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The Large Hadron Collider at CERN

Higgs discovery in Run-1
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The data rate and volume challenge

2009 Start of LHC - 2009: J/s = 900 GeV HLT: Readout rate 0.4 kHz

2000|  Bun1: Js=7-8TeV,L = 2-7 x 10% o
Bunch spacing: 75/50/25 ns

* (HL-LHC), crab cavities, lumi level
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Success story of 2016 data taking
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Not only real data ...
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Monte Carlo production chain

How much processing time
needed for each step?

Detector Simulation
simulate the interaction of the
particles with the detector material. | From 1 to 10min / event |

- =

. I From 5 to 60s / event I

Reconstruction
Go from signals back to particles, as for
real data.
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ATLAS computational load

Number of Running Processes vs time (6 months) ' |
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Wall Clock time per Activity
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All together, 70% of ATLAS
computing  resources are
utilized to produce simulated
events samples
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The data complexity challenge
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Pile-up

Proton bunches
>10*! protons/bunch
(colliding at ~40MHz in run2)

~30 p-p collisions / bunch crossing in 2016 data taking
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CATLAS

EXPERIMENT

Run Mumber: 180164, Event Mumber: 146351054
Date: 2011-0d4-24 01:43:3% CEST

cted vertic
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Run Mumber: 180164, Event Humber: 146351054
Date: 2011-04-24 $1:43:3% CEST
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11 reconstructed vertices
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An event in 2016 ... ATLAS

HL-LHC tf event in ATLAS ITK
at <p>=200

CATLAS

A EXPERIMENT

.. and a simulated
event in 2025 with
200 vertexes
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2016 15t pass reconstruction
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= The world’s economy is not doing great and HEP can not overspend

= We consider a “Flat budget” scenario = same amount of funding for computing
hardware every year

= Funding needs to cover the cost of hardware replacement
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Input parameters, assumptions, disclaimers

Input Parameters at HL-LHC
(LOI = the ATLAS Letter of Intent for Upgrade Phase-2)
Projection of available
Output HLT rate: 10kHz (5 to 10 kHZ in LOI) resources in HL-LHC:
Reco time: 288s/event, Simul Time: 454 s/event at mu=200
Nr Events MC / Nr Events Data = 2

Fast Simulation: 50% of MC events 20% more CPU/year
LHC live seconds /year: 5.5M 15% more storage/year
Simplified Computing Model with respect to For the same cost

2016/2017 resource requests:
Projections evolve 2017 values
Data from previous years not taken into account OF THIS SIMPLIFIED MODEL

=> Little difference at the beginning of the Run-4 but huge (not the 2017 WLCG pledges)
difference for Run-2 and Run-3

Conclusion: looking at absolute numbers makes little sense.
Relative differences between needs and projections at HL-LHC are meaningful. With caveats.
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Estimates of resource needs for HL-LHC

Data estimates for 1st year of HL-LHC (PB) CPU Needs for 1st Year of HL-LHC (kHS06)
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Raw Derived
CPU (HS06)

CPU
x60 from 2016

=> X10 above what is realistic to expect from technology with constant cost
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HL-LHC baseline resource needs
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HLT output rate

The output trigger rate does not determine only the amount of data per year but
also the amount of Monte Carlo to be produced.

The LOI foresees a value between 5 kHz and 10kHz. We use the latter as baseline in
this study

The possibility to reduce the HL-LHC needs vs HLT output rate (2026)
trigger rate to a lower value

without impacting the ATLAS
physics program will be
analyzed in the years to come

1000% Baseline
900%

800%
700%
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500% -
400%
300% A
200% TAPE
100%
0%

=== CPU

@={J=DISK

If we consider the lower LOI
limit (5kHz) the discrepancy
with the projection of available
resources reduces to x4 for CPU

Deviation from 2017 projection

5000 6000 7000 8000 9000 10000
HLT output Rate (Hz)
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Monte Carlo needs

The physics case for HL-LHC will evolve in the next years. The high statistics of data
collected in HL-LHC reduces the significance of statistical uncertainties. Therefore one
might assume a lower need of MC with respect to data

HOWEVER

Things might change

significantly once the physics

case for HL-LHC evolves

Generators might become
very expensive if we go to
NNLO

In 2004 we expected a factor

x0.3 MC with respect of
data. We are at x2.0.
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Reconstruction time dominates the CPU

LayOUtS and consumption in HL-LHC

ReCO N StI‘U CtIO N Especially for MC, where trigger simulation utilizes
the same offline algorithms (so it impacts twice as
much)
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Fast Simulation and Fast Chain

Fast Simulation in Run-2 is x10 faster

than Full Simulation (G4) HL-LHC needs vs Full/Fast sim ratio (2026)
. . 1000% ——Baseline—
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o 800%
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If we want a very optimistic scenario ...

CPU needs (kHS06 . .
needs ( ) In a very optimistic scenario, the

30,000 - discrepancy for CPUs reduces to 200%

25,000 1 s Data Reprocessing (from almost 900%).
L MC Reconctruction
20,000 -
w0 L MIC Simulation Full - . . . .
2 15,000 | - ygen e Which, given all the uncertainties, means
10,000 - = = Projection problem solved
—CPU need
5,000 -
o | _ _ DO NOT GET TOO EXCITED AND
FEF PSS ES S LISTEN TO THE REST OF THE TALK
Year
I
HLT output rate 10kHz 7.5kHz
Reco and Simul Time/Evt from LOI From preliminary TDR studies
Nr. Events MC / Nr. Events Data 2.0 1.5
Fast Simulation 50% of MC events 50% of MC events
Fast Chain None 50% of MC events
LHC live seconds/year 5.5M 5.5M
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Heterogeneous Resources

Pidashbe Slots of Running jobs
300,000 . 123 Days fr'om Week 19]01’2016 to Mieek 37 of 2036

Nr. of cores
per resourece type
May-Sep 2016

250,000 =

H cloud
“grid
® hpc

200,000

150,000

100,000

Integration of non Grid resources
in ATLAS is a big investment with
the potential of a big return

2016-05-15 2016-05-29 2016-06-12 2016-06-26 2016-07-10 2016-07-24 2016-08-07 016-08-21 2016-09-04

Challenges: resource provisioning, non standard architecture, GPU
processing capacity, memory
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Challenges in HPCs utilization

High Performance Computers were designed for massively parallel applications
(different from data intensive HEP use case) but we can parasitically benefit from
empty cycles that others can not use (e.g. single core job slots)

The ATLAS production system has been extended to leverage HPC resources

architecture

connectivity, #jobs/#threads,
kind of grant/agreement

Theoretical Peak Floating-point Performance 166.4 Gigaflops {Inte|® Xeon® E5-2670) 1311.0

per node GigaflopsfNVIDIA® Tesla® K20X)
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Hardware trend and implications
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Processor Scaling Trends
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Example: Cori@NERSC (Intel Knights Landing)
1PB of Memory, 9304 nodes

68 cores/node, 4 HW threads/core

=> Approx 300 MB/thread

Simone.Campana@cern.ch

Clock Speed stalled but transistor
density keeps increasing. Exploiting
hardware becomes more
complicated (vectors, memory...)
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From Multi Processing to Multi Threading

AthenaMP (multiprocessing) will not be sufficient anymore. We will need (and we are
developing) AthenaMT (multithreading). Will be in production for Run-3 (2020)
already.

Parallel processing in a multithreaded environment will come with its challenges both
for developers, operations and infrastructures

Runtime and Memory Scaling for G4Hive
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What about Storage ?

Optimistic Scenario + No AOD on disk

Disk needs (PB) Even in the optimistic scenario,
1'400.0 we are still far from solving the
problem

1'200.0 -

B MC AOD L MC DAOD
1'000.0 -

AODs and DAODs are the main
consumers.

'200.0 1 444 DAOD AOD

PB

'600.0 “= == Projection ====Disk Needs

'400.0 -

With no AOD on disk (run Train

_ Analysis from AODs on TAPE) you
P get x4 above the resource

Year projection

'200.0

'0.0 1

The remaining gain must come from re-thinking of distributed data management, distributed
storage and data access. A network driven data model allows to reduce the amount of storage,
particularly for disk. Tape today costs at least 4 times less than disk.
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Computing infrastructure in HL-LHC

ESNet traffic volume

g 1\.’{‘ —— 5 in Bytes per Month vs time

-~ Storage ane Netwgrk Backbone 2016

I

Regular increase by a
%10 every 4.5 years

WLCG A data cloud for science
/

’ Storage and Compute loosely

coupled but connected through a
fast network

Heterogeneous Computing

facilities (Grid/Cloud/HPC/ ...)

both in and outside the cloud

—

Different centers with different
capabilities, fo different use cases
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Conclusions

HL-LHC will present unprecedented computing challenges

To keep cost of computing under control in 2026 we need to invest
effort from now

The effort spans many areas: online, offline software, distributed
computing, physics, infrastructure and facilities. The detector layout
will play a crucial role

= |t is important to consider cost of computing when choices are made

EEP will need to adapt to market trends, therefore flexibility is the
ey
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