
Nikolay  Kivel 

  γ*γ→f2(1230) and γγ→G2π0   within QCD framework

KEK seminar, 14th November, 2017, Japan



Outline

Introduction: pQCD description of  hard exclusive 
processes 

 γ*+γ→ f2(1270) as example of  qq-meson  -

An opportunity to study
     glueball in γ+γ→ G(2++)+π0 

Discussion: suggestions, critics, 
skepticism, etc.

Braun, Kivel, Strohmaier, Vladimirov JHEP 1606 (2016) 

 Kivel, Vanderhaeghen, to be published 



Introduction: QCD factorisation 

QCD factorization <=> effective field theory approach

Two scales: hard and soft 

Q�2nscaling behavior is the model independent QCD prediction (!)
which can be checked by experiment

Log corrections can be systematically computed in pQCD ↵s(Q
2) ⇠ ln�1 Q2/⇤2 ⌧ 1

Hard part is defined by a hard subprocess p2h ⇠ Q2
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QCD factorization <=> effective field theory approach

Soft part is p2s ⇠ ⇤2

defined as a matrix element in QCD

associated with a soft subprocess

process independent (universality)

can be estimated only in the framework of 
some nonperturbative approach

Introduction: QCD factorisation 

Q ! 1 A(Q2) ' H(Q2) ⇤ S(⇤)

Q2 � ⇤2
QCDTwo scales: hard and soft 

or 
can be constrained from the experimental data
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Table 1: A modified reproduction of the table from the 2006 Particle Data Book [9] showing the current
assignment of known mesons to quark-model states. When su�cient states are known, the nonet mixing
angle is computed using both the quadratic and linear forms.

mixing angle. We can compute a �2 between the measured and predicted decay rates to determine
what the optimal choice of the mixing angle is. This is shown in Figure 3, where the optimal value
is at about 32.5�. The location of the optimum does not depend strongly on either ✓

P

or � and is in
good agreement with the values from the mass formulas for the tensors in Table 1. In fact, it is quite
surprising how well this does in describing the data.

Measuring the masses and decay rates of mesons can be used to identify the quark content of a
particular meson. The lightest glueballs have JPC quantum numbers of normal mesons and would
appear as an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will
appear as an extra f -like state. While the fact that there is an extra state is suggestive, the decay rates
and production mechanisms are also needed to unravel the quark content of the observed mesons.

3 Theoretical Expectations for Glueballs

3.1 Historical

One of the earliest models in which glueball masses were computed is the bag model [12]. In these
early calculations, boundary conditions were placed on gluons confined inside the bag [13]. The gluon
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Figure 1: SU(3)
flavor

nonet of the lightest pseudoscalar mesons (JPC = 0�+). The light u, d and s quarks
and their corresponding antiquarks ū, d̄ and s̄ form the basis for 9 = 3 ⌦ 3 mesons. These are the
illustrated octet (left) and the ⌘

1

singlet (right).

we find the following quantum numbers are allowed:

0�+, 0++, 1��, 1+�, 1��, 2��, 2�+, 2++, 3��, 3+�, 3��, · · · (1)

and looking carefully at these, we find that there is a sequence of JPC ’s which are not allowed for a
simple qq̄ system:

0��, 0+�, 1�+, 2+�, 3�+, · · · (2)

These latter quantum numbers are known as explicitly exotic quantum numbers and, if observed, would
correspond to something beyond the simple qq̄ states of the quark model.

If we consider only the three lightest quarks, u, d and s, then we can form nine qq̄ combinations,
all of which can have the same S, L and J . We can represent these in spectroscopic notation, 2S+1L

J

,
or as states of total spin, parity and for the neutral states, charge conjugation: JPC . Naively, these
qq̄ combinations would simply be a quark and an antiquark. However, those states consisting of the
same quark and antiquark (uū, dd̄ and ss̄) are rotated into three other states based on isospin and
SU(3) symmetries. The combinations shown in equation 3 correspond the the non-zero isospin states,
while those in equation 4 correspond to a pair of isospin zero states. The latter two states are also
mixed by SU(3) to yield a singlet (| 1 i) and an octet (| 8 i) state:

(ds̄) (us̄)
(dū) 1p

2

(dd̄� uū) (ud̄)

(sd̄) (sū)
(3)

| 8 i = 1p
6

(uū + dd̄� 2ss̄) | 1 i = 1p
3

(uū + dd̄ + ss̄) (4)

The nominal mapping of these states onto the familiar pseudoscalar mesons is shown in Fig. 1.
However, because SU(3) is broken, the two I = 0 mesons in a given nonet are usually admixtures of
the singlet ( | 1 i = 1p

3

�
uū + dd̄ + ss̄

�
) and octet ( | 8 i = 1p

6

�
uū + dd̄� 2ss̄

�
) states. In nature, the

physical states (f and f 0 ) are mixtures, where the degree of mixing is given by an angle ✓:

f = cos ✓ | 1 i+ sin ✓ | 8 i (5)

f 0 = cos ✓ | 8 i � sin ✓ | 1 i . (6)

For the vector mesons, ! and �, one state is nearly pure light-quark (nn̄) and the other is nearly
pure ss̄. This is known as ideal mixing and occurs when tan ✓ = 1/

p
2 (✓ = 35.3�). In Table 1 is listed
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Table 1: A modified reproduction of the table from the 2006 Particle Data Book [9] showing the current
assignment of known mesons to quark-model states. When su�cient states are known, the nonet mixing
angle is computed using both the quadratic and linear forms.
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(q1q2)
(qµ1 q

ν
2 + qν1q

µ
2 ) +

q21
(q1q2)2

qµ2 q
ν
2 , 2q1q2 = m2 +Q2 . (2.5)

The polarization tensor e(λ)αβ is symmetric and traceless, and satisfies the condition e(λ)αβP
β =

0. Polarization sums can be calculated using

∑

λ

e(λ)µν e
(λ)∗
ρσ =

1

2
MµρMνσ +

1

2
MµσMνρ −

1

3
MµνMρσ , (2.6)

where Mµν = gµν − PµPν/m2 and the normalization is such that e(λ)µν e
(λ′)∗
µν = δλλ′ . The

invariant form factors T0, T1 and T2 correspond to the three possible helicity amplitudes

T0 : γ∗(±1) + γ(±1) → f2(0) ,

T1 : γ∗(0) + γ(±1) → f2(∓1) ,

T2 : γ∗(±1) + γ(∓1) → f2(±2) . (2.7)

All three amplitudes (form factors) have mass dimension equal to one and scale as Tk ∼ Q0

(up to logarithms) in the Q2 → ∞ limit. The two-photon decay width of f2(1270) is given

by [21]

Γ[f2 → γγ] =
πα2

5m

(
2

3
|T0(0)|2 + |T2(0)|2

)
= 3.03(40) keV , (2.8)

where α ≃ 1/137 is the electromagnetic coupling constant. Assuming that |T2(0)| ≫ |T0(0)|
we obtain

|T2(0)| ≃
√

5m

πα2
Γ[f2 → γγ] = 339(22)MeV. (2.9)

The relation of our definition of helicity form factors to the other existing in the literature

definitions is given in appendix A.

3 Distribution amplitudes

In the standard classification the tensor JPC = 2++ SU(3)f nonet is composed of f2(1270),

f ′2(1525), a2(1320) and K∗2 (1430). Isoscalar tensor states f2(1270) and f ′2(1525) have a

dominant decay mode in two pions (or two kaons). The isovector a2(1320) decays only in

three pions and is more difficult to observe in hard reactions. In the quark model these

mesons are constructed from a constituent quark-antiquark pair in the P-wave and with the

total spin equal to one. In QCD they can be represented by a set of Fock states in terms of

quarks and gluons, that further reduce to DAs in the limit of small transverse separations.

In the exact SU(3)-flavor symmetry limit the f2(1270) meson is part of a flavor-octet,

f2 = T8, and f ′2(1525) is a flavor-singlet, f ′2 = T1. However, it is known empirically that the

SU(3)-breaking corrections are large. Since f2(1270) and f ′2(1525) decay predominantly in

ππ and KK, it follows that they are close to the nonstrange and strange flavor eigenstates,

respectively, with a small mixing angle, see [21, 22]. In this paper we assume ideal mixing

at a low scale which we take to be µ0 = 1GeV, for definiteness. In other words, we assume
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Calculation of the helicity cross sections (A.1) in terms of the Lorentz covariant amplitudes

similar to Ti was done in ref. [10], see appendix C3. Using the expressions presented there

we obtain

σ±±
TT = δ(s−m2) 8π2 5Γγγ

m

{
ΓΛ=0
γγ

Γγγ
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T0(0)
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2}

, (A.3)
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m

{
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5mΓγγ

Q2/m2

(1 +Q2/m2)3
∣∣T1(Q
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∣∣2
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, (A.5)

where ΓΛ
γγ stands for the two-photon decay width of f2(1270) with the polarization Λ:

ΓΛ=2
γγ =

πα2

5m
|T2(0)|2 , ΓΛ=0
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πα2

5m

2

3
|T0(0)|2 . (A.6)

Using these expressions and the definitions in (A.2) one finds
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∣∣∣∣ , (A.7)

F1(Q
2) =

√
πα2

5mΓγγ

√
Q2/m2

(1 +Q2/m2)2
∣∣T1(Q

2)
∣∣ , (A.8)

F2(Q
2) =

√
ΓΛ=2
γγ

Γγγ

(
1 +

Q2

m2

)−1 ∣∣∣∣
T2(Q2)

T2(0)

∣∣∣∣ . (A.9)

Experimentally the ratio of the decay widths with Λ = 0 and Λ = 2 is small [39]:

ΓΛ=0
γγ

ΓΛ=2
γγ

≃ (3.7± 0.3)× 10−2. (A.10)

Hence the expressions in (A.7)–(A.9) can be simplified neglecting the contribution of ΓΛ=0
γγ

in the full decay width:

F0(Q
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√
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T0(Q2)

T2(0)

∣∣∣∣ , (A.11)

F1(Q
2) ≃

√
Q2/m2

(1 +Q2/m2)2
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T1(Q2)

T2(0)

∣∣∣∣ , (A.12)
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(
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Q2
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)−1 ∣∣∣∣
T2(Q2)

T2(0)

∣∣∣∣ . (A.13)

We use these simplified relations in order to present the data [7] in terms of the Ti form

factors that are more suitable for comparison with QCD predictions.

The effective form factor Ff2(Q
2) is defined in [7] as

Ff2(Q
2) =

√
F 2
0 (Q

2) + F 2
1 (Q

2) + F 2
2 (Q

2) . (A.14)
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f2 transition FF’s in pQCD
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Light-cone distribution amplitudes

µ is the factorization scale (renormalization of the operator in QCD)

describes the momentum-fraction distribution of partons at zero 
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that does not involve such small factors. We also calculate and add the leading-twist

c-quark contribution.

With these new additions, the expressions for the form factors are

T0 = ⟨fq⟩
∫ 1

0

du

ū

[
1 +

αs

4π
Cq(u)

]
φ2(u)−

αs

4π

2

3
fS
g

∫ 1

0
duCS

g (u)φ
S
g (u)

+
2m2

Q2
⟨fq⟩

∫ 1

0

du

ū

[
u lnuφ2(u)−

1

8ū
φ4(u)

]
, (4.1)

T1 = 2⟨fq⟩
∫ 1

0

du

ū

[
gv(u)− ga(u)

]

= 4⟨fq⟩
∫ 1

0

du

ū
ln(u)φ2(u) + 2⟨fq⟩

∫
DαCΦ(α)

[
Φ3(α) + Φ̃3(α)

]
, (4.2)

T2 =
4m2

Q2
⟨fq⟩

∫ 1

0
du lnu gv(u) +

αs

π
fT
g

∫ 1

0

du

ū

[
2

3
+

4

9
Cc(u)

]
φT
g (u) , (4.3)

where the notation ⟨fq⟩ stands for the sum of the light quark couplings weighted with the

electromagnetic charges

⟨fq⟩ =
4

9
fu(µ) +

1

9
fd(µ) +

1

9
fs(µ) =

5
√
2

18
fq(µ) +

1

9
fs(µ) . (4.4)

The coefficient function of the three-particle DAs to T1 is given by

CΦ(α) =
1

α2

[
1

α1ᾱ1
+

1

α2

(
lnα1

ᾱ1
− ln ᾱ3

α3

)
+

lnα1

ᾱ2
1

]
, (4.5)

and the NLO quark and gluon coefficient functions for T0 read [13]

Cq(u) = CF

[
ln2 ū+ 3 lnu− 9

]
, CS

g (u) =
2 lnu

uū2

[
u lnu− 2u− 2

]
. (4.6)

The c-quark contribution to T2(Q2) (this is a new result) is given by

Cc(u) = 1 +
2m2

c

Q2

[
− β

uū
ln

(
β + 1

β − 1

)
+

βu
ū

ln

(
βu + 1

βu − 1

)
+

βū
u

ln

(
βū + 1

βū − 1

)
(4.7)

+
1

uū

(
1

2
+

m2
c

Q2

)(
ln2
(
β + 1

β − 1

)
− ln2

(
βu + 1

βu − 1

)
− ln2

(
βū + 1

βū − 1

))]
,

where

βu =

√

1 +
4m2

c

uQ2
, β ≡ β1. (4.8)

Here mc ≃ 1.4GeV is the c-quark mass. We did not calculate the corresponding contribu-

tion to T0(Q2) because in this case it is a part of a O(αs) correction to the leading-order

result O(1). It turns out (see below) that the c-quark contribution to T2 is still strongly

suppressed as compared to the light quarks in the Q2 range of the Belle experiment, so

that taking it into account for T0 does not seem to be worth the effort at this stage in view

of the other uncertainties.
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The integral of the DA ga(u) vanishes
∫ 1

0
du ga(u) = 0 , (3.9)

and the first nonzero (second) moment,
∫ 1
0 du (2u − 1)2ga(u), involves contributions of

three-particle operators, see below.

The coupling fq is defined as the matrix element of the local operator

1

2
⟨f2(P,λ)|q̄

[
γµi

↔
Dν +γνi

↔
Dµ

]
q|0⟩ = fqm

2e(λ)∗µν (3.10)

where
↔
Dµ=

→
Dµ −

←
Dµ is the covariant derivative. This coupling is scale dependent and gets

mixed with the gluon coupling and the similar coupling for strange quarks. In appendix B

we summarize the scale dependence of all DA parameters introduced in this section.

The numerical value of fq has been estimated in the past [23–25] (see also appendix D)

using the QCD sum rule approach. Another possibility is to use the experimental result

on the decay width Γ(f2 → ππ) and estimate fq assuming that the matrix element of the

energy-momentum tensor ⟨π+π−|Θµν |0⟩ is saturated by the tensor meson [23–27]. These

two estimates agree with each other surprisingly well, although this agreement should not

be overrated as in both cases the non-resonant two-pion background is not taken into

account. We use (cf. [23] and appendix D)

fq = 101(10) MeV (3.11)

(at the scale 1GeV) as the default value for the present study. Note that the positive

sign for this coupling is a phase convention, whereas the relative signs of the other matrix

elements with respect to fq are physical and can be determined by considering suitable

correlation functions as explained in appendix D.

Using the definitions in (3.3) it is easy to derive the operator product expansion (OPE)

of quark bilinears close to the light cone x2 → 0 (at the tree level):

⟨f2(P,λ)|q̄(x)γµq(−x)|0⟩

= fqm
2 e(λ)∗xx

(Px)2
Pµ

∫ 1

0
du ei(2u−1)(Px)

[
φ2(u)− gv(u) +

1

4
x2m2φ4(u)

]

+ fqm
2 e

(λ)∗
µx

Px

∫ 1

0
du ei(2u−1)(Px) gv(u)

+
1

2
fqm

4xµ
e(λ)∗xx

(Px)3

∫ 1

0
du ei(2u−1)(Px)

[
2gv(u)− φ2(u)− g4(u)

]
,

⟨f2(P,λ)|q̄(x)γµγ5q(−x)|0⟩

= −ifqm
2ϵµναβ

xνPα

Px

e(λ)∗βx

Px

∫ 1

0
du ei(2u−1)(Px) ga(u) , (3.12)

where φ4(u) is another twist-four two-particle DA that can be expressed in terms of the

other functions using QCD equations of motion (EOM), see below.
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Figure 5. The leading contribution to the radiative decay Υ(1S) → γf2(1270).

E fS
g from the radiative decay Υ(1S) → γf2

The scalar gluon coupling fS
g can be estimated from the bottomonium decay Υ(1S) →

γf2(1270). The dominant contribution comes from the two-quark QQ̄ component of the

bottomonium wave function; the contribution of higher Fock states is suppressed by the

small relative velocity of the heavy quarks. To the leading-order accuracy the decay am-

plitude is described by the diagram in figure 5. The corresponding calculation was already

done in refs. [47–49]. The result reads

A [Υ(1S) → γ f2] = (ϵ∗γ · ϵΥ)
√

2MΥ

√
3

2π

R10(0)

m4
b

2παseeb e
(λ)∗
nn fS

g m
2
f
1

4

∫ 1

0

du

uū
φS
g (u) , (E.1)

where ϵ∗γ and ϵΥ are the polarization vectors of the photon and heavy meson, respectively,

mb is the b-quark (pole) mass and R10(0) denotes the radial wave function of Υ(1S) at the

origin. Potentially there could be also a contribution of the transverse DA φT
g (t), but the

corresponding terms cancel to the leading-order accuracy.

In order to avoid the dependence on the nonperturbative parameter R10(0) it is con-

venient to consider the ratio

Br[Υ(1S) → γ f2]

Br[Υ(1S) → e+e−]
=

64π

3

α2
s(4m

2
b)

α

(
1− m2

M2
Υ

) [
fS
g ISg

]2

m2
b

, (E.2)

where this dependence cancels. Here we used the notation ISg for the integral

ISg (µ) =
1

4

∫ 1

0

du

uū
φS
g (u, µ) . (E.3)

For the asymptotic DA φS
g (u, µ) = 30u2(1 − u)2 one obtains ISg = 5

4 . The branching

fractions on the l.h.s. of eq. (E.2) are known, see [21]:

Br[Υ(1S) → γ f2] = (1.01± 0.09)× 10−4,

Br[Υ(1S) → e+e−] = (2.38± 0.11)× 10−2 . (E.4)

Using mb ≃ 4.8GeV, αs(4m2
b) = 0.176 and α ≃ 1/137 we obtain

|fS
g ISg |(µ2 = 4m2

b) = (18.6± 1.9) ,MeV , (E.5)

where from, for the asymptotic DA, one finds

fS
g (µ

2 = 4m2
b) = (14.9± 0.8)MeV. (E.6)
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Figure 3. The form factors T0(Q2), T1(Q2), T2(Q2) (from top to bottom) normalized to T2(0) =
339MeV. The result for T0(Q2) shown by the solid line includes the estimate of soft end-point
contributions using light-cone sum rules. The result without the soft correction is shown by dashes.
The error band for T1(Q2) (shaded area) corresponds to variation of the twist-three parameters
in the range specified in (3.19), whereas for T2(Q2) we also include variation of the tensor gluon
coupling fT

g in the range ±50MeV. The experimental data are taken from ref. [7]. Only statistical
errors are shown.
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The twist-three matrix elements can be estimated using QCD sum rules, see appendix D.

We obtain (at the scale 1GeV)

ζ3 = 0.15(8) , ω3 = −0.2(3) , ω̃3 = 0.06(1) . (3.19)

The DAs φ4(u) and g4(u) have collinear twist four and receive contributions of the

geometric twist-two, -three and -four operators. The Wandzura-Wilczek-type twist-two

contributions assuming the asymptotic expression for φ2(u) (3.16) have the form

φWW
4 (u) = 100u2(1− u)2(2u− 1) ,

gWW
4 (u) = 30u(1− u)(2u− 1) . (3.20)

We expect that these contributions are the dominant source of the power-suppressed correc-

tions ∼ 1/Q2 because of the large mass of the f2(1270) and will neglect “genuine” geometric

twist-three and twist-four contributions. The derivation of the expressions in (3.20) pro-

ceeds similar to the case of the DAs of vector mesons considered in [28, 30, 31] so that we

omit the details.

Finally, the leading-twist gluon DAs of f2(1270) can be defined as [9]

gµµ
′

⊥ gνν
′

⊥ ⟨f2(P,λ)|Ga
nµ′(z2n)G

a
nν′(z1n

′)|0⟩

= fT
g

[
e(λ)⊥µν(pn)

2 − 1

2
g⊥µνm

2e(λ)nn

] ∫ 1

0
du eiz

u
12pnφT

g (u)

− fS
g m

2g⊥µνe
(λ)
nn

∫ 1

0
du eiz

u
12pnφS

g (u) . (3.21)

The distribution amplitudes φT
g (u) and φS

g (u) are both symmetric to the interchange of

u ↔ ū and describe the momentum fraction distribution of the two gluons in the f2-meson

with the same and the opposite helicity, respectively. The asymptotic distributions at large

scales are equal to

φT,as
g (u) = φS,as

g (u) = 30u2(1− u)2 . (3.22)

The normalization constants fT
g and fS

g are defined through the matrix element of the local

two-gluon operator:

⟨f2(P,λ)|Ga
αβ(0)G

a
µν(0)|0⟩ = fT

g

{[
(PαPµ − 1

2
m2gαµ) e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}

−1

2
fS
g m

2

{[
gαµ e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}
. (3.23)

The coupling fS
g can be estimated from the radiative decay Υ(1S) → γf2, see appendix E.

The result is consistent with the assumption that fS
g is very small at hadronic scales and

is generated mainly by the evolution. In the numerical analysis we use the value

fS
g (1GeV) = 0 . (3.24)
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The twist-three matrix elements can be estimated using QCD sum rules, see appendix D.

We obtain (at the scale 1GeV)

ζ3 = 0.15(8) , ω3 = −0.2(3) , ω̃3 = 0.06(1) . (3.19)

The DAs φ4(u) and g4(u) have collinear twist four and receive contributions of the

geometric twist-two, -three and -four operators. The Wandzura-Wilczek-type twist-two

contributions assuming the asymptotic expression for φ2(u) (3.16) have the form

φWW
4 (u) = 100u2(1− u)2(2u− 1) ,

gWW
4 (u) = 30u(1− u)(2u− 1) . (3.20)

We expect that these contributions are the dominant source of the power-suppressed correc-

tions ∼ 1/Q2 because of the large mass of the f2(1270) and will neglect “genuine” geometric

twist-three and twist-four contributions. The derivation of the expressions in (3.20) pro-

ceeds similar to the case of the DAs of vector mesons considered in [28, 30, 31] so that we

omit the details.

Finally, the leading-twist gluon DAs of f2(1270) can be defined as [9]

gµµ
′

⊥ gνν
′

⊥ ⟨f2(P,λ)|Ga
nµ′(z2n)G

a
nν′(z1n

′)|0⟩

= fT
g

[
e(λ)⊥µν(pn)

2 − 1

2
g⊥µνm

2e(λ)nn

] ∫ 1

0
du eiz

u
12pnφT

g (u)

− fS
g m

2g⊥µνe
(λ)
nn

∫ 1

0
du eiz

u
12pnφS

g (u) . (3.21)

The distribution amplitudes φT
g (u) and φS

g (u) are both symmetric to the interchange of

u ↔ ū and describe the momentum fraction distribution of the two gluons in the f2-meson

with the same and the opposite helicity, respectively. The asymptotic distributions at large

scales are equal to

φT,as
g (u) = φS,as

g (u) = 30u2(1− u)2 . (3.22)

The normalization constants fT
g and fS

g are defined through the matrix element of the local

two-gluon operator:

⟨f2(P,λ)|Ga
αβ(0)G

a
µν(0)|0⟩ = fT

g

{[
(PαPµ − 1

2
m2gαµ) e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}

−1

2
fS
g m

2

{[
gαµ e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}
. (3.23)

The coupling fS
g can be estimated from the radiative decay Υ(1S) → γf2, see appendix E.

The result is consistent with the assumption that fS
g is very small at hadronic scales and

is generated mainly by the evolution. In the numerical analysis we use the value

fS
g (1GeV) = 0 . (3.24)
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The twist-three matrix elements can be estimated using QCD sum rules, see appendix D.

We obtain (at the scale 1GeV)

ζ3 = 0.15(8) , ω3 = −0.2(3) , ω̃3 = 0.06(1) . (3.19)

The DAs φ4(u) and g4(u) have collinear twist four and receive contributions of the

geometric twist-two, -three and -four operators. The Wandzura-Wilczek-type twist-two

contributions assuming the asymptotic expression for φ2(u) (3.16) have the form

φWW
4 (u) = 100u2(1− u)2(2u− 1) ,

gWW
4 (u) = 30u(1− u)(2u− 1) . (3.20)

We expect that these contributions are the dominant source of the power-suppressed correc-

tions ∼ 1/Q2 because of the large mass of the f2(1270) and will neglect “genuine” geometric

twist-three and twist-four contributions. The derivation of the expressions in (3.20) pro-

ceeds similar to the case of the DAs of vector mesons considered in [28, 30, 31] so that we

omit the details.

Finally, the leading-twist gluon DAs of f2(1270) can be defined as [9]

gµµ
′

⊥ gνν
′

⊥ ⟨f2(P,λ)|Ga
nµ′(z2n)G

a
nν′(z1n

′)|0⟩

= fT
g

[
e(λ)⊥µν(pn)

2 − 1

2
g⊥µνm

2e(λ)nn

] ∫ 1

0
du eiz

u
12pnφT

g (u)

− fS
g m

2g⊥µνe
(λ)
nn

∫ 1

0
du eiz

u
12pnφS

g (u) . (3.21)

The distribution amplitudes φT
g (u) and φS

g (u) are both symmetric to the interchange of

u ↔ ū and describe the momentum fraction distribution of the two gluons in the f2-meson

with the same and the opposite helicity, respectively. The asymptotic distributions at large

scales are equal to

φT,as
g (u) = φS,as

g (u) = 30u2(1− u)2 . (3.22)

The normalization constants fT
g and fS

g are defined through the matrix element of the local

two-gluon operator:

⟨f2(P,λ)|Ga
αβ(0)G

a
µν(0)|0⟩ = fT

g

{[
(PαPµ − 1

2
m2gαµ) e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}

−1

2
fS
g m

2

{[
gαµ e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}
. (3.23)

The coupling fS
g can be estimated from the radiative decay Υ(1S) → γf2, see appendix E.

The result is consistent with the assumption that fS
g is very small at hadronic scales and

is generated mainly by the evolution. In the numerical analysis we use the value

fS
g (1GeV) = 0 . (3.24)
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The twist-three matrix elements can be estimated using QCD sum rules, see appendix D.

We obtain (at the scale 1GeV)

ζ3 = 0.15(8) , ω3 = −0.2(3) , ω̃3 = 0.06(1) . (3.19)

The DAs φ4(u) and g4(u) have collinear twist four and receive contributions of the

geometric twist-two, -three and -four operators. The Wandzura-Wilczek-type twist-two

contributions assuming the asymptotic expression for φ2(u) (3.16) have the form

φWW
4 (u) = 100u2(1− u)2(2u− 1) ,

gWW
4 (u) = 30u(1− u)(2u− 1) . (3.20)

We expect that these contributions are the dominant source of the power-suppressed correc-

tions ∼ 1/Q2 because of the large mass of the f2(1270) and will neglect “genuine” geometric

twist-three and twist-four contributions. The derivation of the expressions in (3.20) pro-

ceeds similar to the case of the DAs of vector mesons considered in [28, 30, 31] so that we

omit the details.

Finally, the leading-twist gluon DAs of f2(1270) can be defined as [9]

gµµ
′

⊥ gνν
′

⊥ ⟨f2(P,λ)|Ga
nµ′(z2n)G

a
nν′(z1n

′)|0⟩

= fT
g

[
e(λ)⊥µν(pn)

2 − 1

2
g⊥µνm

2e(λ)nn

] ∫ 1

0
du eiz

u
12pnφT

g (u)

− fS
g m

2g⊥µνe
(λ)
nn

∫ 1

0
du eiz

u
12pnφS

g (u) . (3.21)

The distribution amplitudes φT
g (u) and φS

g (u) are both symmetric to the interchange of

u ↔ ū and describe the momentum fraction distribution of the two gluons in the f2-meson

with the same and the opposite helicity, respectively. The asymptotic distributions at large

scales are equal to

φT,as
g (u) = φS,as

g (u) = 30u2(1− u)2 . (3.22)

The normalization constants fT
g and fS

g are defined through the matrix element of the local

two-gluon operator:

⟨f2(P,λ)|Ga
αβ(0)G

a
µν(0)|0⟩ = fT

g

{[
(PαPµ − 1

2
m2gαµ) e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}

−1

2
fS
g m

2

{[
gαµ e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}
. (3.23)

The coupling fS
g can be estimated from the radiative decay Υ(1S) → γf2, see appendix E.

The result is consistent with the assumption that fS
g is very small at hadronic scales and

is generated mainly by the evolution. In the numerical analysis we use the value

fS
g (1GeV) = 0 . (3.24)
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The twist-three matrix elements can be estimated using QCD sum rules, see appendix D.

We obtain (at the scale 1GeV)

ζ3 = 0.15(8) , ω3 = −0.2(3) , ω̃3 = 0.06(1) . (3.19)

The DAs φ4(u) and g4(u) have collinear twist four and receive contributions of the

geometric twist-two, -three and -four operators. The Wandzura-Wilczek-type twist-two

contributions assuming the asymptotic expression for φ2(u) (3.16) have the form

φWW
4 (u) = 100u2(1− u)2(2u− 1) ,

gWW
4 (u) = 30u(1− u)(2u− 1) . (3.20)

We expect that these contributions are the dominant source of the power-suppressed correc-

tions ∼ 1/Q2 because of the large mass of the f2(1270) and will neglect “genuine” geometric

twist-three and twist-four contributions. The derivation of the expressions in (3.20) pro-

ceeds similar to the case of the DAs of vector mesons considered in [28, 30, 31] so that we

omit the details.

Finally, the leading-twist gluon DAs of f2(1270) can be defined as [9]

gµµ
′

⊥ gνν
′

⊥ ⟨f2(P,λ)|Ga
nµ′(z2n)G

a
nν′(z1n

′)|0⟩

= fT
g

[
e(λ)⊥µν(pn)

2 − 1

2
g⊥µνm

2e(λ)nn

] ∫ 1

0
du eiz

u
12pnφT

g (u)

− fS
g m

2g⊥µνe
(λ)
nn

∫ 1

0
du eiz

u
12pnφS

g (u) . (3.21)

The distribution amplitudes φT
g (u) and φS

g (u) are both symmetric to the interchange of

u ↔ ū and describe the momentum fraction distribution of the two gluons in the f2-meson

with the same and the opposite helicity, respectively. The asymptotic distributions at large

scales are equal to

φT,as
g (u) = φS,as

g (u) = 30u2(1− u)2 . (3.22)

The normalization constants fT
g and fS

g are defined through the matrix element of the local

two-gluon operator:

⟨f2(P,λ)|Ga
αβ(0)G

a
µν(0)|0⟩ = fT

g

{[
(PαPµ − 1

2
m2gαµ) e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}

−1

2
fS
g m

2

{[
gαµ e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}
. (3.23)

The coupling fS
g can be estimated from the radiative decay Υ(1S) → γf2, see appendix E.

The result is consistent with the assumption that fS
g is very small at hadronic scales and

is generated mainly by the evolution. In the numerical analysis we use the value

fS
g (1GeV) = 0 . (3.24)
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The twist-three matrix elements can be estimated using QCD sum rules, see appendix D.

We obtain (at the scale 1GeV)

ζ3 = 0.15(8) , ω3 = −0.2(3) , ω̃3 = 0.06(1) . (3.19)

The DAs φ4(u) and g4(u) have collinear twist four and receive contributions of the

geometric twist-two, -three and -four operators. The Wandzura-Wilczek-type twist-two

contributions assuming the asymptotic expression for φ2(u) (3.16) have the form

φWW
4 (u) = 100u2(1− u)2(2u− 1) ,

gWW
4 (u) = 30u(1− u)(2u− 1) . (3.20)

We expect that these contributions are the dominant source of the power-suppressed correc-

tions ∼ 1/Q2 because of the large mass of the f2(1270) and will neglect “genuine” geometric

twist-three and twist-four contributions. The derivation of the expressions in (3.20) pro-

ceeds similar to the case of the DAs of vector mesons considered in [28, 30, 31] so that we

omit the details.

Finally, the leading-twist gluon DAs of f2(1270) can be defined as [9]

gµµ
′

⊥ gνν
′

⊥ ⟨f2(P,λ)|Ga
nµ′(z2n)G

a
nν′(z1n

′)|0⟩

= fT
g

[
e(λ)⊥µν(pn)

2 − 1

2
g⊥µνm

2e(λ)nn

] ∫ 1

0
du eiz

u
12pnφT

g (u)

− fS
g m

2g⊥µνe
(λ)
nn

∫ 1

0
du eiz

u
12pnφS

g (u) . (3.21)

The distribution amplitudes φT
g (u) and φS

g (u) are both symmetric to the interchange of

u ↔ ū and describe the momentum fraction distribution of the two gluons in the f2-meson

with the same and the opposite helicity, respectively. The asymptotic distributions at large

scales are equal to

φT,as
g (u) = φS,as

g (u) = 30u2(1− u)2 . (3.22)

The normalization constants fT
g and fS

g are defined through the matrix element of the local

two-gluon operator:

⟨f2(P,λ)|Ga
αβ(0)G

a
µν(0)|0⟩ = fT

g

{[
(PαPµ − 1

2
m2gαµ) e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}

−1

2
fS
g m

2

{[
gαµ e

(λ)
βν − (α ↔ β)

]
− (µ ↔ ν)

}
. (3.23)

The coupling fS
g can be estimated from the radiative decay Υ(1S) → γf2, see appendix E.

The result is consistent with the assumption that fS
g is very small at hadronic scales and

is generated mainly by the evolution. In the numerical analysis we use the value

fS
g (1GeV) = 0 . (3.24)
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Figure 3. The form factors T0(Q2), T1(Q2), T2(Q2) (from top to bottom) normalized to T2(0) =
339MeV. The result for T0(Q2) shown by the solid line includes the estimate of soft end-point
contributions using light-cone sum rules. The result without the soft correction is shown by dashes.
The error band for T1(Q2) (shaded area) corresponds to variation of the twist-three parameters
in the range specified in (3.19), whereas for T2(Q2) we also include variation of the tensor gluon
coupling fT

g in the range ±50MeV. The experimental data are taken from ref. [7]. Only statistical
errors are shown.
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Figure 2. The effective form factor summed over polarizations normalized to T2(0) = 339MeV.
The calculation using default values of the nonperturbative parameters is shown by the sold curve.
The same calculation with the quark coupling fq reduced by 15% is shown by short dashes. The
experimental data are taken from ref. [7]. Only statistical errors are shown.

Such a 10–15% smaller coupling as compared to our default value fq = 101MeV is

certainly possible as the existing estimates are not reliable. A more precise number can

eventually be obtained from lattice QCD, however, this calculation is rather complicated

and will take time. It would be very interesting to measure the time-like transition form

factor e+e− → f2(1270)γ at large virtualities q2 ∼ 100GeV2 (cf. [38]) where the nonper-

turbative uncertainties are considerably reduced. This would give a direct measurement of

the fq-coupling.

Our results for the helicity-separated form factors T0(Q2), T1(Q2), T2(Q2) are com-

pared with the experimental data [7] in figure 3. All three form factors are described rather

well, the QCD calculation being slightly above the data as we have already seen for the

helicity-averaged form factor in figure 2. Note that our result for T1(Q2) only includes the

leading-power contribution at large Q2 in contrast to T0(Q2) and T2(Q2) where we also

calculated the 1/Q2 correction. Terms ∼ 1/Q2 in T1(Q2) correspond to collinear-twist-five

and soft contributions and are more difficult to estimate. They should be expected, how-

ever, to be negative and of the same order of magnitude as for T2(Q2) so that the increase

of the QCD curve for T1(Q2) in figure 3 at smaller Q2 will almost certainly be compensated

by power corrections and is not a reason for concern. As expected, T1(Q2) is also more

sensitive to the twist-three quark-antiquark-gluon contributions as compared to the other

two form factors, and the uncertainties in the corresponding parameters are not negligible,

they are shown by the shaded area.

As discussed in [9], the form factor T2(Q2) at asymptotically large Q2 is dominated by

the two-gluon contribution with aligned helicity that we refer to as gluon transversity DA.

This contribution is suppressed, however, by the factor αs/π ∼ 0.1 which is the standard

penalty for an extra loop. Also the two-gluon coupling to a “conventional” quark-antiquark

meson is unlikely to be large as compared to the quark-antiquark coupling. By this reason,

T2(Q2) at realistic Q2 is still dominated by the Wandzura-Wilczek-type higher-twist power

correction that does not involve such small factors: the shaded area in the plot for T2(Q2)
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Figure 1. Mass spectrum of glueballs (in GeV on r.h.s.) for different quantum
numbers PC according to the quenched lattice calculations (figure from [18]).

has to be taken as input, such as the “string tension” or the “Sommer scale” 1/r0 ∼ 400

MeV [14].

As examples of recent lattice calculations from first principles, we mention the

results in full QCD on the conventional light hadron spectrum by the Budapest-

Marseilles-Wuppertal Collaboration [15] who has calculated the masses of the baryon
octet and decuplet states as well as the masses of some light mesons within a few

percent of accuracy. Here the masses of π, K and Ξ particles have been used to fix the

masses of light and strange quarks at their physical values as well as the overall mass

scale. Another result, obtained by the “Hadron Spectrum Collaboration” [16] concerns

the spectrum of lightest and the first excited isoscalar meson states which includes

quark-annihilation contributions. Remarkably, the mixing pattern of these mesons is
reproduced close to observations.

More difficult to compute is the spectrum of glueballs in full QCD, as these states are

heavier and therefore need higher statistics, in particular the scalar states with vacuum

quantum numbers have extra contributions difficult to disentangle. In full QCD there

is a mixing of gluonic and fermionic degrees of freedom, correspondingly one inserts

gluonic and fermionic operators for the relevant correlation functions. For sufficiently
light quark (pion) masses the glueball can decay into a meson pair which has to be

included in the consideration as well.

The spectrum of glueballs has been calculated at first within the pure (Yang-Mills)

gluon theory without quarks (“quenched approximation”). The lightest glueballs are

(Morningstar,
 Peardon, 1999)

scalar glueball 

tensor glueball 
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in the NLL value and the number of free parameters in
the fit with and without a resonance are used to evalu-
ate its statistical significance. In the baseline solution,
there are three 0−+ resonances (η(2225), η(2100), and
X(2500)), one 0++ resonance (f0(2100)), three 2++ reso-
nances (f2(2010), f2(2300), and f2(2340)), and the direct
decay of J/ψ → γφφ, which is modeled by a 0−+ phase
space distribution (0−+ PHSP) of the φφ system. The
statistical significance of each component in the baseline
solution is larger than 5 σ. The masses and widths of the
three 0−+ resonances are free parameters in the fit. The
resonance parameters of the 0++ and 2++ resonances are
fixed to the PDG [25] values due to limited statistics. The
masses and widths of the resonances, product branching
fractions of J/ψ → γX , X → φφ, and the statistical
significances are summarized in Table I, where the first
errors are statistical, and the second ones are systematic.
The fit fraction of each component and their interference
fractions are shown in Table II. Figure 2(a) shows a com-
parison of the data and the PWA fit projection (weighted
by MC efficiencies) of the invariant mass distributions of
φφ for the fitted parameters. The comparisons of the pro-
jected data and MC angular distributions for the events
with φφ invariant mass less than 2.7 GeV/c2 are shown
in Fig. 2(b)−2(e). The χ2/nbin value is displayed on each
figure to demonstrate the goodness of fit, where nbin is
the number of bins of each figure and χ2 is defined as:

χ2 =
nbin
∑

i=1

(ni − νi)2

νi
, (15)

where ni and νi are the number of events for the data
and the fit projections with the baseline solution in the
ith bin of each figure, respectively.

TABLE I. Mass, width, B(J/ψ → γX → γφφ) (B.F.) and
significance (Sig.) of each component in the baseline solu-
tion. The first errors are statistical and the second ones are
systematic.

Resonance M(MeV/c2) Γ(MeV/c2) B.F.(×10−4) Sig.

η(2225) 2216+4
−5

+21
−11 185+12

−14
+43
−17 (2.40 ± 0.10+2.47

−0.18) 28 σ

η(2100) 2050+30
−24

+75
−26 250+36

−30
+181
−164 (3.30 ± 0.09+0.18

−3.04) 22 σ

X(2500) 2470+15
−19

+101
−23 230+64

−35
+56
−33 (0.17 ± 0.02+0.02

−0.08) 8.8 σ

f0(2100) 2101 224 (0.43 ± 0.04+0.24
−0.03) 24 σ

f2(2010) 2011 202 (0.35 ± 0.05+0.28
−0.15) 9.5 σ

f2(2300) 2297 149 (0.44 ± 0.07+0.09
−0.15) 6.4 σ

f2(2340) 2339 319 (1.91 ± 0.14+0.72
−0.73) 11 σ

0−+ PHSP (2.74 ± 0.15+0.16
−1.48) 6.8 σ

Various checks are performed to test the reliability
of the model-dependent PWA solution. Replacing the
pseudoscalar state η(2100) by either η(2010) [29] or
η(2320) [30] worsens the NLL values by 21.2 and 33.0,
respectively. The spin-parity assignment JPC of the

X(2500) as 0−+ is significantly better than the 0++ hy-
pothesis, with the NLL value improving by 44.1 units.
Changing the spin-parity assignment of the X(2500) to
2++, resulting in 10 additional free parameters, wors-
ens the NLL value by 0.5, instead. Therefore, the pre-
ferred assignment for the X(2500) is pseudoscalar. If we
replace the two tensor states f2(2300) and f2(2340) by
a single one with free resonance parameters in the fit,
the NLL value is worsened by 14.7. In this case, a sta-
tistical significance test of the f2(2340) yields a value
of 6.1 σ. The narrow fJ(2220) (alternatively known
as the ξ(2230)), which was seen in J/ψ → γK+K−

at MarkIII [31] and BES [32], but not seen in J/ψ →
γK0

SK
0
S at CLEO [33], is also studied. When included

in the PWA, the statistical significance of the fJ (2220)
is found to be 0.8 σ. The upper limit on the branching
fraction ratio B(ξ(2230)→ φφ)/B(ξ(2230) → K+K−) at
the 90% C.L. is estimated to be 1.91 × 10−2. For the
description of the nonresonant contribution, the statisti-
cal significance of additional non-resonant contributions
with JPC = 0++ or 2++ is less than 5 σ. Additional
resonances listed in Ref. [25] as well as two extra states,
the X(2120) and X(2370) from Ref. [34], are tested with
all possible JPC assignments. None of them has a statis-
tical significance larger than 5 σ, as shown in Table III.
The existence of possible additional resonances is further
studied by performing scans for extra resonances (JPC =
0−+, 0++, 1++, 2−+, 2++ and 4++) with different masses
and widths. The scan results yield no evidence for extra
intermediate states. The reliability of the fit procedure
is tested by an input-output check, as follows: An MC
sample is generated with given components. After the
fitting procedure described above, the properties of the
components (mass, width, branching fraction, and the
effect of interference terms) are compared with the input
values. The output values agree with the input around
±1 σ, confirming the reliability of the fitting procedure.
In addition to the PWA fit with resonances described

by BW functions, a model-independent fit where the in-
termediate states are parameterized by a separate com-
plex constant for each of 35 bins of 20 MeV/c2 width is
performed in the region M(φφ) < 2.7 GeV/c2 to extract
the contribution of components with each JPC using the
method described in Ref. [35]. The fit results are shown
in Fig. 2(f). The 0−+ contribution is dominant, and a
strong 2++ component at 2.3 GeV/c2 is observed. In
general, the model-independent fit gives similar features
to those of the model-dependent fit, and the results of
these two fits are consistent with each other.

V. SYSTEMATIC UNCERTAINTIES

The sources of systematic uncertainty are divided into
two categories. The first includes the systematic uncer-
tainties from the number of J/ψ events (0.8% [36, 37]),
MDC tracking (1.0% each for three charged tracks [38]),
kaon PID (1.0% each for three kaons [38]), photon detec-
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the NLL value is worsened by 14.7. In this case, a sta-
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is found to be 0.8 σ. The upper limit on the branching
fraction ratio B(ξ(2230)→ φφ)/B(ξ(2230) → K+K−) at
the 90% C.L. is estimated to be 1.91 × 10−2. For the
description of the nonresonant contribution, the statisti-
cal significance of additional non-resonant contributions
with JPC = 0++ or 2++ is less than 5 σ. Additional
resonances listed in Ref. [25] as well as two extra states,
the X(2120) and X(2370) from Ref. [34], are tested with
all possible JPC assignments. None of them has a statis-
tical significance larger than 5 σ, as shown in Table III.
The existence of possible additional resonances is further
studied by performing scans for extra resonances (JPC =
0−+, 0++, 1++, 2−+, 2++ and 4++) with different masses
and widths. The scan results yield no evidence for extra
intermediate states. The reliability of the fit procedure
is tested by an input-output check, as follows: An MC
sample is generated with given components. After the
fitting procedure described above, the properties of the
components (mass, width, branching fraction, and the
effect of interference terms) are compared with the input
values. The output values agree with the input around
±1 σ, confirming the reliability of the fitting procedure.
In addition to the PWA fit with resonances described

by BW functions, a model-independent fit where the in-
termediate states are parameterized by a separate com-
plex constant for each of 35 bins of 20 MeV/c2 width is
performed in the region M(φφ) < 2.7 GeV/c2 to extract
the contribution of components with each JPC using the
method described in Ref. [35]. The fit results are shown
in Fig. 2(f). The 0−+ contribution is dominant, and a
strong 2++ component at 2.3 GeV/c2 is observed. In
general, the model-independent fit gives similar features
to those of the model-dependent fit, and the results of
these two fits are consistent with each other.
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The sources of systematic uncertainty are divided into
two categories. The first includes the systematic uncer-
tainties from the number of J/ψ events (0.8% [36, 37]),
MDC tracking (1.0% each for three charged tracks [38]),
kaon PID (1.0% each for three kaons [38]), photon detec-
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TABLE II. Fraction of each component and interference fractions between two components (%) in the baseline solution. The

errors are statistical only.

Resonance η(2100) η(2225) X(2500) 0−+ PHSP f0(2100) f2(2010) f2(2300) f2(2340)

η(2100) 54.2±1.5 43.5±1.2 15.2±1.0 −64.0±2.2 0.0±0.0 0.0±0.0 0.0±0.0 −0.1±0.0

η(2225) 41.0±1.6 15.9±0.7 −60.6±1.7 0.0±0.0 0.0±0.0 0.1±0.0 −0.1±0.0

X(2500) 3.2±0.3 −15.7±1.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

0−+ PHSP 42.8±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

f0(2100) 6.5±0.6 0.1±0.0 0.1±0.0 −0.5±0.0

f2(2010) 5.9±0.8 6.0±0.7 −18.6±1.6

f2(2300) 8.8±1.4 −22.0±3.5

f2(2340) 38.4±2.8
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FIG. 2. Superposition of data and the PWA fit projections for: (a) invariant mass distributions of φφ; (b) cos θ of γ in the
J/ψ rest frame; (c) cos θ of φ1 in the X rest frame; (d) cos θ of K+ in the φ1 rest frame; (e) the azimuthal angle between
the normals to the two decay planes of φ in the X rest frame. Black dots with error bars are data with background events
subtracted and the solid red lines are projections of the model-dependent fit. (f) Intensities of individual JPC components.
The red dots, blue boxes and green triangles with error bars are the intensities of JPC = 0−+, 0++ and 2++, respectively,
from the model-independent fit in each bin. The short-dashed, dash-dotted and long-dashed histograms show the coherent
superpositions of the BW resonances with JPC = 0−+, 0++ and 2++, respectively, from the model-dependent fit.

tion efficiency (1.0% [38]), kinematic fit (2.5%), φ mass
resolution (0.3%) and Bφ→K+K− (2.0%). These system-
atic uncertainties are applicable to all the branching frac-
tion measurements. The total systematic uncertainty
from these sources is 5.5%. The second source concerns
the PWA fit procedure, where the systematic uncertain-
ties are applicable to measurements of the branching frac-
tions and resonance parameters. These sources of sys-
tematic uncertainties are described below.

(i) BW parametrization. Uncertainties from the BW
parametrization are estimated by the changes in
the fit results caused by replacing the fixed width
Γ0 of the BW for the threshold states η(2100)
and η(2225) with a mass-dependent width form
Γ(m) [39].

(ii) Uncertainty from resonance parameters. In the
nominal fit, the resonance parameters of the 0++

and 2++ states are fixed. An alternative fit is per-

f2
J/ψ

0-+

2++

0++
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Fig. 26. Result of the f2– f0 fit (solid line) superimposed on the integrated cross section (for | cos θ∗| ≤ 0.8).
The fitted results of |S|2 (dotted line), |D0|2 (dashed line), |D2|2 (dot-dashed line), and |G2|2 (long-dashed
line) are also shown.

Fig. 27. Differential cross section and the fitted results of the f2– f0 fit (solid line) at the W bins indicated
in each panel. The contributions of |S|2 (dotted line), |D0|2 (dashed line), |D2|2 (dot-dashed line), and |G2|2
(long-dashed line) are also shown.

1525.3+1.2+3.7
−1.4−2.1 MeV/c2, 82.9+2.1+3.3

−2.2−2.0 MeV, and 48+67
−8

+108
−12 eV, respectively. The systematic uncer-

tainty of "γγB(K K̄ ) is fairly large. Nevertheless, this is the first measurement of this parameter that
includes the interference with a non-resonant amplitude.
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Figure 3: The convolution integrals as a functions of cos ✓. The curves corresponds to renormalization
scale µ

2 = 2.7GeV2 . The area between the vertical lines corresponds to the region where |u|, |t| �
2.5GeV2 for s = 11GeV2.

In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g

⇠ f

T
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(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f
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we consider di↵erent scenarios with f
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g

and f

q

⇠ f

g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (28)
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Figure 2: Typical diagrams which give contribution to the amplitudes A+±. The blobs denote the
distribution amplitudes.
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Using these definitions of the DAs we compute the required diagrams as shown in Fig.2 and obtain
the following results. The glueball in the tensor polarisation � = ±2 is produced if the colliding photons
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, (18)

I

+�
g

(⌘) =

Z 1

0
dy

�

⇡

(y)

yȳ
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2We use ± notaions for the helicity amplitudes and light-cone projections but we expect that this overlap is not confusing.
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Figure 3: The convolution integrals as a functions of cos ✓. The curves corresponds to renormalization
scale µ

2 = 2.7GeV2 . The area between the vertical lines corresponds to the region where |u|, |t| �
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take

�

⇡

(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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|, (24)

and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g

⇠ f

T

g

⇠ f

q

(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f

q

we consider di↵erent scenarios with f

q

⌧ f

g

and f

q

⇠ f

g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (28)
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = |I+�
q

(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g
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T
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⇠ f

q

(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f
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we consider di↵erent scenarios with f
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and f

q
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g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (28)
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g
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which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values
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(µ = 1 GeV) ' 10� 100 MeV , (26)
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(µ = 1 GeV) ' 100 MeV, (27)
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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⇡

(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f
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which correspond
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f
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DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
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In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]

�2(x) = 30xx̄(2x� 1), (22)

�

T

g

(x) = �

S

g

(x) = 30x2
x̄

2
. (23)

Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
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vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.
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order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g

⇠ f

T

g

⇠ f

q

(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f

q

we consider di↵erent scenarios with f

q

⌧ f

g

and f

q

⇠ f

g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (28)

5

models for the DAs

!0.6!0.4!0.2 0.0 0.2 0.4 0.6

!200

!190

!180

!170

!160

cosΘ

I g#
#

!0.6!0.4!0.2 0.0 0.2 0.4 0.6

!50

0

50

cosΘ

I g#
!

!0.6!0.4!0.2 0.0 0.2 0.4 0.6

!6
!4
!2

0
2
4
6

cosΘ

I q#
!

Figure 3: The convolution integrals as a functions of cos ✓. The curves corresponds to renormalization
scale µ

2 = 2.7GeV2 . The area between the vertical lines corresponds to the region where |u|, |t| �
2.5GeV2 for s = 11GeV2.

In order to write the convolution integrals in the short form we used the symmetry properties of the
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Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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3/2
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with the second moment
a2(µ = 1GeV) = 0.20. (21)
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f
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for quark-antiquark mesons, i.e. f
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which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
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with the second moment
a2(µ = 1GeV) = 0.20. (21)
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
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for quark-antiquark mesons, i.e. f
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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with the second moment
a2(µ = 1GeV) = 0.20. (21)
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
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2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]

�2(x) = 30xx̄(2x� 1), (22)

�

T

g

(x) = �

S

g

(x) = 30x2
x̄

2
. (23)

Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f
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for quark-antiquark mesons, i.e. f
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to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
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Figure 5: Comparison of the glueball cross section (the dashed line is the same as in Fig.4 but scaled by
factor 4 ) and data for the ⇡
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0 cross section for s = 13 GeV2. The data are taken from Ref. [19]

The evolution of these coupling is the same as the evolution of the corresponding coupling for the tensor
meson f2(1270) except the flavor mixing and can be found in Ref. [17]. Notice that the tensor coupling
does not mix with the quarks and therefore it describes genuine gluonic component of the glueball wave
function.

With the described scenario one finds that the value of the cross section is practically saturated by the
amplitude A++ describing the production f2 in the tensor polarisation. The contribution of the amplitude
|A+�| is always about of two orders magnitude smaller for all numerical values of the couplings f

q

and
f

g

shown in Eqs.(26) and (27). Therefore one obtains that |A+�| in such case can not provide significant
numerical impact. If such scenario is close to reality then the cross section is very sensitive to the value
of tensor coupling f

T

g

. In addition this can also be seen from the analysis of the partial wave analysis of
decay G2 ! ��.

In Fig.4 we show the cross section at fixed values of energy as a function of cos ✓ for three di↵erent
values of the gluon coupling f

T

g

(1GeV). We show the cross section for two values of energy s = 13
and 16 GeV2.For the renormalisation scale we use µ

2 = 3.2GeV2 and µ

2 = 4GeV2, respectively. In the
numerical calculations we take n

f

= 3 and ↵

s

(m2
⌧

) = 0.297. We consider only such region of values for ⌘
where |t|, |u| � 2.5 GeV2. We find that the values of the cross section in case f

T

g

(1 GeV ) ' 100 MeV is
11� 17 GeV6

nb. In Fig.5 we show the glueball cross section for fT

g

(1 GeV) = 100 MeV and s = 13 GeV2

in comparison with the cross section data for �� ! ⇡

0
⇡

0 for s = 13.3 GeV2. The data are taken from
Ref. [19]. For convenience the glueball cross section is multiplied by factor 4. Therefore a measurement
of �� ! G2⇡

0 cross section requires larger luminosity which, probably, can be achieved in BELLE II
experiment.
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The evolution of these coupling is the same as the evolution of the corresponding coupling for the tensor
meson f2(1270) except the flavor mixing and can be found in Ref. [17]. Notice that the tensor coupling
does not mix with the quarks and therefore it describes genuine gluonic component of the glueball wave
function.

With the described scenario one finds that the value of the cross section is practically saturated by the
amplitude A++ describing the production f2 in the tensor polarisation. The contribution of the amplitude
|A+�| is always about of two orders magnitude smaller for all numerical values of the couplings f

q

and
f

g

shown in Eqs.(26) and (27). Therefore one obtains that |A+�| in such case can not provide significant
numerical impact. If such scenario is close to reality then the cross section is very sensitive to the value
of tensor coupling f

T

g

. In addition this can also be seen from the analysis of the partial wave analysis of
decay G2 ! ��.

In Fig.4 we show the cross section at fixed values of energy as a function of cos ✓ for three di↵erent
values of the gluon coupling f

T

g

(1GeV). We show the cross section for two values of energy s = 13
and 16 GeV2.For the renormalisation scale we use µ

2 = 3.2GeV2 and µ

2 = 4GeV2, respectively. In the
numerical calculations we take n

f

= 3 and ↵

s

(m2
⌧

) = 0.297. We consider only such region of values for ⌘
where |t|, |u| � 2.5 GeV2. We find that the values of the cross section in case f

T

g

(1 GeV ) ' 100 MeV is
11� 17 GeV6

nb. In Fig.5 we show the glueball cross section for fT

g

(1 GeV) = 100 MeV and s = 13 GeV2

in comparison with the cross section data for �� ! ⇡

0
⇡

0 for s = 13.3 GeV2. The data are taken from
Ref. [19]. For convenience the glueball cross section is multiplied by factor 4. Therefore a measurement
of �� ! G2⇡

0 cross section requires larger luminosity which, probably, can be achieved in BELLE II
experiment.

6

fT
g = 100 MeV

|t|& |u| > 2.5 GeV2

Can one measure the glueball cross section
 in BELLE II? 

d�[�� ! ⇡0G2(2340) ! ⇡0��]

d cos ✓
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Conclusions

QCD predicts the scaling behavior of the           form factors

The QCD predictions are in agreement with BELLE data. More precise data 
is required in order to better constrain meson DAs 

�⇤� ! f2

Production of tensor glueball at large energies and momentum transfers 
in QCD �� ! ⇡0G(2++)

Dominance of the tensor polarization

Direct coupling to gluon wave function
 (no quark mixing, model independent)

Probably, can be observed in BELLE II

Thank you!


