

Status and Prospect of NEOS

Neutrino Experiment for Oscillation at Short Baseline

Kim Siyeon Chung-Ang University to be presented at KEK / IPNS July 14, 2015

NEOS

Neutrino Experiment for Oscillation at Short Baseline

중앙대 김시연 中央大 金始衍

on behalf of NEOS Collaboration

Outline

CUP and NEOS

Motivation: Sterile Neutrino Search Reactor Antineutrino 5-MeV Excess

> STATUS: Hanbit Reactor Prototype Detector Detector Construction

NEOS Collaboration

Members (20)

Affiliation (7)

Time Table

HANARO		NEOS	
Project starts	2012 Jul	 HANARO is a research reactor in KAERI (Korea Atomic Energy Research Institute) "HANARO" and "SBL" were used for our experiment. In October 2014, "NEOS" was confirmed as official title of experiment and collaboration. 	
Prototype Detector Construction	2013 Dec		
Prototype Data taking until	2014 Mar		
Plan with HANARO CANCELLED	2014 Dec	- Plan with Hanbit-5 and KJRR (Kijang Research Reactor)	
	2015 May	- Target Assembly	- Dry run
	2015 Jun	- LS/ MO ready	- Muon Veto
	2015 Jul	- Moving from KAERI to HANBIT (13)	
		- Installation on site (14~17)	
	2015 Aug	- Data w/ reactor off: Overhaul of Reactor 5 (Aug 10 ~ Sep 25)	
	2015 Sep	- Data w/ reactor on: Hanbit-5 starts cycle 11 at '15.09.25 23:30	
2016 Mar - Closure of DAQ (expected)			

CUP Kickoff Meeting at KT1 research building, in Daejeon , July 2013

- Institute of Basic Science
- Director
 Kim, Youngduk
- Established in July 1, 2013
- Location
 - Main Office: IBS Center in Daejeon
 - Lab at KT1 Center in Daejeon
 - Lab at Y2L, Yangyang, Gangwon-do
 - Underground facility in Samcheok ?
- <u>http://cupweb.ibs.re.kr</u>

Workshop on Particle Astrophysics in Samcheok, Jan 2014

How deep underground?

From H. S. Lee 's slide for AMoRE Collaboration

Yangyang Underground Laboratory

(Upper Dam)

Korea Middleland Power Co. Yangyang Pumped Storage Power Plant

> 700 m (Power Plant)

> > Minimum depth : 700 m Access to the lab by car (~2km)

Dam)

From Stephen Lars Olsen's slide at AMoRE Collaboration

Plan A

Samcheok Astro-particle Research Center?

Outline

CUP and NEOS

Motivation: Reactor Antineutrino Anomaly Reactor Antineutrino 5-MeV Excess

Sterile Neutrino Search

STATUS: Hanbit Reactor Prototype Detector Detector Construction

Reactor Antineutrino Oscillation

Slide presented by J.C. Park at CUP 07-02-2015

How many anti-electron neutrinos we have ?

Fuel burn-up evolution (typical reactor)

- Hanbit Neclear Power Plant
- Thermal Power : ~2.73 GW (× 6 reactors)
- Assumed Isotope Fraction : 55.6%(²³⁵U), 7.1%(²³⁸U), 32.6%(²³⁹Pu), 4.7%(²⁴¹Pu)
- Nuclear fission rate : 2.73×10⁹ W/[energy released per fission (eV)]

 $= (2.73 \times 10^9)(eV/s)/(1.6 \times 10^{-19})/[205 \times 10^6(eV)] \approx 8.3 \times 10^{19}/s$

5

6

- Anti-electron neutrino : 8.3×10^{19} /s ×6 ≈ 5×10²⁰/s/reactor

at Far and Near Detector					
Reactor #	Far (%)	Near (%)			
1	13.73	6.78			
2	15.74	14.93			
3	18.09	34.19			
4	18.56	27.01			

11.50

5.58

17.80

16.08

Contribution of each reactor to neutrirno flux

RENO

Slide presented by J.C. Park at CUP 07-02-2015

RENO consists of 4 different size cylinders (symmetric & coaxial) for different purposes.

Inner detector	Inner Diameter (cm)	Inner Height (cm)	Container Material	Filled with	Mass (ton)
Target vessel	280	320	Acryl	Gd (0.1%) + LS	16.5
Gamma catcher	400	440	Acryl	LS	30.0
Buffer tank	540	580	Stainless steel	Mineral oil	64.4
Veto tank	840	880	concrete	Water	352.6

outer detector

RENO (presented at NDR 2015, WIN2015)

Measured Spectra of IBD Prompt Signal (NDM 2015)

Far/Near Shape Analysis for Δm_{ee}^2

RENO (presented at NDR 2015, WIN2015)

Systematic Errors of θ_{13} & Δm_{ee}^2

(work in progress)

 $\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst})$

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

Uncertainties sources	Uncertainties (%)	$\begin{array}{l} \text{Errors of } \sin^2\!2\theta_{_{13}} \\ \text{(fraction)} \end{array}$	Error of $ \Delta m_{ee}^2 $ [×10 ⁻³ eV ²]
Statistics (near) (far)	0.21 % 0.54 %	0.008	0.19
Total Systematic (near) (far)	0.94 % 1.06 %	0.007	0.17
Reactor	0.9 %	0.0025 (34.2 %)	-
Detection efficiency	0.2 %	0.0025 (34.2 %)	-
Energy Scale Difference	0.15 %	0.0015 (15.6 %)	0.07
Backgrounds (near) (far)	0.14 % 0.51 %	0.0060 (82.2 %)	0.15

(* tentative)

Reactor Antineutrino Oscillation

A brief history of θ_{13} from reactor experiments:

Taken from slides by Wei Wang @ ICHEP 2014

Reactor Antineutrino Anomaly

- Modification of observed-to- expected ratio based on old & new spectra.
- Neutron life time: 885.7s (PDG2012)

Reactor Antineutrino Anomaly

The sum of probability of three neutrinos is less than one?

Reactor Antineutrino Anomaly

Which is your stance?				
con	The flux measurements of previous experiments were biased to satisfy the prediction in those days.			
con	There are uncertainties in the beta-to-neutrino spectrum conversion.			
pro	It is due to the deficit resulted from sterile neutrino oscillation with large mass.			
?	None of the above.			

Which is your strategy?			
Answer 1	Short-baseline neutrino oscillation to check the deficit of absolute flux.		
Answer 2	Multi-detector for a single reactor to check sterile neutrino oscillation.		
Answer 3	Comparison of different fuel composition. HEU vs. LEU		
Answer 4	Complementary study with excessive appearance as in LSND and MiniBooNE		

Reactor Antineutrino 5 MeV Excess

Reactor Antineutrino 5 MeV Excess

- Ways to understand the bump (or shoulder) :
 - (1) Uncertainties in forbidden transitions and conversion of beta spectrum.
 > Nuclear calculation
 - (2) Enhanced phase of fourth neutrino oscillation
 >> Short baseline oscillation experiment

A. Hayes at WIN2015

The antineutrino flux used in oscillations experiments is from a conversion of the aggregate beta spectra from ILL

- Measurements at ILL of thermal fission beta spectra for ²³⁵U, ²³⁹Pu, ²⁴¹Pu
- Converted to antineutrino spectra by fitting to 30 end-point energies
- Use Vogel et al. ENDF estimate for ²³⁸U
 ²³⁸U ~ 7-8% of fissions =>small error
- All transitions were treated as allowed GT

- Known corrections to beta spectrum caused the neutrino spectrum anomaly.
 - $\delta_{\text{rad}} = \text{Radiative correction (used formalism of Sirlin)} \\ \delta_{FS} = \text{Finite size correction to Fermi function} \\ \delta_{\text{WM}} = \text{Weak magnetism}$
- If all forbidden transitions are treated as allowed GT, the corrections indicate the anomaly deficit.

• 30% of the transitions are forbidden.

Reactor Antineutrino 5 MeV Excess

A. Hayes at WIN2015 Dwyer & Langford, PRL 114 (2015)

- Different nuclear databases do not agree on the origin of 5-MeV excess >> The uncertainties in databases should be propagated significantly.
- Suggestion:
 - HEU-fuel reactor has the advantage such that antineutrino flux is originated from a single isotope.
 - If U(238) or Pu(239) has a significant role in the 5-MeV excess or the anomaly deficit, the comparison of measurement of LEU will be necessary. >> OSIRIS or NEOS Kijang(20% 235) in comparison with RENO, Daya Bay, Double
 Chooz and NEOS Hanbit.

- JEFF-3.1.1 does not predict a bump for ²³⁵U or ²³⁹Pu
 - Agrees with Schreckenbach for both these nuclei
 - But predicts a significant bump for ²³⁸U

ENDF/B-VII.1 predicts that it results from an

-Also predicts a large bump for ²³⁸U

analogous shoulder in the ILL ²³⁵U β spectrum

- Reactor antineutrino anomaly
- LSND and MiniBooNE

>> Deficit in disappearance probability

1.4 1.5

3.0

E^{QE} (GeV)

>> Excess in appearance probability

	NEOS Hanbit	NEOS Kijang	Nucifer	Stereo	DANSS	PROSPECT
Power	2.8GW	15 MW	56MW	100MW	2.7 GW	185MW
Baseline	25m	5 ~ 7m	7m	9~11m	9.7 ~ 12m	7 ~ 11m
Fuel	LEU(U ²³⁵ 5%)	LEU(U ²³⁵ 20%)	HEU	HEU	LEU	HEU

7/14/2015

Outline

CUP and NEOS

Motivation: Sterile Neutrino Search Reactor Antineutrino 5-MeV Excess

STATUS: Hanbit Reactor

Prototype Detector Detector Construction

HANARO and KIJANG

candidate	baseline	thermal power	# of ibd event / day	overburden	remarks	signal to bkgd
HANARO	бm	30MW	~250	-	cancelled	0.3
KIJANG	5m	15MW	~180	~23 m.w.e.		1
HANBIT	25m	2.7GW	~1,200	16~23 m.w.e.		5

Detector Sensitivities

Hanbit-5

- The name was changed from Younggwang NPP to Hanbit NPP
- 靈光: ghost signal

Unit: Hanbit -5
994MWe, 2825MWt
Operation started on 21 May, 2002
(from PRIS database, IAEA)
Owner: Korea Hydro and Nuclear
Power Co.

Overhaul schedule: (cycle # 11) 10 August ~ 25 September, 2015

Candidate	Baseline (m)	Thermal Power (W)	Overburden (m.w.e.)	Expected S / B	Consideration
Hanaro	6	30 M	0~	<0.2	off during 2015
Kijang	5	15 M	~23	>~!?	After 2017
Hanbit	25	2.8 G	15~30	5	Commercial

Reactor Neutrino Spectrum

Tendon Gallery in Hanbit-5

Background in Tendon Gallery

- Performance comparison in KT1 vs. Hanbit-5
- Triggered rate: 78Hz vs. 90Hz
- Neutron rate: .025 vs. below .001Hz

Outline

CUP and NEOS

Motivation: Sterile Neutrino Search Reactor Antineutrino 5-MeV Excess

STATUS: Hanbit Reactor Main Detector Construction

Study with Prototype

Slide presented

by Y. Oh at WIN2015

- Sejong University
- CUP Lab in Daejeon
- Hanaro Reactor
- 50L 0.5% Gd-LS in acrylic cylinder seen by 6 R5912.
- 4π LS $\mu\text{-veto}$ and 10 cm Pb shield.
- DAQ / calibrations / background & shielding / MC.

Detector Construction

Design Check Point	
Large enough to collect neutrino events efficiently?	٧
Small enough to fit in a limited space in a tendon gallery? (width 3m * height 4m)	٧
To minimize the loss of scintillation photons - Phototube configuration - Reflecting material (Teflon sheet)	V
Radioactive source calibration	V
Active/Passive shielding from μ , γ , n	V

Detector

Design and Sensitivity

Radius (cm)	Length (cm)	γ-catcher thickness
42.5	100	0
42.5	100	15 cm
47.5	100	0
52.5	100	0
52.0	120	0

Detector Assembly

13

@ Korea Atomic Energy Research Institute

Slide presented by Y. Oh at WIN2015

Detector Construction

Side presented by Y. Oh @ADFD 2015, Taiwan

\overline{v}_e Detection: Inverse β -Decay

 $\sigma_{IBD}(E_{\overline{\tau}} \sim MeV) \sim O(10^{-42} \text{ cm}^2)$ and scales with E^2

Detector of many hydrogen atoms, with signals (lights) from e+ and n-capture.

Liquid Scintillator

Liquid Scintillator

Slide presented by Y. Oh at WIN2015

Pulse Shape Discrimination

PSD Enhanced by UG-F mixing

DAQ

40 (8*5) channels for 38 PMTs in the main detector

- 500 MHz FADC for waveform analysis (PSD)

Trigger Board

- Multiplicity trigger
- Synchronization control

30 channels for muon veto

- 64 MHz slow ADC only for veto purpose

Estimated data size: about 600 Gbytes / day /kHz

Timetable

HANARO		NEOS		
Project starts	2012 Jul			
Prototype Detector Construction	2013 Dec			
Data taking until	2014 Mar			
Plan with HANARO CANCELLED	2014 Dec	- Plan with Hanbit-5 >> Kijang		
	2015 May	- Target Assembly	- Dry run	
Loading V	2015 Jun	- LS/ MO ready	- Muon Veto	
Unpacking (in process)	2015 Jul	- Moving from KAERI to HANBIT (13)		
Deployment		- Installation on site (14~17)		
	2015 Aug	- Data w/ reactor off: Overhaul	of Reactor 5 (Aug 10 ~ Sep 25)	
	2015 Sep	- Data w/ reactor on: Hanbit-5 cycle 10 starts at '15.09.25 23:30		
	2016 Mar	- Closure of DAQ (expected)		

Prospect

- Earliest measurement of short-baseline oscillation is expected.
- Anomaly shown in old reactor experiments will be clearly tested.
- Mass range of 4th neutrino can be directly or indirectly indicated.

- Soon, NEOS will bring a news with data.
- Thank you very much for your interests in NEOS.

Reactor Neutrino Spectrum

Forbidden transitions typically involve several operators and the corrections are operator dependent

Allowed: Fermi
$$\tau$$
 and Gamow-Teller $\Sigma = \sigma \tau$
Forbidden: $\Delta L \neq 0$; $(\vec{L} \otimes \vec{\Sigma})^{\Delta J = \Delta L}$, $(\vec{L} \otimes \vec{\Sigma})^{\Delta J = \Delta L - 1}$, $\vec{r}^L \vec{\tau}$, $\frac{\vec{\nabla} \vec{\tau}}{M}$, ...
 $S(E_e, Z, A) = \frac{G_F^2}{2\pi^3} p_e E_e (E_0 - E_e)^2 C(E) F(E_e, Z, A) (1 + \delta(E_e, Z, A))$

Classification	ΔJ^{π}	Operator	Shape Factor $C(E)$	Fractional Weak Magnetism Correction $\delta_{WM}(E)$
Allowed GT	1+	$\Sigma\equiv \sigma\tau$	1	$\frac{2}{3} \left[\frac{\mu_{\nu} - 1/2}{M_N g_A} \right] (E_e \beta^2 - E_{\nu})$
Non-unique 1 st Forbidden GT	0-	$[\Sigma, r]^{0-}$	$p_e^2 + E_\nu^2 + 2\beta^2 E_\nu E_e$	0
Non-unique 1 st Forbidden ρ_A	0-	$[\Sigma, r]^{0-}$	λE_0^2	0
Non-unique 1 st Forbidden GT	1-	$\left[\Sigma,r\right]^{1-}$	$p_e^2+E_\nu^2-\tfrac{4}{3}\beta^2E_\nu E_e$	$\begin{bmatrix} \frac{\mu_{u}-1/2}{M_{N}g_{A}} \end{bmatrix} \begin{bmatrix} \frac{(p_{u}^{2}+E_{w}^{2})(\beta^{2}E_{e}-E\nu)+2\beta^{2}E_{e}E_{\nu}(E_{v}-E_{z})/3}{(p_{e}^{2}+E_{v}^{2}-4\beta^{2}E_{v}E_{e}/3)} \end{bmatrix}$
Unique 1 st Forbidden GT	2-	$[\Sigma, r]^{2-}$	$p_s^2 + E_v^2$	$\frac{3}{5} \begin{bmatrix} \mu_{W} - 1/2 \\ M_{N}g_{A} \end{bmatrix} \begin{bmatrix} (p_{e}^{*} + E_{W}^{*})(\beta^{*}E_{e} - E\nu) + 2\beta^{*}E_{e}E_{\nu}(E_{\nu} - E_{e})/3 \\ (p_{x}^{*} + E_{\nu}^{*}) \end{bmatrix}$
Allowed F	0+	τ	1	0
Non-unique 1 st Forbidden F	1-	rτ	$p_e^2 + E_{\nu}^2 + \frac{2}{3}\beta^2 E_{\nu}E_e$	0
Non-unique 1 st Forbidden \vec{J}_V	1-	rτ	E_{0}^{2}	