$b \rightarrow s\ell\ell$ decays, Standard Model and New Physics: facts and fantasy

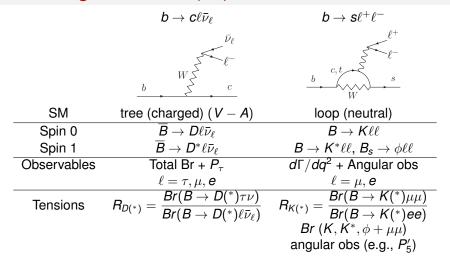
Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS, Univ. Paris-Sud, Université Paris-Saclay 91405 Orsay, France

KEK, Sep 5th 2017

B-physics anomalies

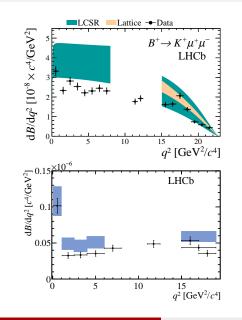
Interesting times for B-physics

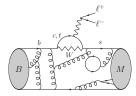


Two transitions exhibiting interesting patterns of deviations from SM hinting at Lepton Flavour Universality Violation

Here, focus on $b \rightarrow s\ell\ell$

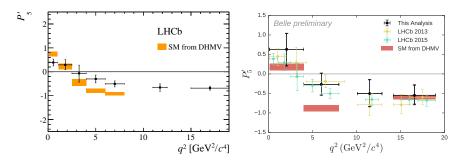
Anomalies in branching ratios





- $Br(B \to K\mu\mu)$ (up), $Br(B \to K^*\mu\mu)$ (down), $Br(B_s \to \phi\mu\mu)$ too low wrt SM
- q^2 invariant mass of $\ell\ell$ pair
- removing bins dominated by J/ψ and ψ' resonances
- large hadronic uncertainties from form factors at
 - Large-meson recoil/low q²: light-cone sum rules
 - Low-meson recoil/large q²: lattice QCD

Anomalies in angular observables (1)

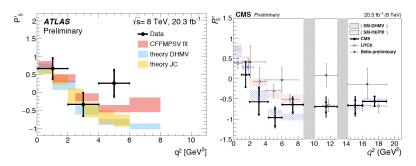


Basis of optimised observables P_i (angular coeffs)
 with reduced hadronic uncertainties

 $[Matias, Kr\"{u}ger, Becirevic, Schneider, Mescia, Virto, SDG, Ramon, Hurth; Hiller, Bobeth, Van Dyk. \dots]$

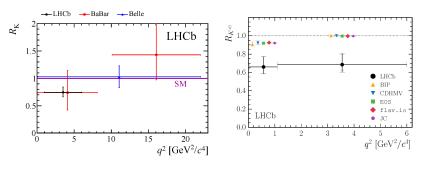
- Measured at LHCb with 1 fb⁻¹ (2013) and 3 fb⁻¹ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P_5' deviating from SM by 2.8 σ and 3.0 σ
- ... confirmed by Belle in 2016 (with larger uncertainties)

Anomalies in angular observables (2)



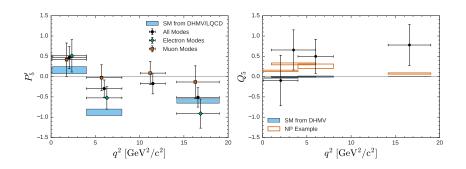
- ATLAS and CMS in 2017, but with larger uncertainties
- ATLAS: full basis, deviation in P_5' (OK with LHCb) and P_4' (not OK)
- CMS: only P_1 and P'_5 using input on F_L from earlier analyses (not clear why) leading to lower P'_5 than others
- There is more to $B o K^* \mu \mu$ than just P_5'
 - P_2 also interesting deviations in LHCb 1 fb⁻¹ data in [2,4] bin (but not seen at 3 fb⁻¹ due to too large F_L leading to large uncert.)
 - useful that other optimised observables in agreement with SM

Anomalies in lepton flavour universality: Br



- LFU-test ratios $R_K = \frac{Br(B \to K \mu \mu)}{Br(B \to K ee)}$ and $R_{K^*} = \frac{Br(B \to K^* \mu \mu)}{Br(B \to K^* ee)}$ for LHCb
- hadronic uncertainties/effects cancel largely in the SM (V-A interaction only) and for $q^2 \ge 1$ GeV² (m_ℓ effects negligible)
- in SM, a single form factor cancel in $R_K = 1$, but several polarisations and form factors in R_{K^*} (small q^2 -dep.)
- small effects of QED radiative corrections (1-3 %)
- LHCb: 2.6 σ for $R_{K[1,6]}$, 2.3 and 2.6 σ for $R_{K^*[0.045,1.1]}$ and $R_{K^*[1.1,6]}$

Anomalies in LFU: angular observables



Belle also compared $b \rightarrow see$ and $b \rightarrow s\mu\mu$ in 2016

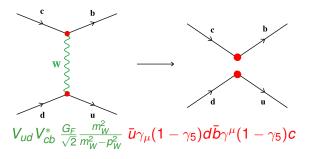
- different systematics from LHCb
- 2.6 σ deviation for $\langle P_5' \rangle_{[4,8]}^{\mu}$ versus 1.3 σ deviation for $\langle P_5' \rangle_{[4,8]}^{e}$
- ullet same indication by looking at $Q_5=P_5^{\mu\prime}-P_5^{e\prime},$ deviating from SM
- more data needed to confirm this hint of LFU violation (LFUV)

A global framework for the anomalies

Effective approaches

Fermi-like approach (for decoupling th): separation of different scales

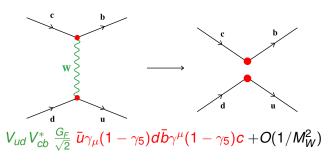
Short dist/Wilson coefficients and Long dist/local operator



Effective approaches

Fermi-like approach (for decoupling th): separation of different scales

Short dist/Wilson coefficients and Long dist/local operator

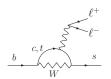


Fermi theory carries some info on the underlying (electroweak) theory

- G_F : scale of underlying physics
- O_i: interaction with left-handed fermions, through charged spin 1
- Losing some info (gauge structure, Z^0 ...)

but a good start if no particle (=W, Z) yet seen

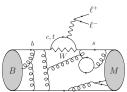
$$b o s \gamma(^*): \mathcal{H}^{SM}_{\Delta F=1} \propto \sum V_{ts}^* V_{tb} \mathcal{C}_i {\color{red}\mathcal{O}_i} + \dots$$



to separate short and long distances ($\mu_b = m_b$)

$$b o s \gamma(^*): \mathcal{H}^{SM}_{\Delta F=1} \propto \sum V_{ts}^* V_{tb} \mathcal{C}_i {\color{red}\mathcal{O}_i} + \dots$$

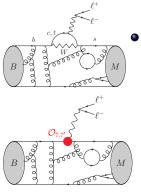
to separate short and long distances $(\mu_b=m_b)$



$$b o s\gamma(^*):\mathcal{H}^{SM}_{\Delta F=1}\propto \sum V_{ts}^*V_{tb}\mathcal{C}_i{\color{red}\mathcal{O}_i}+\ldots$$

to separate short and long distances ($\mu_b = m_b$)

•
$$\mathcal{O}_7 = \frac{e}{a^2} m_b \, \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} \, b$$
 [real or soft photon]



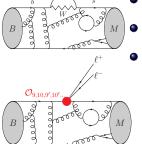
$$b o s_{\gamma}(^*): \mathcal{H}^{SM}_{\Delta F=1} \propto \sum V_{ts}^* V_{tb} \mathcal{C}_i {\color{red}\mathcal{O}_i \over \color{black}\mathcal{O}_i} + \dots$$

to separate short and long distances ($\mu_b = m_b$)

$$ullet$$
 ${\cal O}_7=rac{e}{g^2}m_b\,ar{s}\sigma^{\mu
u}(1+\gamma_5){\it F}_{\mu
u}\,b$ [real or soft photon]

$$ullet$$
 $\mathcal{O}_9=rac{e^2}{g^2}ar{s}\gamma_\mu(1-\gamma_5)b\ ar{\ell}\gamma^\mu\ell\ [b o s\mu\mu\ {
m via}\ Z/{
m hard}\ \gamma...]$

$$ullet$$
 ${\cal O}_{10}=rac{e^2}{\sigma^2}ar s\gamma_\mu(1-\gamma_5)b\ ar\ell\gamma^\mu\gamma_5\ell \ \ \ \ \ [b o s\mu\mu\ {
m via}\ Z]$



$$b \to s\gamma(^*): \mathcal{H}^{SM}_{\Delta F=1} \propto \sum V_{ts}^* V_{tb} \mathcal{C}_i \frac{\mathcal{O}_i}{\mathcal{O}_i} + \dots$$

to separate short and long distances ($\mu_b = m_b$)

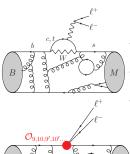
$$ullet$$
 ${\cal O}_7=rac{e}{g^2}m_b\,ar s\sigma^{\mu
u}(1+\gamma_5)F_{\mu
u}\,b$ [real or soft photon]

$$iggl) ullet \; {\cal O}_{
m 9} = rac{e^2}{g^2} ar{{
m s}} \gamma_\mu ({
m 1}-\gamma_5) b \; ar{\ell} \gamma^\mu \ell \; \; [b o s \mu \mu \; {
m via} \; {\it Z}$$
/hard $\gamma \ldots$]

$$ullet$$
 ${\cal O}_{10}=rac{e^2}{g^2}ar s\gamma_\mu(1-\gamma_5)b\ ar\ell\gamma^\mu\gamma_5\ell \hspace{0.5cm} [b o s\mu\mu ext{ via } Z]$

$$\mathcal{C}_7^{\mathrm{SM}} = -0.29, \; \mathcal{C}_9^{\mathrm{SM}} = 4.1, \; \mathcal{C}_{10}^{\mathrm{SM}} = -4.3$$

 $A=C_i$ (short dist) \times Hadronic qties (long dist)



$$b o s \gamma(^*) : \mathcal{H}^{SM}_{\Delta F = 1} \propto \sum V_{ts}^* V_{tb} \mathcal{C}_i {\color{red}\mathcal{O}_i} + \dots$$

to separate short and long distances ($\mu_b = m_b$)

$$ullet$$
 ${\cal O}_7=rac{e}{g^2}m_b\,ar{s}\sigma^{\mu
u}(1+\gamma_5)F_{\mu
u}\,b$ [real or soft photon]

•
$$\mathcal{O}_9 = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \; \bar{\ell} \gamma^\mu \ell \; [b \to s \mu \mu \; \text{via Z/hard} \; \gamma \dots]$$

$$ullet$$
 ${\cal O}_{10}=rac{e^2}{g^2}ar{s}\gamma_\mu(1-\gamma_5)b\ ar{\ell}\gamma^\mu\gamma_5\ell \hspace{0.5cm} [b o s\mu\mu ext{ via } Z]$

$$\mathcal{C}_7^{\mathrm{SM}} = -0.29, \; \mathcal{C}_9^{\mathrm{SM}} = 4.1, \; \mathcal{C}_{10}^{\mathrm{SM}} = -4.3$$

 $A=C_i$ (short dist) \times Hadronic qties (long dist)

• Chirally flipped (
$$W \rightarrow W_R$$
)

• (Pseudo)scalar (
$$W \rightarrow H^+$$
)

• Tensor operators
$$(\gamma \to T)$$

$${\color{red}\mathcal{O}_7}
ightarrow {\color{red}\mathcal{O}_{7'}} \propto ar{\mathsf{s}} \sigma^{\mu
u} (\mathsf{1} - \gamma_\mathsf{5}) \mathsf{F}_{\mu
u} \, \mathsf{b}$$

$${\mathcal O}_9, {\mathcal O}_{10} o {\mathcal O}_S \propto ar{s}(1+\gamma_5) b ar{\ell}\ell, {\mathcal O}_P$$

$$\mathcal{O}_9
ightarrow \mathcal{O}_{\mathsf{T}} \propto \bar{\mathsf{s}} \sigma_{\mu
u} (\mathsf{1} - \gamma_\mathsf{5}) b \ \bar{\ell} \sigma_{\mu
u} \ell$$

 $\mathcal{O}_{9,10,9',10'}$

Global analysis of $b \rightarrow s\ell\ell$ anomalies

175 observables in total (no CP-violating obs) [Capdevila, Crivellin, SDG, Matias, Virto]

- $B \rightarrow K^* \mu \mu$ (Br, $P_{1,2}, P'_{4,5,6,8}, F_L$ in large- and low-recoil bins)
- $B \to K^*ee$ ($P_{1,2,3}, P'_{4,5}, F_L$ in large- and low-recoil bins)
- R_K , R_{K^*} , $Q_{4,5}$ (large-recoil bins)
- $B_s \to \phi \mu \mu$ (Br, $P_1, P'_{4,6}, F_L$ in large- and low-recoil bins)
- $B^+ \to K^+ \mu\mu$, $B^0 \to K^0 \mu\mu$ (Br in several bins)
- $\bullet \ \ B \to X_{\mathtt{S}} \gamma, B \to X_{\mathtt{S}} \mu \mu, B_{\mathtt{S}} \to \mu \mu, B_{\mathtt{S}} \to \phi \gamma (\mathsf{Br}), B \to K^* \gamma (\mathsf{Br}, \ A_{\mathtt{I}}, \ S_{K^* \gamma})$

Global analysis of $b \rightarrow s\ell\ell$ anomalies

175 observables in total (no CP-violating obs) [Capdevila, Crivellin, SDG, Matias, Virto]

- $B \to K^* \mu \mu$ (Br, $P_{1,2}, P'_{4,5,6,8}, F_L$ in large- and low-recoil bins)
- $B \to K^*ee$ ($P_{1,2,3}, P'_{4,5}, F_L$ in large- and low-recoil bins)
- R_K , R_{K^*} , $Q_{4,5}$ (large-recoil bins)
- $B_s \to \phi \mu \mu$ (Br, $P_1, P'_{4,6}, F_L$ in large- and low-recoil bins)
- $B^+ \to K^+ \mu\mu$, $B^0 \to K^0 \mu\mu$ (Br in several bins)
- $\bullet \ \ B \to X_{\mathtt{S}} \gamma, B \to X_{\mathtt{S}} \mu \mu, B_{\mathtt{S}} \to \mu \mu, B_{\mathtt{S}} \to \phi \gamma (\mathsf{Br}), B \to K^* \gamma (\mathsf{Br}, \ A_{\mathtt{I}}, \ S_{K^* \gamma})$

Various computational approaches

- inclusive: OPE
- excl large-meson recoil: QCD fact, Soft-collinear effective theory
- excl low-meson recoil: Heavy quark eff th, Quark-hadron duality

Global analysis of $b \to s \ell \ell$ anomalies

175 observables in total (no CP-violating obs) [Capdevila, Crivellin, SDG, Matias, Virto]

- $B \to K^* \mu \mu$ (Br, $P_{1,2}, P'_{4,5,6,8}, F_L$ in large- and low-recoil bins)
- $B \to K^*ee$ ($P_{1,2,3}, P'_{4,5}, F_L$ in large- and low-recoil bins)
- R_K , R_{K^*} , $Q_{4,5}$ (large-recoil bins)
- $B_s \to \phi \mu \mu$ (Br, $P_1, P'_{4,6}, F_L$ in large- and low-recoil bins)
- $B^+ \to K^+ \mu \mu$, $B^0 \to K^0 \mu \mu$ (Br in several bins)
- $\bullet \ \ B \to X_{\mathtt{S}} \gamma, B \to X_{\mathtt{S}} \mu \mu, B_{\mathtt{S}} \to \mu \mu, B_{\mathtt{S}} \to \phi \gamma(\mathsf{Br}), B \to K^* \gamma(\mathsf{Br}, A_{\mathtt{I}}, \, S_{K^* \gamma})$

Various computational approaches

- inclusive: OPE
- excl large-meson recoil: QCD fact, Soft-collinear effective theory
- excl low-meson recoil: Heavy quark eff th, Quark-hadron duality

Frequentist analysis

- $C_i(\mu_{ref}) = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)
- Experimental correlation matrices provided
- Theoretical inputs (form factors...) with correlation matrix computed treating all theo errors as Gaussian random variables

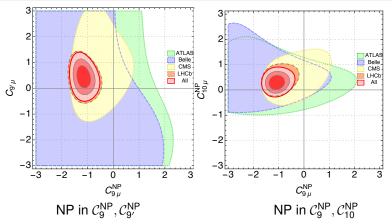
1D and 2D fits for NP in $b \rightarrow s\mu\mu$ only

- All: 175 obs
- LFUV: 17 obs ($b o s\mu\mu$ LFUV, $b o s\gamma$, $B_s o \mu\mu$, $B o X_s\mu\mu$)
- ullet Hypotheses "NP in some \mathcal{C}_i only" to be compared with SM

ть нур.	ыр	Ισ		PullSM	f p-value %		oib		Ισ	PullSM	p-value %
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-1.11	[-1.28, -	0.94]	5.8	68	-1	.76	[-2.36	6, -1.23]	3.9	69
$C_{9\mu}^{NP} = -C_{10\mu}^{NP}$	-0.62	[-0.75, -	0.49]	5.3	58	-0	.66	[-0.84]	1, -0.48]	4.1	78
$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}}$ $\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9\mu}^{\prime}$	-1.01	[-1.18, -	0.84]	5.4	61	-1	.64	[-2.13	3, -1.05]	3.2	32
All								LFUV			
2D Hyp.	В	Best fit	$Pull_S$	м	p-value %		Best	fit	$Pull_{SM}$	p-valu	ie %
$\frac{\left(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}}\right)}{\left(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}^{\prime}\right)}$ $\left(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}^{\prime}\right)$ $\left(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9^{\prime}\mu}\right)$ $\left(\mathcal{C}_{0}^{\mathrm{NP}},\mathcal{C}_{10^{\prime}\mu}\right)$	(-1.	01,0.29)	5.7	'	72	(-1	.30,0	0.36)	3.7	75	5
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}^{\prime})$	(-1.	13,0.01)	5.5	;	69	(-1.	85,-	0.04)	3.6	66	6
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9'\mu})$	(-1.	15,0.41)	5.6	;	71	(-1	.99,0	0.93)	3.7	72	2
$(\mathcal{C}_{0}^{NP},\mathcal{C}_{10'})$	(-1.2	22,-0.22)	5.7	,	72	(-2.	22,-	0.41)	3.9	85	5

- p-value : χ^2_{\min} considering N_{dof} (SM: All 11.3%, LFUV 4.4%) \Longrightarrow goodness of fit: does the hypothesis give an overall good fit?
- Pull_{SM} : $\chi^2_{min}(C_i = 0) \chi^2_{min}$ \Rightarrow metrology: how much does the hyp. solve SM deviations ?

Some favoured scenarios



- NP in C_9 only: p-value=68%, pull_{SM} = 5.8 σ , [-1.28, -0.94] at 1 σ
- $C_9^{NP} = -C_{10}^{NP}$ good scenario (NP models obeying $SU(2)_L$) $C_9^{NP} \simeq -1$ favoured in all "good" scenarios
- 3 σ regions, apart from combination with 1,2,3 σ
- LHCb dominates the field!

Improving on the main anomalies

Largest pulls	$\langle P_5' angle_{[4,6]}$	$\langle P_5' \rangle_{[6,8]}$	$R_K^{[1,6]}$	$R_{K^*}^{[0.045,1.1]}$
Experiment	-0.30 ± 0.16	-0.51 ± 0.12	$0.745^{+0.097}_{-0.082}$	$0.66^{+0.113}_{-0.074}$
SM pred.	-0.82 ± 0.08	-0.94 ± 0.08	1.00 ± 0.01	0.92 ± 0.02
$Pull(\sigma)$	-2.9	-2.9	+2.6	+2.3
Pred. $C_{9\mu}^{NP} = -1.1$	-0.50 ± 0.11	-0.73 ± 0.12	0.79 ± 0.01	0.90 ± 0.05
$Pull(\sigma)$	-1.0	-1.3	+0.4	+1.9

Largest pulls	$R_{K^*}^{[1.1,6]}$	$\mathcal{B}_{\mathcal{B}_s o\phi\mu^+\mu^-}^{ extsf{[2,5]}}$	$\mathcal{B}_{\mathcal{B}_s o\phi\mu^+\mu^-}^{ extsf{5,8]}}$
Experiment	$0.685^{+0.122}_{-0.083}$	$\textbf{0.77} \pm \textbf{0.14}$	$\textbf{0.96} \pm \textbf{0.15}$
SM pred.	1.00 ± 0.01	$\textbf{1.55} \pm \textbf{0.33}$	1.88 ± 0.39
Pull (σ)	+2.6	+2.2	+2.2
Pred. $C_{9\mu}^{NP} = -1.1$	$\textbf{0.87} \pm \textbf{0.08}$	$\textbf{1.30} \pm \textbf{0.26}$	1.51 ± 0.30
$Pull(\sigma)$	+1.2	+1.8	+1.6

⇒Not all anomalies "solved", but many are alleviated

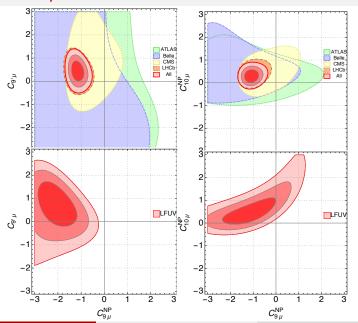
$b \rightarrow s\mu\mu$: 6D hypothesis

Letting all 6 Wilson coefficients for muons vary (but only real)

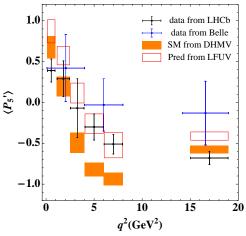
	Best fit	1 σ	2 σ
$\mathcal{C}_7^{ ext{NP}}$	+0.03	[-0.01, +0.05]	[-0.03, +0.07]
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-1.12	[-1.34, -0.88]	[-1.54, -0.63]
$egin{array}{c} \mathcal{C}_{9\mu}^{ ext{NP}} \ \mathcal{C}_{10\mu}^{ ext{NP}} \end{array}$	+0.31	[+0.10, +0.57]	[-0.08, +0.84]
$\mathcal{C}_{7'}$	+0.03	[+0.00, +0.06]	[-0.02, +0.08]
$\mathcal{C}_{9'\mu}$	+0.38	[-0.17, +1.04]	[-0.59, +1.58]
$\mathcal{C}_{10'\mu}$	+0.02	[-0.28, +0.36]	[-0.54, +0.68]

- $\bullet \ \ \text{Pattern:} \ \mathcal{C}_7^{\text{NP}} \gtrsim 0, \ \mathcal{C}_{9\mu}^{\text{NP}} < 0, \ \mathcal{C}_{10\mu}^{\text{NP}} > 0, \ \mathcal{C}_7' \gtrsim 0, \ \mathcal{C}_{9\mu}' > 0, \ \mathcal{C}_{10\mu}' \gtrsim 0$
- C_9 is consistent with SM only above 3σ
- ullet All others are consistent with zero at 1 σ except for \mathcal{C}_{10} at 2 σ
- Pull_{SM} for the 6D fit is 5.0σ (used to be 3.6σ)

Consistency between fits to All and LFUV obs

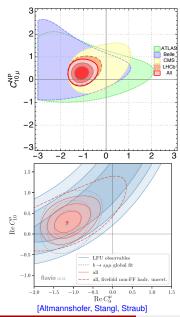


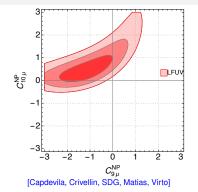
Consistency: P'_5 from LFUV obs



- Fit to LFUV obs only to determine $C_{9\mu}^{NP}$
- ullet ... then predict value of P_5'
- Confirms the very good agreement between fits to LFUV only and the other observables
- Disagreements with Standard Model in $b \to s\ell\ell$ obey a pattern

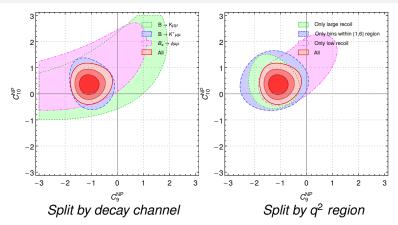
Consistency with analysis of (Altmannshofer, Stangl, Straub)





- Different observables (P_i or J_i)
- Different form factor inputs
- Different treatments of hadronic corrections
- Same NP scenarios favoured (higher significances for ASS)

Consistency: by channels, low versus large recoil



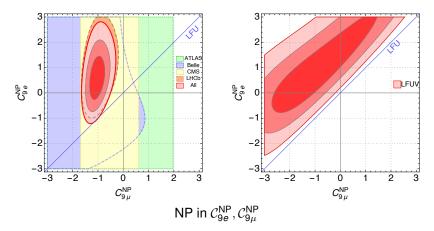
• Analysis prior to R_{K^*} , with only LHCb data

[SDG, Hofer, Matias, Virto]

- Different processes, kinematic ranges, theoretical tools
- $B \to K^* \mu \mu$ tighter than $B_s \to \phi \mu \mu$, tighter than $B \to K \mu \mu$
- Large and low recoil bins both favour points away from SM

[Horgan et al., Bouchard et al., Altmannshofer and Straub]

NP in both $b \rightarrow s \mu \mu$ and $b \rightarrow s e e$



- Up to now, only NP in $b \rightarrow s\mu\mu$, what about $b \rightarrow see$?
- ullet Necessity to have a NP contribution for $\mathcal{C}_{9\mu}$ but no need for \mathcal{C}_{9e}
- But not forbidden either: for instance, $C_{9\mu}=-3C_{9e}$ very good (U(1) models for neutrino mixing [Bhatia, Chakraborty, Dighe])

Confirming the interpretation

$$C_9^{NP} = C_9^{New Physics}$$
 or $C_9^{Non Perturbative}$?

Anomalies can be a sign from many things

unlucky statistical fluctuations

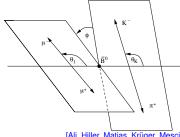
Collect more data (more runs)

- underestimated syst in the experimental analysis
 Cross-checks from different experiments (LHCb vs Belle/Belle II)
- underestimated syst in the theoretical computation
 Check and recheck the hypotheses of computation
- something really new...

Add more observables, and interpret

Exclusive $b \rightarrow s\mu\mu$ decays play an important role in global fits necessary to cross-checks SM computations!

$B \rightarrow K^* (\rightarrow K\pi) \mu \mu$



Rich kinematics

• differential decay rate in terms of 12 angular coeffs $J_i(q^2)$

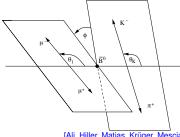
with
$$q^2=(p_{\ell^+}+p_{\ell^-})^2$$

• interferences between 8 transversity amplitudes for $B \to K^*(\to K\pi)V^*(\to \ell\ell)$

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

$B \rightarrow K^* (\rightarrow K\pi) \mu \mu$



Rich kinematics

 differential decay rate in terms of 12 angular coeffs J_i(q²)

with
$$q^2 = (p_{\ell^+} + p_{\ell^-})^2$$

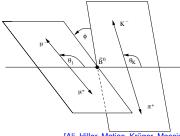
• interferences between 8 transversity amplitudes for $B \to K^*(\to K\pi)V^*(\to \ell\ell)$

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

- Transversity amplitudes (K^* polarisation, $\ell\ell$ chirality) in terms of Wilson coefficients and 7 form factors $A_{0,1,2}$, V, $T_{1,2,3}$
- ullet EFT relations between form factors in limit $m_B o \infty$, either when K^* very soft or very energetic (low/large-recoil)

$B \rightarrow K^* (\rightarrow K\pi) \mu \mu$



Rich kinematics

• differential decay rate in terms of 12 angular coeffs $J_i(q^2)$

with
$$q^2=(
ho_{\ell^+}+
ho_{\ell^-})^2$$

• interferences between 8 transversity amplitudes for $B \to K^*(\to K\pi)V^*(\to \ell\ell)$

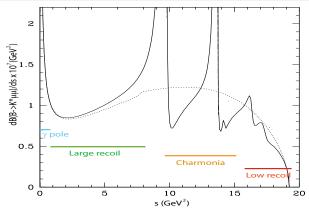
[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal . . .]

- Transversity amplitudes (K^* polarisation, $\ell\ell$ chirality) in terms of Wilson coefficients and 7 form factors $A_{0,1,2}$, V, $T_{1,2,3}$
- ullet EFT relations between form factors in limit $m_B o \infty$, either when K^* very soft or very energetic (low/large-recoil)
- Build ratios of J_i where form factors cancel in these limits
- Optimised observables P_i with reduced hadronic uncertainties

[Matias, Krüger, Becirevic, Schneider, Mescia, Virto, SDG, Ramon, Hurth; Hiller, Bobeth, Van Dyk]

Low and large K^* recoils for $B o K^* \mu \mu$

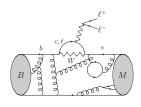


- Very large K^* -recoil $(4m_\ell^2 < q^2 < 1 \text{ GeV}^2)$
- γ almost real
- Large K^* -recoil ($q^2 < 9 \text{ GeV}^2$) energetic K^* ($E_{K^*} \gg \Lambda_{QCD}$)

 Light-Cone Sum Rules, QCD factorisation, SCET
- Charmonium region ($q^2 = m_{\psi,\psi'...}^2$ between 9 and 14 GeV²)
- Low K^* -recoil $(q^2 > 14 \text{ GeV}^2)$ soft K^* $(E_{K^*} \simeq \Lambda_{QCD})$ Lattice QCD, OPE, HQET

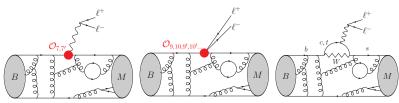
Two sources of hadronic uncertainties

$$A(B \to K^*\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell]$$



Two sources of hadronic uncertainties

$$A(B \to K^*\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell]$$



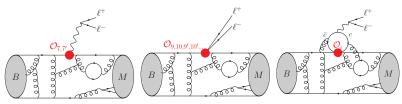
Form factors (local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{array}{lcl} \textbf{\textit{A}}_{\mu} & = & -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle V_{\lambda}|\bar{\mathbf{\textit{s}}}\sigma_{\mu\nu}P_{B}b|B\rangle + \mathcal{C}_{9}\langle V_{\lambda}|\bar{\mathbf{\textit{s}}}\gamma_{\mu}P_{L}b|B\rangle \\ \textbf{\textit{B}}_{\mu} & = & \mathcal{C}_{10}\langle V_{\lambda}|\bar{\mathbf{\textit{s}}}\gamma_{\mu}P_{L}b|B\rangle & \lambda: \textit{\textit{K}}^{*} \text{ helicity} \end{array}$$

Two sources of hadronic uncertainties

$$A(B \to K^*\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(A_{\mu} + T_{\mu}) \bar{u}_{\ell} \gamma^{\mu} v_{\ell} + B_{\mu} \bar{u}_{\ell} \gamma^{\mu} \gamma_5 v_{\ell}]$$



Form factors (local)

Charm loop (non-local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{array}{lcl} \textbf{\textit{A}}_{\mu} & = & -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle V_{\lambda}|\bar{\textbf{\textit{s}}}\sigma_{\mu\nu}P_{R}b|B\rangle + \mathcal{C}_{9}\langle V_{\lambda}|\bar{\textbf{\textit{s}}}\gamma_{\mu}P_{L}b|B\rangle \\ \textbf{\textit{B}}_{\mu} & = & \mathcal{C}_{10}\langle V_{\lambda}|\bar{\textbf{\textit{s}}}\gamma_{\mu}P_{L}b|B\rangle & \lambda: \textit{\textit{K}}^{*} \text{ helicity} \end{array}$$

Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

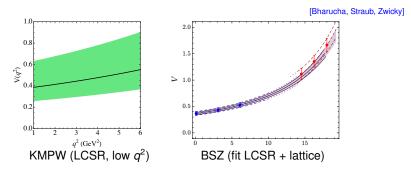
Form factors

• low K* recoil: lattice, with correlations

[Horgan, Liu, Meinel, Wingate]

large K* recoil: B-meson Light-Cone Sum Rule,
 large error bars and no correlations [Khodjamirian, Mannel, Pivovarov, Wang]

• all: fit K*-meson LCSR + lattice, small errors bars, correlations



Form factors

• low *K** recoil: lattice, with correlations

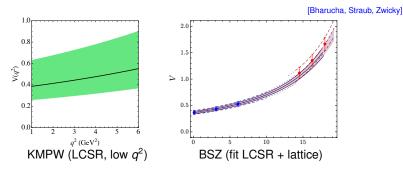
[Horgan, Liu, Meinel, Wingate]

• large K* recoil: B-meson Light-Cone Sum Rule,

large error bars and no correlations

[Khodjamirian, Mannel, Pivovarov, Wang]

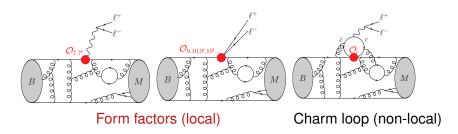
all: fit K*-meson LCSR + lattice, small errors bars, correlations

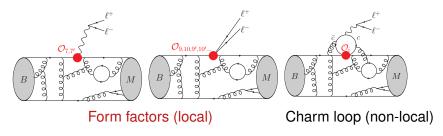


Reduce uncertainties and restore correlations

using EFT correlations arising in $m_b \to \infty$, e.g., at large K^* recoil

$$\xi_{\perp} = \frac{m_B}{m_B + m_{K^*}} V = \frac{m_B + m_{K^*}}{2E_{K^*}} A_1 = T_1 = \frac{m_B}{2E_{K^*}} T_2 + O(\alpha_s, \Lambda/m_b) \text{ corr}$$

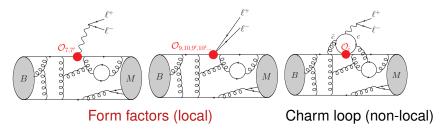




Uncertainties in form factors?

[Camalich, Jäger; Matias, Virto, Hofer, Capdevilla, SDG]

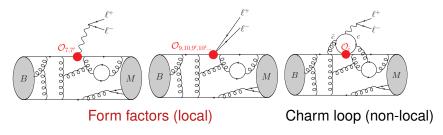
- EFT with limit $m_b \to \infty$ useful to correlate form factors but $O(\Lambda/m_b)$ power corrections to this limit
- Power corrs with large impact on optimised observables ?



Uncertainties in form factors?

[Camalich, Jäger; Matias, Virto, Hofer, Capdevilla, SDG]

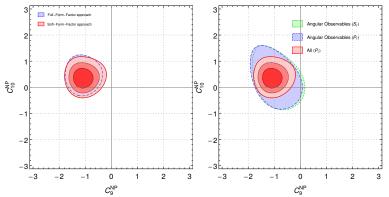
- EFT with limit $m_b \to \infty$ useful to correlate form factors but $O(\Lambda/m_b)$ power corrections to this limit
- Power corrs with large impact on optimised observables?
- No, but accurate predictions require
 - appropriate def of soft form factors $\xi_{\perp,||}$ in $m_b \to \infty$ limit (scheme)
 - correlations from EFT (heavy-quark sym.) among form factors
 - power corrections varied in agreement with info on form factors



Uncertainties in form factors?

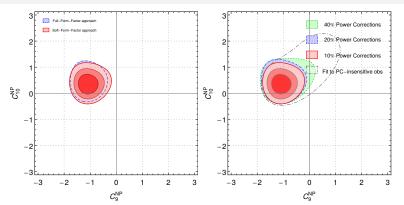
[Camalich, Jäger; Matias, Virto, Hofer, Capdevilla, SDG]

- EFT with limit $m_b \to \infty$ useful to correlate form factors but $O(\Lambda/m_b)$ power corrections to this limit
- Power corrs with large impact on optimised observables?
- No, but accurate predictions require
 - ullet appropriate def of soft form factors $\xi_{\perp,||}$ in $m_b o \infty$ limit (scheme)
 - correlations from EFT (heavy-quark sym.) among form factors
 - power corrections varied in agreement with info on form factors
- [Camalich, Jäger] artefacts from ill-advised scheme/variation for pcs



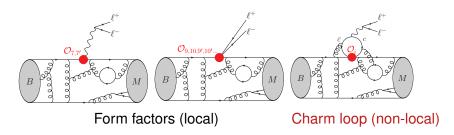
- Soft form factor approach ([Khodjamirian et al.] ff + EFT correls) vs full ff ([Altmannshofer, Straub] with [Bharucha et al.] ff with correls and small errors)
- Similar results using either optimised or angular coeffs (if correlations of form factors included through EFT)

Cross-checks: F. factors & power corrs (SDG, Hofer, Matias, Virto)

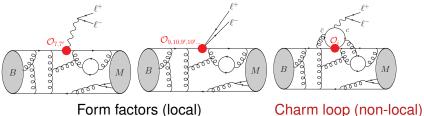


- Soft form factor approach ([Khodjamirian et al.] ff + EFT correls) vs full ff ([Altmannshofer, Straub] with [Bharucha et al.] ff with correls and small errors)
- Similar results using either optimised or angular coeffs (if correlations of form factors included through EFT)
- Increasing power corrections weakens role of large recoil, but low recoil enough to pull fit away from the SM

Charm-loop contribution



Charm-loop contribution



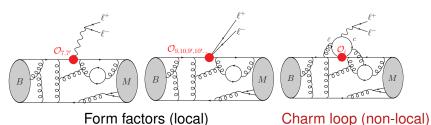
Form factors (local)

Uncertainties from charm loops?

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- Effect well-known (loop process, charmonium resonances)
- Yields q^2 and hadron-dependent contrib with $\mathcal{O}_{7,9}$ -like structures
 - Contribution $\Delta C_0^{BK(*)}$ from LCSR computation [Khodjamirian et al.]
 - Global fits use this result as order of magn, or $O(\Lambda/m_b)$ estimates

Charm-loop contribution



Form factors (local)

Uncertainties from charm loops?

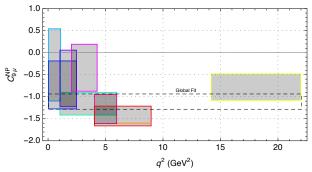
[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- Effect well-known (loop process, charmonium resonances)
- Yields q^2 and hadron-dependent contrib with $\mathcal{O}_{7,9}$ -like structures
 - Contribution $\Delta C_0^{BK(*)}$ from LCSR computation [Khodjamirian et al.]
 - Global fits use this result as order of magn, or $O(\Lambda/m_b)$ estimates
- ullet Bayesian extraction from $B o K^*\mu\mu$ performed by [Ciuchini et al.]
 - q^2 dependence in agreement with $\Delta C_{\alpha}^{BK(*)}$ + constant C_{α}^{NP}
 - no need for extra q^2 -dep. contribution (no missed hadronic contrib)
 - actually not contradicting results of global fits, though less precise

[Matias, Virto, Hofer, Capdevilla, SDG; Hurth, Mahmoudi, Neshatpour]

Cross-check: q^2 -dependence of C_9

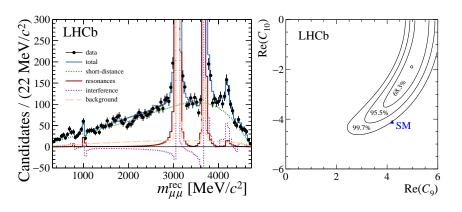
(SDG, Hofer, Matias, Virto)



 $[Cap devila,\,Crivellin,\,Matias,\,Virto,\,SDG]$

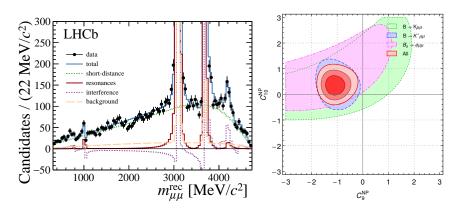
- Fit to $\mathcal{C}_9^{\mathsf{NP}}$ from individual bins of $b \to s\mu\mu$ data (NP only in $\mathcal{C}_{9\mu}$)
 - NP in C_9 from short distances, q^2 -independent
 - Hadronic physics in C_9 related to $c\bar{c}$ dynamics, (likely) q^2 -dependent
- No indication of additional q^2 -dependence missed by the fit
- Can be checked for other NP scenarios
- In agreement with similar findings in [Altmanshoffer, Straub]

Charm loop from resonances in $B \to K\ell\ell$ data



- $C_9^{\mathrm{eff}} = C_9^{SD} + \mathrm{sum}$ of resonant Breit-Wigner (ω, ρ^0, ϕ , charmonia)
- \bullet LHCb data driven fit to couplings and phases, as well as $\mathcal{C}_9, \mathcal{C}_{10}$
- ullet 4 equivalent sols, with tiny contrib from resonances below J/ψ

Charm loop from resonances in $B \to K\ell\ell$ data



- $C_9^{\mathrm{eff}} = C_9^{SD} + \mathrm{sum}$ of resonant Breit-Wigner $(\omega, \rho^0, \phi, \mathrm{charmonia})$
- \bullet LHCb data driven fit to couplings and phases, as well as $\mathcal{C}_9, \mathcal{C}_{10}$
- ullet 4 equivalent sols, with tiny contrib from resonances below J/ψ
- ullet agrees with (tiny) $\Delta \mathcal{C}_9^{BK}$ [Khodjamirian et al.] $(\mathcal{C}_9,\mathcal{C}_{10})$ OK with global fits

Data-driven charm loop contribution (1)

[Bobeth, Chrzaszcz, Van Dyk, Virto]

Rather than fitting unphysical polynomial with arbritray coefficients

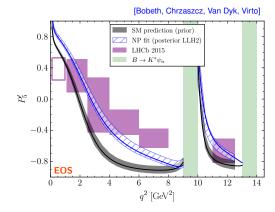
- Known analytic structure of charm loop contribution
 - Analytical up to poles and a cut starting $q^2 = 4M_D^2$
 - Inherit all singularities from form factors (M_{B_s} pole for instance)
- Appropriate parametrisation valid up to DD cut
 - z-expansion (better conv below cut, mapped into disc $|z| \le 1$)
 - Poles for J/ψ and ψ' + good asymptotic behaviour

$$\begin{array}{lcl} \eta_{\alpha}^{*}\,\mathcal{H}^{\alpha\mu} & = & i\int d^{4}x\;e^{iq\cdot x}\langle\bar{K}^{*}(k,\eta)|T\{j_{\rm em}^{\mu}(x),\mathcal{C}_{2}\mathcal{O}_{2}(y)\}|\bar{B}(p)\rangle\\ \\ z(q^{2}) & = & \frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}, \quad t_{+}=4M_{D}^{2}, \quad t_{0}=t_{+}-\sqrt{t_{+}(t_{+}-M_{\psi(2S)}^{2})}\\ \\ \mathcal{H}_{\lambda}(z) & = & \frac{1-z\,z_{J/\psi}^{*}}{z-z_{J/\psi}}\frac{1-z\,z_{\psi(2S)}^{*}}{z-z_{\psi(2S)}}\Big[\sum_{k=0}^{K\leq 2}\alpha_{k}^{(\lambda)}z^{k}\Big]\mathcal{F}_{\lambda}(z) \end{array}$$

Data-driven charm loop contribution (2)

Exploit info to determine the coefficients

- Experimental info: discarded LHCb bins to fix J/ψ ans ψ' residues
- Theoretical info: LCSR for q² ≤ 0 (most accurate)



Compute the observables

- $c\bar{c}$ contribution in agreement with earlier estimates
- P₅' for SM in disagreement with LHCb data
- Agreement if $C_9^{NP} \simeq -1.1$
- Access to intermediate region between J/ψ and ψ'
- Extension possible to other $b \rightarrow s\ell\ell$ modes

Moving forward

The need for more observables

A few interesting outcomes of the analysis

- Large deviation for $C_{9\mu}$ from SM
- ullet Potential deviations for $\mathcal{C}_{9'\mu}$ and $\mathcal{C}_{10\mu}$
- Small (or vanishing) deviations for $b \rightarrow see$ Wilson coefficients

Useful to have more observables to

- reduce uncertainties in determination of Wilson coefficients
- identify subleading deviations wrt SM in $\mathcal{C}_{9'\mu}$ and $\mathcal{C}_{10\mu}$ (cannot be mimicked by long-distance contribution to $c\bar{c}$ loops)
- confirm LFUV and exploit it to build new observables

LFUV in branching ratios

 R_{K^*} with conservative [Khodjamirian et al] but R_ϕ computed with [Bharucha et al]

LFUV in angular observables: Q_i , B_i , M

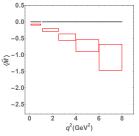
[Capdevilla, Matias, Virto, SDG]

Expecting measurements of BR and angular coefficients for $B o K^*ee$

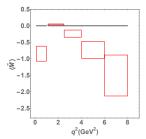
- null SM tests (up to m_ℓ effects): $Q_i = P_i^\mu P_i^e$, $B_i = \frac{J_i^\mu}{J_i^e} 1$
- ullet angular coeffs J_5 and J_{6s} with only a linear dependence on C_9

$$\textit{M} = (\textit{J}_{5}^{\mu} - \textit{J}_{5}^{e})(\textit{J}_{6s}^{\mu} - \textit{J}_{6s}^{e})/(\textit{J}_{6s}^{\mu}\textit{J}_{5}^{e} - \textit{J}_{6s}^{e}\textit{J}_{5}^{\mu})$$

- ullet cancellation of hadronic contribs in \mathcal{C}_9 if NP in $\mathcal{C}_{9\mu}$ only
- different sensitivity to NP scenarios compared to $R_{K(*)}$

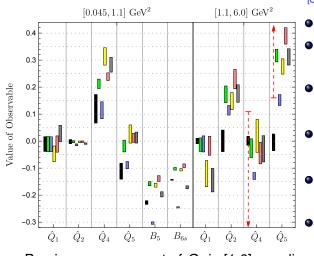


$$C_{9u}^{\text{NP}} = -1.1, C_{ie}^{\text{NP}} = 0$$



$$\mathcal{C}_{9\mu}^{
m NP} = \mathcal{C}_{10\mu}^{
m NP} = -0.65, \mathcal{C}_{\emph{je}}^{
m NP} = 0$$

LFUV in angular observables: Q_i, B_i

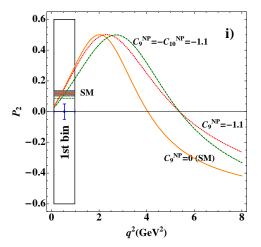


[Capdevila, Crivellin, SDG, Matias, Virto]

- Black: SM
- Green: $C_{9\mu}^{NP} = -1.1$
- Blue: $C_{9\mu}^{NP} = C_{10\mu}^{NP} = -0.61$
- Yellow: $C_{9\mu}^{NP} = C_{9'\mu}^{NP} = -1.01$
- Orange: $C_{9\mu}^{NP} = -3C_{9e}^{NP} = -1.06$
 - Gray: Best fit point for 6 dim fit
- Precise measurement of Q_5 in [1,6] can discard $\mathcal{C}_{9\mu}^{NP} = -\mathcal{C}_{10\mu}^{NP}$
- Other useful to separate various scenarios

Additional observables: P_1 and P_2 at very low q^2

At very low q^2 , C_9 kinematically suppressed in P_1 and P_2 \Longrightarrow way of probing other Wilson coefficients



Probes of other Wilson coefficients

- $P_1 \leftrightarrow \mathcal{C}_{7(')}$ (not competitive with $B \to X_s \gamma$)
- $P_2 \leftrightarrow C_7 C_{10}, C_{7'} C_{10'}$ (interesting for $C_{10(')}$)

[Becirevic, Schneider, Capdevila, Hofer, Matias, SDG]

NP interpretations

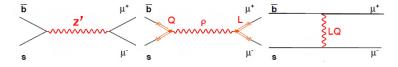
No consistent global alternative from SM/long-dist. for $b \to s\ell\ell$

- hadronic effects ($B \to K^* \mu \mu$, $B_s \to \phi \mu \mu$ at low and large recoils)
- statistical fluctuation and/or pb with $e/mu(R_K, R_{K^*})$
- bad luck (short-distance scenarios can accomodate all discrepancies very well by chance)

NP interpretations

No consistent global alternative from SM/long-dist. for $b \to s\ell\ell$

- hadronic effects ($B \to K^* \mu \mu$, $B_s \to \phi \mu \mu$ at low and large recoils)
- statistical fluctuation and/or pb with $e/mu(R_K, R_{K^*})$
- bad luck (short-distance scenarios can accomodate all discrepancies very well by chance)



NP models with new scale around TeV

- Z' boson and leptoquarks are favourite
- ullet Partial compositeness and NP in b
 ightarrow car cs also investigated
- but susy (MSSM) not favoured (hard to generate C₉-like contribution without having flavour problems in other places)

[Buras, De Fazio, Girrbach, Blanke, Altmannshofer, Straub, Crivellin, D'Ambrosio,

Outlook

B physics anomalies

- $b \to s \ell^+ \ell^-$ with many obs., more or less sensitive to hadronic unc.
- Interesting deviations from SM expectations
- Indications of violation of lepton flavour universality
- Global fit supports large $\mathcal{C}_{9\mu}^{NP}$ with very good consistency (Br vs angular vs R, channels, recoil regions, LFUV and All obs...)
- Does not seem to favour hadronic explanations (power corrections for form factors, charm loop contributions)

Where to go?

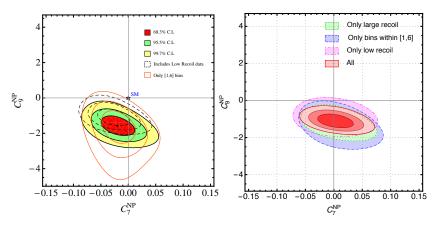
- Other LFU violating observables: R_{ϕ} , Q_i ...
- Charm loops (estimates, data-driven info on resonances, new obs)
- More determinations of form factors to control uncertainties
- More accurate constraints on other Wilson coefficients ($\mathcal{C}_{9'}, \mathcal{C}_{10}$)
- ullet Model building to connect with other anomalies (like $b o c\ell
 u_\ell$)

A lot of (interesting) work on the way!

Thank you for your attention!

From 2013 to 2016

Many improvements from experiment and theory, but...



[SDG, J. Matias, Virto] (2013)

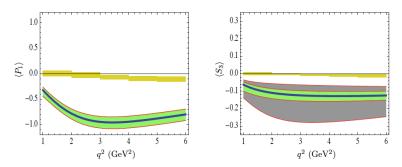
[SDG, L. Hofer J. Matias, Virto] (2016)

A few recent global fits (before R_{K^*})

	[SDG, Hofer	[Straub, Stangl &	[Hurth, Mahmoudi,
	Matias, Virto]	Altmannshofer]	Neshatpour]
Statistical	Frequentist	Frequentist	Frequentist
approach	$\Delta\chi^2$	$\Delta\chi^2$	$\Delta \chi^2 \& \chi^2$
Data	LHCb	Averages	LHCb
${\it B} ightarrow {\it K}^* \mu \mu$ data	P _i , Max likelihood	S_i , Max likelihood	S_i , Max I.& moments
Form	B-meson LCSR	[Bharucha, Straub, Zwicky]	[Bharucha, Straub, Zwicky]
factors	[Khodjamirian et al.]	fit light-meson LCSR	
	 + lattice QCD 	+ lattice QCD	
Theo approach	soft and full ff	full ff	soft and full ff
cc̄ large recoil	magnitude from	polynomial param	polynomial param
	[Khodjamirian et al.]		
\mathcal{C}_9^μ 1D 1 σ	[-1.22,-0.79]	[-1.54,-0.53]	[-0.27,-0.13]
pull _{SM}	4.2 σ	3.7σ	4.2σ
"good	see before	$\mathcal{C}_9^{NP}, \mathcal{C}_9^{NP} = -\mathcal{C}_{10}^{NP}$	$(\mathcal{C}_9^{NP}, \mathcal{C}_{9'}^{NP}), (\mathcal{C}_9^{NP}, \mathcal{C}_{10}^{NP})$
scenarios"		$(\mathcal{C}_9^{ extstyle NP},\mathcal{C}_{9'}^{ extstyle NP}),(\mathcal{C}_9,\mathcal{C}_{10}^{ extstyle NP})$	

⇒Good overall agreement for the results of the three fits

Sensitivity of observables to form factors



- P_i designed to have limited sensitivity to form factors
- S_i CP-averaged version of J_i

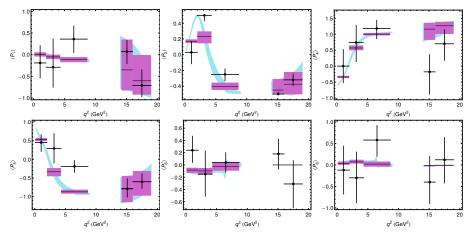
$$P_1 = rac{2S_3}{1 - F_L}$$
 $F_L = rac{J_{1c} + ar{J}_{1c}}{\Gamma + ar{\Gamma}}$ $S_3 = rac{J_3 + ar{J}_3}{\Gamma + ar{\Gamma}}$

Illustration for arbritrary NP point for two sets of LCSR form factors:

green [Ball, Zwicky] Versus gray [Khodjamirian et al.]

more or less easy to discriminate against yellow (SM prediction)

SM predictions and LHCb results at 1 fb⁻¹



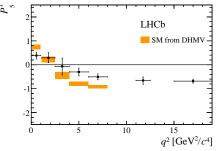
Meaning of the discrepancy in P_2 and P'_5 ?

[SDG, Matias, Virto]

- P_2 same zero as A_{FB} , related to C_9/C_7
- ullet $P_{5'}
 ightarrow -1$ as q^2 grows due to $A^R_{\perp,||} \ll A^L_{\perp,||}$ for $C_9^{SM} \simeq -C_{10}^{SM}$
- ullet A negative shift in C_7 and C_9 can move them in the right direction

Focus on P_5'

[SDG, J. Matias, M. Ramon, J. Virto]



$$B o K^* \mu \mu$$
 with $A_{
m transversity}^{\ell\ell}$ chirality

$$P_5' = \sqrt{2} rac{ ext{Re}(A_0^L A_\perp^{L*} - A_0^R A_\perp^{R*})}{\sqrt{|A_0|^2(|A_\perp|^2 + |A_|||^2)}}$$

LHCb measurements (crosses) significantly away from SM (boxes) in the large-recoil region

In large recoil limit with no right-handed current, with $\xi_{\perp,\parallel}$ ffs

$$A_{\perp,||}^{L} \propto \pm \left[\mathcal{C}_{9} - \mathcal{C}_{10} + 2 \frac{m_{b}}{s} \mathcal{C}_{7} \right] \xi_{\perp}(s) \qquad A_{\perp,||}^{R} \propto \pm \left[\mathcal{C}_{9} + \mathcal{C}_{10} + 2 \frac{m_{b}}{s} \mathcal{C}_{7} \right] \xi_{\perp}(s)$$

$$egin{aligned} A_0^L & \propto & -\left[\mathcal{C}_9 - \mathcal{C}_{10} + 2rac{m_b}{m_B}\mathcal{C}_7
ight] \xi_{||}(s) & A_0^R \propto -\left[\mathcal{C}_9 + \mathcal{C}_{10} + 2rac{m_b}{m_B}\mathcal{C}_7
ight] \xi_{||}(s) \ & ext{ In SM, } \mathcal{C}_9 \simeq -\mathcal{C}_{10} ext{ leading to } |A_{\perp,||}^R| \ll |A_{\perp,||}^L| \end{aligned}$$

- If $C_9^{\sf NP} < 0$, $|A_{0,||,\perp}^R|$ increases, $|A_{0,||,\perp}^L|$ decreases, $|P_5'|$ gets lower
- For P_4' , sum with $A_{0,||}$, so not sensitive to C_9 in the same way

Power corrections

- Factorisable power corrections (form factors)
 - Parametrize power corrections to form factors (at large recoil):

$$F(q^2) = F^{ ext{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{lpha_s}(q^2) + \frac{a_F}{a_F} + \frac{q^2}{m_B^2} + ...$$

- Fit $a_F, b_F, ...$ to the full form factor F (taken e.g. from LCSR)
 - Respect correlations among $a_{F_i}, b_{F_i}, ...$ and kinematic relations
 - Choose appropriate definition of $\xi_{||,\perp}$ from form factors (scheme) or take into account correlations among form factors
- Vary power corrections as 10% of the total form factor around the central values obtained for $a_F, b_F \dots$

Power corrections

- Factorisable power corrections (form factors)
 - Parametrize power corrections to form factors (at large recoil):

$$F(q^2) = F^{
m soft}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{lpha_s}(q^2) + rac{a_F}{a_F} + rac{q^2}{m_B^2} + ...$$

- Fit $a_F, b_F, ...$ to the full form factor F (taken e.g. from LCSR)
 - Respect correlations among $a_{F_i}, b_{F_i}, ...$ and kinematic relations
 - Choose appropriate definition of $\xi_{||,\perp}$ from form factors (scheme) or take into account correlations among form factors
- Vary power corrections as 10% of the total form factor around the central values obtained for $a_F, b_F \dots$
- Nonfactorisable power corrections (extra part from amplitudes)
 - Extract from $\langle K^* \gamma^* | H_{eff} | B \rangle$ the part not associated to form factors
 - ullet Multiply each of them with a complex q^2 -dependent factor

$$\mathcal{T}_{i}^{\text{had}} \to \left(1 + r_{i}(q^{2})\right)\mathcal{T}_{i}^{\text{had}}, \quad r_{i}(s) = r_{i}^{a}e^{i\phi_{i}^{a}} + r_{i}^{b}e^{i\phi_{i}^{b}}(s/m_{B}^{2}) + r_{i}^{c}e^{i\phi_{i}^{c}}(s/m_{B}^{2})^{2}.$$

• Vary $r_i^{a,b,c} = 0 \pm 0.1$ and phase $\phi_i^{a,b,c}$ free for $i = 0, \perp, ||$

Correlating form factors

Implement correlations among form factors

Soft form factor approach

- [Matias, Virto, Hofer, Mescia, SDG...]
- Decompose, e.g., $V = \frac{m_B + m_{K^*}}{m_B} \xi_{\perp} + \Delta V^{\alpha_s} + \Delta V^{\Lambda}$ with hard gluons ΔV^{α_s} , power corrections $\Delta V^{\Lambda} = O(\Lambda/m_B)$
- ullet Define soft form factors by setting some $\Delta=0$
- (Factorisable) power corrs. from fit to full form factors, embedding correlations from large-recoil
- $B \rightarrow V\ell\ell$ from soft form factors + hard gluons + power corrections

Correlating form factors

Implement correlations among form factors

Soft form factor approach

- [Matias, Virto, Hofer, Mescia, SDG. . .]
- Decompose, e.g., $V = \frac{m_B + m_{K^*}}{m_B} \xi_{\perp} + \Delta V^{\alpha_s} + \Delta V^{\Lambda}$ with hard gluons ΔV^{α_s} , power corrections $\Delta V^{\Lambda} = O(\Lambda/m_B)$
- Define soft form factors by setting some $\Delta = 0$
- (Factorisable) power corrs. from fit to full form factors, embedding correlations from large-recoil
- $B \rightarrow V\ell\ell$ from soft form factors + hard gluons + power corrections
- Full form factor approach

- [Buras, Ball, Bharucha, Altmannshofer, Straub...]
- Full form factors with correlations
- $B \rightarrow V\ell\ell$ from correlated full form factors
 - + hard gluons & power corrs. not from form factors (nonfactorisable)

Correlating form factors

Implement correlations among form factors

Soft form factor approach

 $[{\sf Matias},\,{\sf Virto},\,{\sf Hofer},\,{\sf Mescia},\,{\sf SDG},\dots]$

- Decompose, e.g., $V = \frac{m_B + m_{K^*}}{m_B} \xi_{\perp} + \Delta V^{\alpha_s} + \Delta V^{\Lambda}$ with hard gluons ΔV^{α_s} , power corrections $\Delta V^{\Lambda} = O(\Lambda/m_B)$
- Define soft form factors by setting some $\Delta = 0$
- (Factorisable) power corrs. from fit to full form factors, embedding correlations from large-recoil
- $B \rightarrow V\ell\ell$ from soft form factors + hard gluons + power corrections
- Full form factor approach

[Buras, Ball, Bharucha, Altmannshofer, Straub...]

- Full form factors with correlations
- $B \to V\ell\ell$ from correlated full form factors + hard gluons & power corrs. not from form factors (nonfactorisable)

Choice of observables

- optimised observables P_i with limited sensitivity to form factors
- averaged angular coefficients S_i with larger sensitivity

Very large power corrections? (1)

• Scheme: choice of definition for the two soft form factors (all equivalent for $m_B \to \infty$)

$$\{\xi_{\perp}, \xi_{||}\} = \{V, \alpha A_1 + \beta A_2\}, \{T_1, A_0\}, \dots$$

 Power corrections for the other form factors from dimensional estimates or fit to available determinations (LCSR)

$$F(q^2) \,=\, F^{
m soft}(\xi_{\perp,\parallel}(q^2)) \,+\, \Delta F^{lpha_{\it S}}(q^2) \,+\, {\it a_{\it F}} + {\it b_{\it F}} {\it q^2\over\it m_{\it B}^2} + ...$$

 For some schemes, large(r) uncertainties found for some optimised observables

Very large power corrections? (1)

• Scheme: choice of definition for the two soft form factors (all equivalent for $m_B \to \infty$)

$$\{\xi_{\perp}, \xi_{||}\} = \{V, \alpha A_1 + \beta A_2\}, \{T_1, A_0\}, \dots$$

 Power corrections for the other form factors from dimensional estimates or fit to available determinations (LCSR)

$$F(q^2) \,=\, F^{
m soft}(\xi_{\perp,\parallel}(q^2)) \,+\, \Delta F^{lpha_{\cal S}}(q^2) \,+\, {\it a}_{\cal F} + {\it b}_{\cal F} {q^2 \over m_{\cal B}^2} + ...$$

 For some schemes, large(r) uncertainties found for some optimised observables

Observables are scheme independent, but

procedure to compute them can be either scheme dependent or not

- a) Include all correlations among errors for power corr more accurate, but hinges on detail of ff determination
- b) Assign 10% uncorrelated uncertainties for power corrs a_F, b_F depends on scheme (setting $a_F = b_F = 0$ for two form factors)

Very large power corrections? (2)

Model independent

Full LCSR information

- $\star \Delta F^{PC} = F \times \mathcal{O}(\Lambda/m_B)$ $\sim F \times 10\%$
- correlations from large-recoil sym. $\rightarrow \bar{\xi}_{\perp,\parallel}, \Delta F^{PC}$ uncorr.

2

- \star ΔF^{PC} from fit to LCSR
 - correlations from large-recoil sym. $\rightarrow \bar{\xi}_{\perp,\parallel}, \Delta F^{PC}$ uncorr.
- 3 ★ ∆F^{PC}from fit to LCSR
- correlations from **LCSR** $\rightarrow \xi_{\perp,\parallel}, \Delta F^{PC}$ corr.

Very large power corrections? (2)

Model independent

information -----

Full LCSR

- ★ $\Delta F^{PC} = F \times \mathcal{O}(\Lambda/m_B)$ $\sim F \times 10\%$
- \star ΔF^{PC} from fit to LCSR

2

 \star $\Delta F^{\rm PC}$ from fit to LCSR

 $\rightarrow \xi_{\perp,\parallel}, \Delta F^{PC}$ corr.

correlations from

3

 \bigstar correlations from large-recoil sym. $\rightarrow \xi_{\perp,\parallel}, \Delta F^{\rm PC}$ uncorr.

- $\begin{array}{ll} \bigstar & \text{correlations from} \\ & \text{large-recoil sym.} \\ & \rightarrow \xi_{\perp,\parallel}, \Delta F^{\text{PC}} \text{ uncorr.} \end{array}$
 - [Bharucha, Straub, Zwicky] as example (correl provided)

scheme indep. restored if

 ΔF^{PC} from fit to LCSR.

with expected magnitude

LCSR

- $\begin{array}{c|cccc} P_5'[4.0,6.0] & \text{scheme 1} & \text{scheme 2} \\ \hline 1 & -0.72 \pm 0.05 & -0.72 \pm 0.12 \\ \hline 2 & -0.72 \pm 0.03 & -0.72 \pm 0.03 \\ \hline 3 & -0.72 \pm 0.03 & -0.72 \pm 0.03 \\ \hline \text{full BSZ} & -0.72 \pm 0.03 \\ \hline \end{array}$
- sensitivity to scheme can be understood analytically

errors only from pc with BSZ form factors
[Capdevilla.SDG, Hofer, Matias]

 no uncontrolled large power corrections for P₅/

Scheme dependence of observables

Using the connection between full and soft form factors at large recoil, keeping power corrections

$$\begin{split} P_5'(6\,\text{GeV}^2) &= P_5'|_{\infty}(6\,\text{GeV}^2) \Bigg(1 + 0.18 \frac{2a_{V_-} - 2a_{\mathcal{T}_-}}{\xi_{\perp}} - 0.73 \frac{2a_{V_+}}{\xi_{\perp}} + 0.02 \frac{2a_{V_0} - 2a_{\mathcal{T}_0}}{\tilde{\xi}_{\parallel}} \\ &+ \text{nonlocal terms} \Bigg) + O\left(\frac{m_{K^*}}{m_B}, \frac{\Lambda^2}{m_B^2}, \frac{q^2}{m_B^2}\right). \end{split}$$

$$P_1(6\,\text{GeV}^2) = -\ 1.21 \frac{2a_{V_+}}{\xi_\perp} + 0.05 \frac{2b_{T_+}}{\xi_\perp} \ + \text{nonlocal terms} + O\left(\frac{m_{K^*}}{m_B}, \frac{\Lambda^2}{m_B^2}, \frac{q^2}{m_B^2}\right),$$

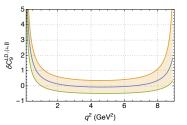
- scheme dependence of P₅ not fully taken into account in [Camalich, Jäger]
- allows to understand the scheme dependence of P_i
- P_5' and P_1 with reduced unc. if ξ_{\perp} defined from V ($a_{V_{+}}=0$)

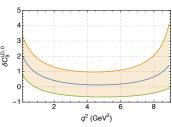
Charm-loop effects: large recoil

- Short-distance (hard gluons)
 - $C_9 o C_9 + Y(q^2) = C_9 + \delta C_{9,\mathrm{SD}}^{BK(^*)}(q^2)$, dependence on m_c
 - higher-order short-distance QCD via QCDF/HQET

Charm-loop effects: large recoil

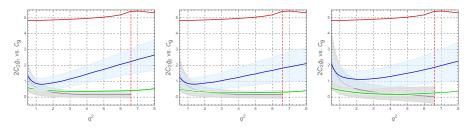
- Short-distance (hard gluons)
 - $C_9 \rightarrow C_9 + Y(q^2) = C_9 + \delta C_{9,\mathrm{SD}}^{BK(^*)}(q^2)$, dependence on m_c
 - higher-order short-distance QCD via QCDF/HQET
- Long-distance (soft gluons)
 - ullet $\Delta \mathcal{C}_9^{BK(^*),i}>0$ $(i=0,||,\perp)$ using LCSR [Khodjamirian, Mannel, Pivovarov, Wang]
 - Computed for $q^2<0$ and small, then extrapolated through dispersion relation reincluding J/ψ (but many unknown parameters)
 - For us, order of magnitude: $\Delta \mathcal{C}_{9}^{BK^*}\big|_{KMPW} = \delta \mathcal{C}_{9,\mathrm{SD}}^{BK(^*)} + \delta \mathcal{C}_{9,\mathrm{LD}}^{BK(^*)}$ taking $\Delta \mathcal{C}_{9}^{BK^*,i} = \delta \mathcal{C}_{9,\mathrm{SD}}^{BK(^*),i} + \mathbf{s}_{i} \ \delta \mathcal{C}_{9,\mathrm{LD}}^{BK(^*),i}$ with $\mathbf{s}_{i} = \mathbf{0} \pm \mathbf{1}$





Charm-loop fit to $B \rightarrow K^*\ell\ell$ (1)

- $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial
- params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

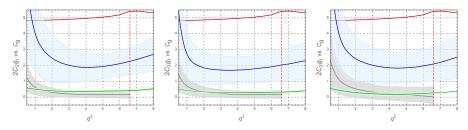


In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

• constrained fit: imposing SM + $\Delta C_9^{BK^*}$ [Khodjamirian et al.] at $q^2 < 1 \text{ GeV}^2$ yields q^2 -dependent $c\bar{c}$ contribution, with "large" coefs for q^4

Charm-loop fit to $B \to K^* \ell \ell$ (1)

- $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial
- params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

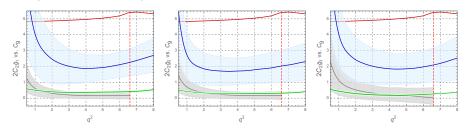


In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

- constrained fit: imposing SM + $\Delta \mathcal{C}_9^{BK^*}$ [Khodjamirian et al.] at $q^2 < 1~{\rm GeV^2}$ yields q^2 -dependent $c\bar{c}$ contribution, with "large" coefs for q^4
- unconstrained fit: polynomial agrees with $\Delta \mathcal{C}_9^{BK^*}$ + large cst \mathcal{C}_9^{NP} identical for all 3 helicity amplitudes

Charm-loop fit to $B \to K^* \ell \ell$ (1)

- $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial
- params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

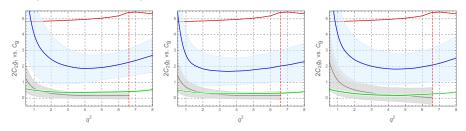


In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

- constrained fit: imposing SM + $\Delta C_9^{BK^*}$ [Khodjamirian et al.] at $q^2 < 1 \text{ GeV}^2$ yields q^2 -dependent $c\bar{c}$ contribution, with "large" coefs for q^4
- unconstrained fit: polynomial agrees with $\Delta \mathcal{C}_9^{BK^*}$ + large cst \mathcal{C}_9^{NP} identical for all 3 helicity amplitudes
- constrained fit forced at low q^2 , compensation skewing high q^2

Charm-loop fit to $B \rightarrow K^*\ell\ell$ (1)

- $c\bar{c}$ contributions to 3 K^* helicity amplitudes $g_{1,2,3}$ as q^2 -polynomial
- params from Bayesian fit to data [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]



In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

- constrained fit: imposing SM + $\Delta C_9^{BK^*}$ [Khodjamirian et al.] at $q^2 < 1 \text{ GeV}^2$ yields q^2 -dependent $c\bar{c}$ contribution, with "large" coefs for q^4
- unconstrained fit: polynomial agrees with $\Delta \mathcal{C}_9^{BK^*}$ + large cst \mathcal{C}_9^{NP} identical for all 3 helicity amplitudes
- constrained fit forced at low q^2 , compensation skewing high q^2
- ullet no dynamical hadronic explanation for enhancement at high q^2

Charm-loop fit to $B \to K^* \ell \ell$ (2)

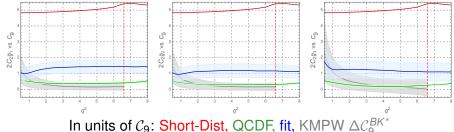
Problem related to q^4 contribution? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- indication of q^2 dependence due to hadronic, not NP?
- q^4 dependence already from $C_i \times FF(q^2)$

Charm-loop fit to $B \rightarrow K^* \ell \ell$ (2)

Problem related to q^4 contribution? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- indication of q^2 dependence due to hadronic, not NP?
- q^4 dependence already from $C_i \times FF(q^2)$



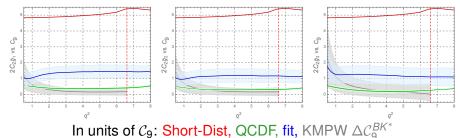
The drifts of eg. Short-Dist, QODI, ht, Kivii w Aeg

ullet Bayesian fit without q^4 need same $\mathcal{C}_9^{\mathrm{NP}}$ in all three \mathcal{K}^* helicities

Charm-loop fit to $B \to K^* \ell \ell$ (2)

Problem related to q^4 contribution? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- indication of q^2 dependence due to hadronic, not NP?
- q^4 dependence already from $C_i \times FF(q^2)$



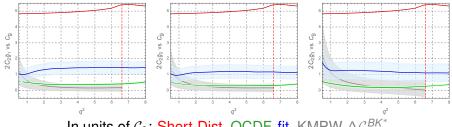
- Bayesian fit without q^4 need same C_9^{NP} in all three K^* helicities
- Frequentist fits indicate no improvement by adding q^4 term, and adding C_9 better pull than 12 independent coefficients

[Capdevila, Hofer, Matias, SDG; Hurth, Mahmoudi, Neshatpour]

Charm-loop fit to $B \rightarrow K^* \ell \ell$ (2)

Problem related to q^4 contribution? [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- indication of q^2 dependence due to hadronic, not NP?
- q^4 dependence already from $C_i \times FF(q^2)$



In units of C_9 : Short-Dist, QCDF, fit, KMPW $\Delta C_9^{BK^*}$

- ullet Bayesian fit without q^4 need same $\mathcal{C}_9^{\mathrm{NP}}$ in all three K^* helicities
- Frequentist fits indicate no improvement by adding q^4 term, and adding C_9 better pull than 12 independent coefficients

[Capdevila, Hofer, Matias, SDG; Hurth, Mahmoudi, Neshatpour]

• if $c\bar{c}$, why same constant $\mathcal{C}_9^{\mathrm{NP}}$ for all mesons and helicities, which explanation for $R_{K(^*)}$, what causes deviations in low-recoil BRs ?

$$\begin{split} A_{L,R}^{0} &= A_{L,R}^{0}(s_{i}=0) + \frac{N}{q^{2}} \left(h_{0}^{(0)} + \frac{q^{2}}{1 \text{ GeV}^{2}} h_{0}^{(1)} + \frac{q^{4}}{1 \text{ GeV}^{4}} h_{0}^{(2)} \right), \\ A_{L,R}^{\parallel} &= A_{L,R}^{\parallel}(s_{i}=0) \\ &\quad + \frac{N}{\sqrt{2}q^{2}} \left[(h_{+}^{(0)} + h_{-}^{(0)}) + \frac{q^{2}}{1 \text{ GeV}^{2}} (h_{+}^{(1)} + h_{-}^{(1)}) + \frac{q^{4}}{1 \text{ GeV}^{4}} (h_{+}^{(2)} + h_{-}^{(2)}) \right], \\ A_{L,R}^{\perp} &= A_{L,R}^{\perp}(s_{i}=0) \\ &\quad + \frac{N}{\sqrt{2}q^{2}} \left[(h_{+}^{(0)} - h_{-}^{(0)}) + \frac{q^{2}}{1 \text{ GeV}^{2}} (h_{+}^{(1)} - h_{-}^{(1)}) + \frac{q^{4}}{1 \text{ GeV}^{4}} (h_{+}^{(2)} - h_{-}^{(2)}) \right], \end{split}$$

- $s_i = 0$ means no contrib from long-distance $c\bar{c}$
- *n* order of the polynomial added, coeffs fit in frequentist framework

• testing nested hyp: pull from
$$\chi^{2(n-1)}_{\min} - \chi^{2(n)}_{\min}$$
 $(\chi^{2(-1)}_{\min} = SM)$
• $\frac{n}{B \to K^* \mu\mu, C_g^{\mu, NP} = 0}$ 2.88 (0.8 σ) 17.90 (3.5 σ) 0.08 (0.0 σ) 0.34 (0.1 σ)
• $\frac{B \to K^* \mu\mu, C_g^{\mu, NP} = -1.1}{B \to 8\ell\ell, C_g^{\mu, NP} = 0}$ 1.55 (0.4 σ) 21.40 (3.9 σ) 0.61 (0.1 σ)

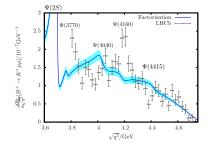
No need for high-order polyn or strong q^2 -dep impossible with short distance contrib, contrary to claims by [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

Charm-loop effects: resonances (1)

- Low recoil: quark-hadron duality
 - Average "enough" resonances to equate quark and hadron levels
 - ullet Model estimate yield a few % for $BR(B o K\mu\mu)$ [Beylich, Buchalla, Feldmann]

Charm-loop effects: resonances (1)

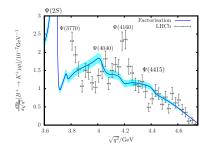
- Low recoil: quark-hadron duality
 - Average "enough" resonances to equate quark and hadron levels
 - ullet Model estimate yield a few % for $BR(B o K\mu\mu)$ [Beylich, Buchalla, Feldmann]



- Probably (?) effect of similar size for ${\cal B} \to {\cal K}^* \mu \mu$ (BR and angular obs.)
- OPE corrections + NLO QCD corrections + complex correction of 10% for each transversity amplitude
- Difficulties to explain $B \to K\ell\ell$ low-recoil spectrum using $\sigma(e^+e^- \to hadrons)$ and naive factorisation [Lyon, Zwicky]

Charm-loop effects: resonances (1)

- Low recoil: quark-hadron duality
 - Average "enough" resonances to equate quark and hadron levels
 - Model estimate yield a few % for $BR(B o K \mu \mu)$ [Beylich, Buchalla, Feldmann]



- Probably (?) effect of similar size for $B \to K^* \mu \mu$ (BR and angular obs.)
- OPE corrections + NLO QCD corrections + complex correction of 10% for each transversity amplitude
- Difficulties to explain $B \to K\ell\ell$ low-recoil spectrum using $\sigma(e^+e^- \rightarrow hadrons)$ and naive factorisation [Lyon, Zwicky]

- Large recoil
 - $q^2 < 7-8$ GeV² to limit the impact of J/ψ tail
 - Still need to include the effect of $c\bar{c}$ loop

(tail of resonances + nonresonant)

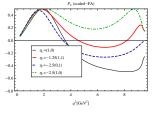
• LHCb on $B \to K \mu \mu$: resonance tails have very limited impact

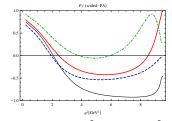
Charm-loop effects: resonances (2)

On the basis of a model for $c\bar{c}$ resonances for low-recoil $B \to K \mu \mu$ [Zwicky and Lyon] proposed very large $c\bar{c}$ contrib for large-recoil $B \to K^* \mu \mu$

$$\mathcal{C}_9^{\mathrm{eff}} = \mathcal{C}_9^{SM} + \mathcal{C}_9^{\mathsf{NP}} + \eta h(q^2)$$
 and $\mathcal{C}_{9'} = \mathcal{C}_{9'}^{\mathsf{NP}} + \eta' h(q^2)$

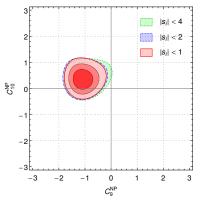
where $\eta + \eta' = -2.5$ where conventional expectations are $\eta = 1, \eta' = 0$





- ullet P_2 and P_5' could have more zeroes for $4 \le q^2 \le 9 \; {\rm GeV^2}$
- $P'_{5[6,8]}$ would be above or equal to $P'_{5[4,6]}$, whereas global effects (like C_9^{NP}) predicts $P'_{5[6,8]} < P'_{5[4,6]}$ in agreement with experiment
- Not in agreement with LHCb findings for $B \to K\ell\ell$
- R_K and R_{K^*} unexplained since it would affect identically $\ell = e, \mu$

Cross-checks: Charm-loop dependence



- For each $B \to K^* \mu \mu$ transversity $\Delta C_9^{BK(^*),i} = \delta C_{9,\mathrm{pert}}^{BK(^*),i} + s_i \delta C_{9,\mathrm{non\ pert}}^{BK(^*),i}$
- Ditto for B_s → φ, with all 6 s_i independent
- For $B o K\mu\mu$, $c\bar{c}$ estimated as very small
- Increasing the range allowed for s_i makes low-recoil and $B \to K \mu \mu$ dominate more and more
- Does not alter the pull, and does not explain LFUV