反ニュートリノでの測定を開始した T2K実験の最新結果

Stand was a stranger and the second stranger and the second second

市川温子京都大学 for the T2K collaboration

- 初めの5分間:ニュートリノ振動の説明 知っている人は説明の粗さ探しをしていてください。(または寝るのも可) (または、パワーポイントアニメーション技術を楽しんでください)
- 次の5分間: 反ニュートリノも測ると何がわかるのか?
 知っている人は説明の粗さ探しをしていてください。(または寝るのも可)
- 次の10分間: T2K実験の最近
- 次の20分間: T2K実験の最新結果
 - neutrino2016の結果を見た人へ
 - CPTテストが新しくリリースされました!
 - ・ データが1週間分、増えています!
 - 新しいappearance sampleのデータをオープン!

ANKEN WINDAKAN

・ 最後の5分間: 今後の展望

内容

それぞれ重さが違う 重い 軽い アップ チャーム トップ クオーク 電荷が ボトム ダウン ストレンジ 違う タウ 電子 ミュー レプトン-タウニュートリノ 電子ニュートリノ ミューニュートリノ 電荷を持ってない。重さも(ほとんど)ない。 どうやって区別する? 物質を構成する素粒子 3

電子、ミュー粒子、タウ粒子は物質に当たって「弱い力」でひっく り返ると

- 電子は、物質中で弱い力を受けて電子ニュートリノになる
- ミュー粒子は、ミューニュートリノになる。
- タウ粒子は、タウニュートリノになる。

ニュートリノは、物質に当たって「弱い力」でひっくり返ると

- ・ 電子ニュートリノは、物質中で弱い力を受けて<mark>電子になる</mark>
- ミューニュートリノは、ミュー粒子になる。

a because a second s

タウニュートリノは、タウ粒子になる。

コインの表と裏

電子、ミュー粒子、タウ粒子それぞれに対応したニュートリノがある。 電子の裏側を電子ニュートリノ

ミュー粒子の裏側をミューニュートリノ

タウ粒子の裏側をタウ粒子

と名付けた。(1960年代)

電子ニュートリノを裏返したら電子しか出てこない。ミュー粒子やタウ粒子には決してならない(と1990年ころまで)思われていた

地下1000メートル 50,000トンの水タンク 11,146 20 inch(~50cm) 光電子増倍管

スーパーカミオカンデ検出器

 地下1000メートル
 50,000トンの水タンク
 11,146 20 inch(~50cm) 光電子増倍管

スーパーカミオカンデ検出器

電子ニュートリノが来たのか、ミューニュートリノが来たのかを区別できる。

スーパーカミオカンデは 電子とミュー粒子を区別できる

タウニュートリノが来ると。。。

39m

C) Scientific American

周波数が違う、ということは、粒子がそれぞれ進み方の違う時計を持っているようなもの

素粒子は空間を波のように伝わっていく

ニュートリノに(ごくわずかの)重さがあったら?

12

T2K (Tokai to Kamioka) 長基線ニュートリノ振動実験

最大約5%が変化 (20回に1回電子ニュートリノに変わる)

28個 見つかった! 2013年 7月 (7.3σ)

• 粒子の持っている時計は、逆回転することがある!

逆回転する粒子は、反対符号の
電気を運んでいるように見える。
電子:マイナスの電気を運ぶ。
逆回転している電子:プラスの電気を運ぶ ← 反電子(陽電子)

いよいよ反粒子の登場

初員で構成する来和			
電荷 + ² ₃ e のクオーク	u	С	t
電荷– <u>1</u> ₃ eのクオーク	d	S	b
電荷0のレプトン (ニュートリノ)	ν _e	ν_{μ}	ν _τ
電荷eのレプトン	e	μ	τ

物質を構成する表料之

反素粒子上に		つける	0
電荷 - ² ₃e のクオーク	ū	Ē	Ē
電荷+ ¹ ₃ eのクオーク	d		b
電荷0のレプトン (ニュートリノ)	\overline{v}_{e}	$\overline{\nu}_{\mu}$	$\left[\frac{-}{v} \right]_{\tau}$
電荷+eのレプトン	e	μ	τ

a water and the description of the second second and the second the second s

時計が二つの場合。

ニュートリノ

作ったのとは別のニュートリノが現れる波の様子

二つの針をどこから 始めても、結果は同じ。

時計が三つの場合は、三つ目 の針の場所によって、結果が 違ってしまう。 粒子と反粒子が異なる振る舞い 方をしてしまう! 物質・反物質対称性(CP)の破 れ!(小林・益川の理論) CPの破れはクオークでは見つ かっているが、ニュートリノでは まだ見つかっていない。

<u> 反ニュートリノ</u> ニュートリノは3種類あるので重さも3種類(=時計が3つ)」⁹

Weak
Figenstates

$$v_{\mu}$$

 v_{ν}
 v_{ν}
 v_{ν}
 v_{ν}
 v_{ν}
 v_{ν}
 v_{ν}
 v_{τ}
 v_{μ}
 v_{τ}
 v_{μ}
 v_{μ}

and the sublest and an additional and a barrier and a barrier addition of the second and the second and the second s

Neutrino Oscillation Measurements

CP phase KEY to understand the origin of matter dominant universe

()

()

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +s_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} \\ -s_{12} & +c_{12} \\ 0 & 0 \end{pmatrix}$$
$$\theta_{12} = 33^{\circ} \pm 1^{\circ} \qquad (c_{ij} = \cos\theta_{ij}, s_{ij} = \sin\theta_{ij})$$
$$\theta_{13} = 8.9^{\circ} \pm 0.4^{\circ}$$
Big Impact on 0v double search (hence on the environment)

Unknown Mass Ordering

normal: $m_1 < m_2 \ll m_3$ inverted: $m_3 \ll m_1 < m_2$ $\Delta m_{21}^2 = 7.5 \pm 0.2 \times 10^{-5} \text{ eV}^2$ $\times \sim 30^{-5} |\Delta m_{32}^2| = 2.44 \pm 0.06 \times 10^{-3} \text{ eV}^2$

m_3 m_2 m_1 m_2 m_1 m_3 normal inverted

Unknown

Big Impact on 0v double- β decay search (hence on Majorana vconfirmation) inverted $\rightarrow 1$ ton detector normal $\rightarrow > 100$ ton detector

One Page Summary

 $\delta_{CP}^{CKM} \sim 60^{\circ} \sim 70^{\circ}$ looks large, but cannot explain matter-dominant universe. δ_{CP} is dependent on definition.

Jarlskog Invariant : independent of definition. show the size of CP violation effect.

$$J_{CP} \equiv Im \left(U_{\mu 3} U_{e3}^* U_{e2} U_{\mu 2}^* \right) = \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta_{CP}$$
$$J_{CP}^{CKM} \approx 3 \times 10^{-5}$$

 $J_{CP}^{PMNS} \approx 0.03 \sin \delta_{CP}$

PDG2015 "NEUTRINOMASS, MIXING, AND OSCILLATIONS"

A value of $|\sin \theta_{13} \sin \delta| \gtrsim 0.09$, and thus $\sin \theta_{13} \gtrsim 0.09$, is a necessary condition for a successful "flavoured" leptogenesis with hierarchical heavy Majorana neutrinos when the CP violation required for the generation of the matter-antimatter asymmetry of the Universe is provided entirely by the Dirac CP violating phase in the neutrino mixing matrix [191]. This condition is comfortably compatible both with the measured value of $\sin^2 \theta_{13}$ and with the best fit value of $\delta \cong 3\pi/2$. $|\sin \theta_{13} \sin \delta| \ge 0.09 \rightarrow |\sin \delta| \ge 0.58$

ニュートリノ振動でCPの破れが見えたからといって、即物質優勢宇宙を説明できる訳で はないが、物質優勢宇宙を説明できるくらい大きなCPの破れの源となる得る、ということ。

Leptonic CPV can be much larger than Quark's

antineutrino($\bar{\nu}$)-mode flux

Correlation between Near flux and Far flux

a by the subset of the match and the second s

T2K Neutrino Flux

- flux peak ~0.6 GeV ≈ oscillation maximum
- $\bar{\nu}$ flux is ~10% less than ν flux.
- (anti-) v_e contamination < 1%
- based on CERN NA61/SHINE p-C data (collaborating work)
- careful beam monitoring
- ~8% uncertainty at peak
- near-to-far extrapolation << 2% uncertainty

Flux Correlations

mixing matrix (PMNS) $\nu_{\alpha} \rightarrow \nu_{\beta}$ oscillation $|\nu_{\alpha}(L)\rangle = U_{\alpha i} e^{-i\frac{m_{i}^{2}}{2E}L}$ $\therefore \left\langle \nu_{\beta} \middle| \nu_{\alpha}(L) \right\rangle = U_{\beta i}^{*} U_{\alpha i} e^{-i \frac{m_{i}^{2}}{2E}L}$ if $\beta = \alpha$ (disappearanceだけを測る場合) $\langle v_{\alpha} | v_{\alpha}(L) \rangle = |U_{\alpha i}|^2 e^{-i \frac{m_i^2}{2E}L}$

Imaginary part vanishes! CPの破れを見るのは、Appearanceの測定が必要。

Neutrino oscillation formula

 $\Delta m^2 \approx \Delta m_{32}^2 \approx \Delta m_{31}^2$

$$P_{\mu \to x} \approx 1 - \left(\sin^2 2\theta_{23} + \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \right) \sin^2 \left(\frac{\Delta m^2}{4E_{\nu}} \right)$$

Leading-term Next-to-leading

Cannot distinguish θ_{23} and $90^{\circ} - \theta_{23}$

Energy dependent maximum at ~0.6 GeV for *L*=295km

27

 v_{μ} disapp. probability depends on $\sin^2 2\theta_{13} \sin^2 \theta_{23}$ to second order -> Can be used in combination with known $\sin^2 2\theta_{13}$ to resolve the θ_{23} octant

 v_{μ} disappearance probability for longbaseline accelerator experiment

$$P(\nu_{\mu} \rightarrow \nu_{\ell}) = \begin{cases} 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21} \\ Solar \\ C_{ij} = \cos\theta_{ij}, S_{ij} = \sin\theta_{ij} \\ \Phi_{ij} = \Delta m_{ij}^{2}\frac{L}{4E_{\nu}} \\ \delta \rightarrow -\delta \text{ for } P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \\ \end{cases}$$
CP-violating term introduced by interference up to $\pm 27\%$ of leading term

v_e appearance probability for long-baseline accelerator experiment (in vacuum)

28

v_e appearance probability and T2K flux

31

T2K data taking and physics release history

27 May 2016 POT total: 1.510×10²¹ v-mode POT: 7.57×10²⁰ (50.14%) ⊽-mode POT: 7.53×10²⁰ (49.86%)

T2K data taking and physics release history

• Tiny leakage of target cooling Helium gas was found in July 2015.

And a contracted and a second and a second

Target cooling pipe repair

http://www.triumf.ca/current-events/remote-handling-help-desk に 本番の画像あり。 **Target cooling pipe repair – movie from rehearsal-**

Analysis and Results

(anti-)neutrino-nucleus interaction 37

The T2K off-axis near detector: ND280

off-axis near detector : ND280

neutrino measurement at ND280

CC 1track sample

CC >1 track sample

antineutrino measurement at ND280

flux and cross section tuning by ND280 data 42

T2K Far Detector – Super Kamiokande - 43

(anti)muon neutrino candidates

v-mode	run	136
\bar{v} -mode	run	64

(anti)electron neutrino candidates

		$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$2 \delta_{CP} = \pi$
v-mo	de Normal	28.7	24.2	19.6	24.1
run	Inverted	25.4	21.3	17.1	21.3
<i>v</i> -mo	de Normal	6.0	6.9	7.8	6.8
run	Inverted	l 6.5	7.4	8.4	7.4
		$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = \pi$
	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	2.8	3.8	4.8	3.8
	$\nu_{\mu} \rightarrow \nu_{e}$	1.0	0.9	0.7	0.8
a wadd (carl	other bkg.		2.	2	Har

Expected number of events

 $(\theta \sin^2 \theta_{23} = 0.53)$

Source of Uncertainty	v 1Re	v 1Re	v 1Re/v 1Re
SK Detector	2.3%	3.1%	1.6%
SK Final State and Secondary Interactions	2.6%	2.4%	3.5%
Flux and X-sec constrained by ND280	2.9%	3.2%	2.3%
NC 1 _Y	1.5%	3.0%	1.5%
$v_{\rm e}$ and $\overline{v}_{\rm e}$	2.6%	1.5%	3.1%
NC Other	0.2%	0.3%	0.2%
Total	5.5%	6.3%	5.9%

Uncertainty on the predicted number of events

45

CPT theorem ⇒ P(v_µ → v_µ) = P(v̄_µ → v̄_µ)
 v_µ/v̄_µ disappearance is insensitive to matter effect.
 If we observe P(v_µ → v_µ) ≠ P(v̄_µ → v̄_µ), it may be due to CPT violation or non-standard interaction with matter.

 $\overline{\nu}_{\mu}$ disappearance

Comparison to previous result

Consistent with v_{μ} disappearance

 $\overline{\nu}_{\mu}$ disappearance

ne and the new contraction that the second of the second second second second second second second second second

Joint fit of $(\nu_{\mu}, \nu_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{e})$ samples to determine $(\Delta m_{32}^2, \sin^{-2}\theta_{23}, \delta_{CP}, \text{mass ordering})$

P. Vahle, Neutrino 2016

War a widd far hendd eanedrad betrenen y bear berrene ddaiddaean ar ha barlon by berrenen b

 Δm_{32}^2 , sin $^2\theta_{23}$

expected distribution for signal and background wrong sign bkg. 0.03 160 -140 -0.025 $\nu_{\mu} \rightarrow \nu_{e}$ 120 ----0.02100 -0.015 80 -60 -0.01 40 <u>-</u> 0.005 $^{20}\Xi$ 0 1000 1200 1400 200 400 600 800 Momentum |MeV Value [degrade 180 160 140 120 100 100 0.014 beam v_{ρ} 0.012 0.01 0.008 0.006 0.0040.002 200 400 600 800 1000 1200 1400 Momentum [MeV] othe<u>r</u> background v_{μ}/\bar{v}_{μ} Angle [de

200 400 600 800 1000 1200 1400 Momentum [MeV]

		$\delta_{CP}=-rac{\pi}{2}$	$\delta_{CP} = 0$	$\delta_{CP} = +rac{\pi}{2}$	$\delta_{CP} = \pi$
ν -mode run	Normal	28.7	24.2	19.6	24.1
	Inverted	25.4	21.3	17.1	21.3
$ar{ u}$ -mode run	Normal	6.0	6.9	7.8	6.8
	Inverted	6.5	7.4	8.4	7.4

v_e and \overline{v}_e selected event distributions

T2K Run1-7c

Mar Nara widd a dwyr a wrai a bran a carlan a carlan a carlan a carl ha dwlan a wrai a carlan a card a chran a c

v_e and \overline{v}_e selected event distributions

T2K Run1-7c

and the sound of the second base of the second of

v_e and \overline{v}_e selected event distributions

T2K + reactors θ_{13}

δ_{CP} Confidence Level

Bayesian Posterior Probabilities

Prospects

J-PARC Intensity Upgrade Plan

59

- Target Beam power 1.3 MW
- 20x10²¹ POT by 2025~2026
- Increase effective statistics by up to 50%
 - horn current, SK fiducial volume, new event samples
- Reduce systematic error ~6%
 → ~4%

Expected number of events (1:1 ν : $\bar{\nu}$ running case) ν_e sample : 455 evts ± 20% change depending on δ_{CP} $\bar{\nu}_e$ sample : 129 evts ± 13% change depending on δ_{CP}

the shift and the head of the shift the shift and the shif

T2K-II target statistics and systematics

Example of additional samples:CC1pi+ sample

61

http://arxiv.org/abs/1607.08004

T2K-II Sensitivity to CP-violation

- J-PARC MR power has reached ~420kW
- 反ニュートリノビームでデータを取り始めた!
 - 7.57x10²⁰ protons-on-target w/ neutrino beam
 - 7.53x10²⁰ protons-on-target w/ antineutrino beam
 - 19% of goal statistics
- We observe 32 nue and 4 nuebar candidates, when we expect around 24 and 7 respectively with no CP violation (assuming normal mass ordering)
- δ_{CP} 90% Confidence Interval

 (-179°, -22°) for normal mass ordering
 (-120°, -42°) for inverted mass ordering
- To discover CPV, need more data! but may be reachable by T2K(-II)!

Summary