Low-energy neutrino astrophysics in KamLAND

Koji Ishidoshiro (Tohoku Univ.)

Asakura et al., arXiv:1506.01775 Kato et al., arXiv:1506.02358 Asakura et al., ApJ, 806, 87 (2015)

Ref:

KEK physics seminar, June 30 (2015)

Betelgeuse

- Red-super giant
- Next SN candidate
- ~200pc

Betelgeuse

First detection

Subaru (optical)

LIGO (GW)

Super-Kamiokande

Fermi (gamma-ray)

ALMA (Radio waves)

First detection

Neutrinos Luminosity

Integrated spectrum on Earth

Assumption: d=200 pc Integration in the last 48 hours before collapse

New possibility in neutrino astrophysics

Topics

- PreSN neutrinos

- Neutrinos from GRBs

KamLAND

KamLAND

Kamioka Liquid scintillator Anti-Neutrino Detector (since 2002)

- 1,000 m depth (Kamioka mine)
- 1,000 t liquid scintillator

Dodecan (80%), Psedocumene (20%), PPO (1.36g/l)

- 1,325 17inch + 554 20inch PMTs

Outer detector (for muon veto) - 3.2kton water cherenkov detector - ~100 20inch PMTs

Anti-neutrino detection

Inverse-beta decay: delayed coincidence measurement

- time-spatial correlated events
- Reduction of background events

Event rate

Purification

History of background

- Non-neutrino backgrounds were decreased after purification campaigns.
- Reactor neutrinos were significantly decreased after the earthquake.

Pre-supernova neutrinos

Pre-supernova stars

Neutrino cooling in the stellar evolution

C. Kato et al., arXiv:1506.02358

Pre-supernova stars

Neutrino cooling in the stellar evolution

C. Kato et al., arXiv:1506.02358

Event rate (d=200pc) Use of the Odrzywolek model 10^{3} Event rate [/day] Super-Kamioknade 10^{2} (Higher threshold) 10 1 0.1 **10³** Event rate [/day] **KamLAND** 10² 10 15M_{sun} 1 25M_{sun} 0.1 3 2 0 **Time before collapse [day]**

KamLAND vs SK

Expected number of events

detector	$8.4 M_{\odot}$		$12 M_{\odot}$		$15 M_{\odot}$	
	normal	inverted	normal	inverted	normal	inverted
Super-K	2.47×10^{-2}	9.68×10^{-3}	21	7	61	21
KamLAND	1.06×10^{-3}	1.50×10^{-3}	31	9	43	13
Hyper-K	0.30	0.13	9	3	77	28
JUNO	2.12×10^{-2}	8.03×10^{-3}	618	189	864	266

C. Kato et al., arXiv:1506.02358

Background rate - SK background: ~200 event/day - KamLAND background: < 1 event/day

Low threshold measurements **Delayed coincidence method**

KamLAND is suitable for preSN neutrinos.

Physics from preSN neutrinos

Expected number of events

detector	8.4	M_{\odot}	12	M_{\odot}	15	M_{\odot}
	normal	inverted	normal	inverted	normal	inverted
Super-K	2.47×10^{-2}	9.68×10^{-3}	21	7	61	21
KamLAND	1.06×10^{-3}	1.50×10^{-3}	31	9	43	13
Hyper-K	0.30	0.13	9	3	77	28
JUNO	2.12×10^{-2}	8.03×10^{-3}	618	189	864	266

C. Kato et al., arXiv:1506.02358

New possibility:

- Reconstruction of the mass and neutrino mass hierarchy (ONe core or Fe core ?)
- Very early alarm before collapse

KamLAND sensitivity and alarm before collapse

Signal vs Backgrounds

PreSN data from Odrzywolek ($M = 15 M_{sun}$ and 25 M_{sun}) Integrated number of events in the last 48 hr. Energy depend likelihood selection (KamLAND standard)

Number of events vs distance

Assumption of low-reactor backgrounds Energy range: 0.9 < Ep < 3.5 MeV 3σ detection range: 220 - 660 pc

Alarm before collapse

PreSN neutrinos: very early alarm to supernovae Evaluation sensitivity using Betelgeuse.

Betelgeuse

- Red-super giant
- Very close SN candidate

- Large errors for mass and distance

Table 8

Stellar Properties Inferred as a Function of Distance

Property		Distance	
	150 pc	200 pc	250 pc
Bolometric luminosity (ergs s ⁻¹)	4.87	5.12	5.31
Initial mass (M_{\odot})	~ 17	~ 20	~ 24
Age (10 ⁶ Yr)	~13	~ 10	~ 8
Space velocity (LSR)[U' , V' , W'] (km s ⁻¹)	[-12, 2, 22]	[-13, 0, 29]	[-13, -1, 35]

THE ASTRONOMICAL JOURNAL, 135:1430-1440, 2008 April

- Two extreme models + M = 15M_{sun}, d = 150 pc

+ M = 25M_{sun}, d = 250 pc

Betelgeuse

Evolution of significance

Evolution of significance

Early alarm system

Semi-realtime significance (t_{delay} ~ 20-30 min.) Open for other groups.

Summary of PreSN

Detection of preSN signal is possible. 3σ detection range: 220 - 660 pc

Betelgeuse SN

- 3 detection is possible before collapse.
- we open detection significance as alarm.

Current users:

Super-K, XMASS, SNO+ (neutrino detectors) LIGO, GEO600 (gw detectors)

Future improvements

- Combined alarm system with other detectors Detection range: a few kpc

Study - thermal neutrinos from GRBs

What are Gamma Ray Bursts (GRBs)?

The brightest evens in the universe.

- Flashes of gamma-rays

BURSTS

NUMBER OF

- T = 10ms 1000s (long GRB and short GRB)
- Huge energy (10⁵³ erg) release

PRL, 107,051102 (2011)

Basic scenario of GRB

Basic scenario of GRB

Basic scenario of GRB

Supernovae for long GRBs

BH + accretion disk

Neutron production on the disk

$$n + e^+ \to p + \bar{\nu_e}$$
$$(e^+ + e^- \to \nu_e + \bar{\nu_e})$$

Merger of binary neutron stars for short GRBs

(Thermal) neutrino: unique tool to study GRB central region

Coincidence analysis

- Use of redshift-known GRBs
- GRB population analysis (long and short GRBs)
- Coincidence analysis between

KamLAND DC events and GRBs

Used GRB List

SWIFT era

- many redshift-known GRBs (>300)
- 213 long GRBs, 18 short GRBs.

KamLAND data

Selection criteria

KamLAND phase (normal-reactor phase)

- 7.5 < Ep < 100 MeV

KamLAND-Zen phase (low-reactor phase)

- 0.9 < Ep < 100 MeV, inner balloon cut

KamLAND data

Selection criteria

KamLAND phase (normal-reactor phase)

- 7.5 < Ep < 100 MeV

KamLAND-Zen phase (low-reactor phase)

- 0.9 < Ep < 100 MeV, inner balloon cut

Background estimation KamLAND phase (normal-reactor phase) - # of DC events: 56 => 9.3 x 10⁻⁴ event/h KamLAND-Zen phase (low-reactor phase) - # of DC events: 83 => 7.9 x 10⁻³ event/h

Coincidence events

Results for long GBRs:

- No coincidence DC event
- Total window length: 25.2h (18.3 + 6.8 h)
- Expected number: 0.074

⇒ FC upper limits: N₉₀=2.365

Results for short GBRs:

- No coincidence DC event
- Total window length: 14.5h (1.33 + 0.1 h)
- Expected number: 2.2 x 10⁻³

⇒ FC upper limits: N₉₀=2.435

Astrophysical interpretation

Fluence limit

(assuming monochromatic neutrinos at specific energy)

Astrophysical interpretation L-T constraint

Fermi-Dirac: $\psi(E_{\overline{\nu}_e}, T, L) = \frac{120}{7\pi^4} \frac{L}{T^4} \frac{E_{\overline{\nu}_e}^2}{\exp(E_{\overline{\nu}_e}/T) + 1}$

Summary of GRB analysis

Coincidence search used

- 213 long GRBs
- 18 short GRBs

No coincidence DC event

Astrophysical interpretation

- Tightest fluence limits below 7 MeV

- First L-T constraint

This constraint is used to compare theoretical studies.

Summary

Summary

KamLAND: the largest LS detector Initial motivation: neutrino oscillation and geo-neutrino Current highest priority:

neutrino-less double-beta decay (KamLAND-Zen)

KamLAND:

- designed to muti-purpose detector
- strong advantages in low-energy neutrino astrophysics Unique possibility to study preSN neutrino Thermal neutrinos from GRBs (7Be and 8B solar neutrino) (Supernova relic neutrino)

End