\psi_D = (1 - \gamma_5)\psi/2$ $\psi_D = b(\vec{p}, h)e^{-ip\cdot x}u(\vec{p}, h) + d^{\dagger}(\vec{p}, h)e^{ip\cdot x}\sqrt{\frac{E_p + hp}{E_p - hp}}(-i\sigma_2)u^{*}(\vec{p}, h)$ Particle annihilation Anti-particle creation 7 m.yoshimura 09/2014

Majorana eq. : particle=antiparticle

 $(i\partial_t - i\vec{\sigma} \cdot \vec{\nabla})\varphi = im\sigma_2\varphi^*$

Majorana phase dependence Pair emission current at cross threholds

$$\begin{aligned} \langle (ip_1h_1, jp_2h_2) | j_{\nu} | 0 \rangle &= \xi_i^* \xi_j e^{i(p_1 + p_2) \cdot x} v_1^{\dagger} \sigma u_2 - \xi_i \xi_j^* e^{i(p_1 + p_2) \cdot x} v_2^{\dagger} \sigma u_1 \\ &= e^{i(p_1 + p_2) \cdot x} \left(i \Im \xi_i^* \xi_j (v_1^{\dagger} \sigma u_2 + v_2^{\dagger} \sigma u_1) + \Re \xi_i^* \xi_j (v_1^{\dagger} \sigma u_2 - v_2^{\dagger} \sigma u_1) \right) \\ \xi_i^* \xi_j &= U_{ei}^* U_{ej} = c_{ij}^{(0)}, \quad U_{e1} = c_{12} c_{13}, \ U_{e2} = s_{12} c_{13} e^{i\alpha}, \ U_{e3} = s_{13} e^{i\beta} \end{aligned}$$

Unless $(v_1^{\dagger}\sigma u_2 + v_2^{\dagger}\sigma u_1)$ and $(v_1^{\dagger}\sigma u_2 - v_2^{\dagger}\sigma u_1)$ are orthogonal, T-reversal violation $\propto \Im \xi_i^* \xi_j \Re \xi_i^* \xi_j$ can be measured, and all Majorana phases α, β are measurable. Non-orthogonality holds for $i \neq j$, or $m_i \neq m_j$.

 $\cos(2\alpha)$, $\cos 2(\beta - \delta)$, at (12), (13), (23) thresholds

Relevant atomic process to us Radiative Emission of Neutrino Pair (RENP) from metastable atomic levels

• Process undoubtedly existing in standard theory, assuming finite neutrino masses

 Possible to amplify otherwise small rates by developing macro-coherence of a twin process

Neutrino weak interaction with electron and quarks in standard electroweak theory

Charged Current

Neutral Current

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{i,j} \bar{\nu}_i \gamma^{\mu} (1 - \gamma_5) \nu_j \,\bar{e} \gamma_{\mu} (v_{ij} - a_{ij} \gamma_5) e,$$

$$v_{ij} = U_{ei}^* U_{ej} - \left(\frac{1}{2} - 2\sin^2\theta_W\right)\delta_{ij}, \ a_{ij} = U_{ei}^* U_{ej} - \frac{1}{2}\delta_{ij}, \qquad j_q^0 = -\frac{1}{2}j_n^0 + \frac{1}{2}(1 - 4\sin^2\theta_W)j_p^0,$$

Mixing in W-exchange U = VP, (A8)

where

$$V = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix},$$
(A9)

with $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$. The diagonal unitary matrix P may be expressed by

m.yoshimura 09/2014
$$P = \text{diag.}(1, e^{i\alpha}, e^{i\beta}),$$
 (A10) 10

Rate amplification by macroscopic coherence

- Super-radiance coherent volume (Dicke)
 - In case of SR, coherent volume is proportional to $\lambda^2 L$.
 - Phase decoherence time (T_2) must be longer than T_{SR}

Rate
$$\propto \left| \sum_{j}^{N} e^{i\vec{k}\cdot\vec{r}_{j}} M_{atm} \right|^{2} \propto N^{2} \quad (\text{for } |r_{j} - r_{l}| \leq \lambda)$$

- For a process with plural outgoing particles
 - Phase matching condition (momentum conservation) is satisfied.
 - Coherent volume is not limited by λ ., can be macroscopic.

Rate
$$\propto \left| \sum_{j}^{N} e^{i(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}) \cdot \vec{r}_{j}} M_{atm} \right|^{2} \propto N^{2} \quad \left(\text{for } \vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} = 0 \right)$$

Superradiance: 2 level and 1 photon case

1916-1997

m.yoshimura 09/2014

Figure 2.2. Oscilloscope trace of the super-radiance pulse observed by Skribanowitz *et al* [SHMF73] in HF gas at 84 μ m ($J = 3 \rightarrow 2$), pumped by the $R_1(2)$ laser line, and the theoretical fit. The parameters are; pump intensity i = 1 kW cm⁻², p = 1.3 mTorr, L = 100 cm. The small peak on the oscilloscope trace at t = 0 is the 3 μ m pump pulse, highly attenuated.

Rate enhanced by N

Delayed enhanced signal accompanied by ringing 12

Radiative emission of neutrino pair (RENP)

Fig. 2 RENP dimensionless spectrum function $I(\omega)$ near the neutrino pair emission thresholds from Xe level $5p^{5}(^{2}P_{3/2})6s^{2}[3/2]_{2}$. Neutrinos of the smallest mass of 1, 10 and 50 meV are taken for the normal (solid curve) and the inverted (dashed curve) hierarchical mass pattern.

Recent result for rates

• Pair emission from nucleus (monopole) gives the largest rates

Figure 3: RENP diagrams 3 for alkali atoms.

Nuclear coherence effect

Spectrum rates for gas Xe

Dirac vs Majorana & CP phases We need to go to the lower energy (smaller level spacing) to see CP phases.

Parity violating effects and asymmetric rates calculated: proof of involved weak interaction and important to increase S/N ratio

1.asymmetry under the magnetic field reversal,

2. asymmetry under the reversal of trigger photon circular polarization

Figure 1: Parity odd contribution of valence electron exchange. Neutrino pair emission contains the PO part of vertex, as described in the text.

PV rate much smaller than PC rate

Figure 8: ${}^{3}P_{2}, J = 2, M_{J} = 1$ Yb PC rates, PV rate differences. Zeeman mixing amplitude 5×10^{-6} (corresponding to the magnetic field **), $\eta_{\omega}(t) = 1$, $n = 10^{22}$ cm⁻³, and 10^{2} cm³ are assumed. Majorana NH PV in solid red, M-IH PV in dashed blue, M-NH PC rate divided by 50 in dash-dotted green, and M-IH/50 in dotted black (degenerate with M-NH PC).

MD distinction possible by measurement of PV asymmetry

Figure 11: ${}^{3}P_{2}$ Yb PV asymmetries vs photon energy. Zeeman mixing amplitude 5×10^{-6} , $\eta_{\omega}(t) = 1$, $n = 10^{22}$ cm⁻³, and a target volume 10^{2} cm³ assumed. In the positive side the Majorana case of PV asymmetry under polarization reversal for NH is depicted in solid red, M-IH case in dashed blue, D-NH in dash-dotted green and the Dirac case for IH in dotted black. In the negative side PV asymmetry under the field reversal is plotted; M-NH and D-NH in solid red, and M-IH and D-IH in dashed blue, all assuming the smallest neutrino mass 5 meV.

Detection of relic neutrinos of 1.9 K

Recent work with N. Sasao and M. Tanaka arXiv: 1409.3648

- Direct remnant at a few seconds after the big bang
- Prove that neutrinos were in thermal equilibrium, giving the important basis of light element synthesis such as 4He
- T differs from 2.7K of microwave, because electronpositron annihilation occurred after the neutrino decoupling at a few MeV, heating up matter in equilibrium
- Prediction is firm: (4/11)^(1/3) 2.7 K = 1.9 K, 110cm^-3

 Spectrum distortion by the Pauli blocking caused by ambient relic neutrinos

Neutrino distribution function

$$f(p) = \frac{1}{\zeta e^{\sqrt{p^2 + m^2/(z_d + 1)^2}/T} + 1} \approx \frac{1}{\zeta e^{p/T} + 1}$$

$$\zeta = e^{-\mu_d/T_d}, \quad z_d = O(10^{10})$$

Blocking given by 1-f(p)

$$\begin{split} F_{ij}^{A}(\omega;T_{\nu}) &= \frac{1}{8\pi\omega} \int_{E_{-}}^{E_{+}} dE_{1} \, g_{ij}^{A}(E_{1}) \cdot \left(1 - f(\sqrt{E_{1}^{2} - m_{i}^{2}})\right) \left(1 - \bar{f}(\sqrt{(\epsilon_{eg} - \omega - E_{1})^{2} - m_{j}^{2}})\right) \,, \\ g_{ii}^{M}(E) &= -E^{2} + (\epsilon_{eg} - \omega)E + \frac{1}{2}m_{i}^{2} - \frac{1}{4}\epsilon_{eg}(\epsilon_{eg} - 2\omega) + \delta_{M}\frac{m_{i}^{2}}{2} \,, \\ g_{ij}^{S}(E) &= -\frac{1}{3}E^{2} + \frac{1}{3}(\epsilon_{eg} - \omega)E + \frac{1}{12}\epsilon_{eg}(\epsilon_{eg} - 2\omega) - \frac{1}{12}(m_{i}^{2} + m_{j}^{2}) - \delta_{M}\frac{m_{i}m_{j}}{2} \,, \\ E_{\pm} &= \frac{1}{2}\left((\epsilon_{eg} - \omega)(1 + \frac{m_{i}^{2} - m_{j}^{2}}{\epsilon_{eg}(\epsilon_{eg} - 2\omega)}) \pm \omega\Delta_{ij}(\omega)\right) \,, \quad \Delta_{ij}(\omega) = \left\{\left(1 - \frac{(m_{i} + m_{j})^{2}}{\epsilon_{eg}(\epsilon_{eg} - 2\omega)}\right)\left(1 - \frac{(m_{i} - m_{j})^{2}}{\epsilon_{eg}(\epsilon_{eg} - 2\omega)}\right)\right\}^{1/2} \,. \end{split}$$

Temperature measurement possible for RENP ?

Ratio of rates: with to without Pauli blocking

with/without Pauli blocking

Difference of distortions for 1.9 and 2.7 K

10% level

For small level spacing, temperature measurement seems possible. Less sensitive than the inverse process.

Effect of chemical potential

Figure 4: Spectrum distortion $R_M(\omega)$ for magnitudes of neutrino degeneracy $|\mu_d|/T_{\nu} = 0$ meV in solid black, 1 in dashed blue, and 2 in dotted red. The lightest neutrino mass $m_0 = 0$ meV. $\epsilon_{eg} = 10T_{\nu} \sim 1.7$ meV chosen.

monopole

spin

Twin process: Paired Super-Radiance (PSR) important to develop large rates for RENP (also to prove the principle of macro-coherence)

- Macro-coherent amplification
 - A new type of coherent phenomena
 - Should be established experimentally
- Two photon emission process

$$|e\rangle \rightarrow |g\rangle + \gamma + \gamma$$

- Paired Super-Radiance
 - QED instead of weak process
 - Good experimental signature; i.e. backto-back radiations with same color.

Effective 2-level model for trigger and medium evolution

2 level interaction with field

$$\frac{d}{dt}\begin{pmatrix} c_e \\ c_g \end{pmatrix} = -i\mathcal{H}\begin{pmatrix} c_e \\ c_g \end{pmatrix}, \quad -\mathcal{H} = 2\begin{pmatrix} \mu_{ee} & 2e^{i\epsilon_{eg}}\mu_{ge} \\ 2e^{-i\epsilon_{eg}}\mu_{ge} & \mu_{gg} \end{pmatrix}E^2$$

Maxwell-Bloch equation for PSR simulations: 1+1 dim

$$\begin{aligned} & \mathsf{Bloch equation for medium} \qquad \vec{R} = \mathrm{tr} \ \rho \vec{\sigma} = \langle \psi | \vec{\sigma} | \psi \rangle \\ & \partial_t R_1 = (\mu_{ee} - \mu_{gg}) E^+ E^- R_2 - i\mu_{ge} (e^{i\epsilon_{eg}} E^+ E^+ - e^{-i\epsilon_{eg}} E^- E^-) R_3 - \frac{\kappa_1}{T_2} \,, \\ & \partial_t R_2 = -(\mu_{ee} - \mu_{gg}) E^+ E^- R_1 + \mu_{ge} (e^{i\epsilon_{eg}} E^+ E^+ + e^{-i\epsilon_{eg}} E^- E^-) R_3 - \frac{R_2}{T_2} \,, \\ & \partial_t R_3 = \mu_{ge} \left(i(e^{i\epsilon_{eg}} E^+ E^+ - e^{-i\epsilon_{eg}} E^- E^-) R_1 - (e^{i\epsilon_{eg}} E^+ E^+ + e^{-i\epsilon_{eg}} E^- E^-) R_2 \right) - \frac{R_3 + n}{T_1} \,. \end{aligned}$$

Field equation

$$(\partial_t^2 - \vec{\nabla}^2)\vec{E} = \vec{\nabla}^2 \mathcal{D}\vec{E},$$

$$-\mathcal{D}\vec{E}^+ = \left(\frac{\mu_{ee} + \mu_{gg}}{2}n + \frac{\mu_{ee} - \mu_{gg}}{2}R_3\right)\vec{E}^+ + \mu_{ge}e^{-i\epsilon_{eg}t}(R_1 - iR_2)\vec{E}^-.$$

SVEA (Slowly Varying Envelope Approximation)

$$E = \frac{1}{2} \left(e^{-i\omega_1(t-x)} E_R + e^{-i\omega_2(t+x)} E_L + (\text{h.c.}) \right), \quad \omega_1 + \omega_2 = \epsilon_{eg}$$

complex amplitudes $E_R(x,t), E_L(x,t)$ slowly varying in 1+1 spacetime

Coupled system of field and medium polarization highly non-linear
 m.yoshimura 09/2014

PSR simulations for two counter-propagating modes and soliton-condensates

Figure 6: Spacetime profile of r_1 for the 1 Wmm⁻² case of Fig(3).

Figure 8: Spacetime profile of r_3 for the 1 Wmm⁻² case of Fig(3)

Figure 9: Spatial profile of r_3 at the latest time, 0.3 ns after trigger irradiation, of Fig(8).

Soliton-condensates stable against two-photon emission, unstable for RENP

Experimental result (see Sasao)

- Linear growth region for two pair modes in the same direction
- Exponential time growth prop. to n * coherence, cut by de-coherence T_2

Twin process and controlled switching

RENP uses large medium polarization and stored fields by PSR, but two processes have different selection rules

RENP: (E0 or M1)xE1 PSR: E1xE1

PSR-RENP switching is achieved by application of modulated E

Ideal state for RENP after PSR activity

Soliton-condensates stable against two-photon emission, unstable for RENP

Analogue of stopped light polariton in cavity QED Realized by two counter-propagating trigger PSR modes

Soliton-condensate formulated by non-linear eigenvalue problem

 Stationary solutions are derived from dynamical master eq. for PSR

$$\begin{pmatrix} -E - \frac{d^2}{d\xi^2} - \mathcal{V}(e_i) \end{pmatrix} \begin{pmatrix} e_R \\ e_L^* \end{pmatrix} = 0, \\ \mathcal{V}(e_i) = \begin{pmatrix} \frac{\gamma_-}{2} (r_3(e_i) + 1) & r_T^*(e_i) \\ r_T(e_i) & \frac{\gamma_-}{2} (r_3(e_i) + 1) \end{pmatrix} \\ \text{Forming potential well} \\ r_1(e_i) = -\frac{4\tau_2}{D} \left(\Im(e_Re_L) + 2\tau_2\gamma_- \Re(e_Re_L)(|e_R|^2 + |e_L|^2) \right), \\ r_2(e_i) = -\frac{4\tau_2}{D} \left(\Re(e_Re_L) - 2\tau_2\gamma_- \Im(e_Re_L)(|e_R|^2 + |e_L|^2) \right), \\ r_3(e_i) = -\frac{1 + 4\gamma_-^2 \tau_2^2 (|e_R|^2 + |e_L|^2)^2}{D}, \\ D = 1 + 4\gamma_-^2 \tau_2^2 (|e_R|^2 + |e_L|^2)^2 + 16\tau_1 \tau_2 |e_Re_L|^2, \\ \end{pmatrix}$$

Equivalent to particle motion in 2 dim.

30

Classical potential *10^4

$$\frac{d^2 \vec{r}}{d\xi^2} = \left(-E + \frac{r^2 (r^2 - a^2 \cos \theta_0)}{1 + r^4}\right) \vec{r} + \frac{a^2 r^2 \cos \theta_0}{1 + r^4} \vec{r}_{\perp} ,$$
$$a^2 = 8 \frac{\tau_2}{\tau_1} \sqrt{\tau_2 (\tau_1 + \gamma_-^2 \tau_2)} , \quad \tan \theta_0 = \frac{1}{4\gamma_- \tau_2} ,$$

Experimental strategy towards neutrino mass spectroscopy

- 1st stage: proof of macro-coherence principle using QED (PSR)
- 2nd stage: control of PSR and soliton formation, switching between PSR and RENP modes, study of solid targets
- 3rd stage: discovery of the RENP process, measurements of mass matrix

Solid target: doped ions in ferro-electrics

- Large target number density required for PV measurements
- PSR <-> RENP mode switching effective
- Collaboration with specialists to be started

Summary

 Systematic neutrino mass spectroscopy is made possible when macro-coherence is realized and PSR is controlled by formation of soliton-condensate

 Not a joke, since the macro-coherent QED process (PSR) has been experimentally observed (next talk)