Automated Calculations

J.A.M. Vermaseren
Nikhef

With code by Ben Ruyl, Takahiro Ueda, J.V. and Andreas Vogt.



Experiment < » Theory

Phenomenology Fundamental

QFT

Perturbative Non-Perturbative



Calculations: signals, backgrounds.

General rule: the calculation of backgrounds is more than an order of magnitude more work
than the computation of the signals.

PROBLEM: Notoriety only lies with the signals.



THE FIRST SUSY RUN 228

sion was on bread-and-butter physics from the collider experiments.
It was the slow day of the week. Many of the physicists took the day
off to go shopping in Milan or skiing at Cervino, on the slopes of the
Matterhorn. They returned that night complaining that it had been
wet, foggy, and even worse, flat.

Glashow drove down to Milan to do some shopping, and re-
turned commenting that every time he passed a magazine stand, he
saw Rubbia’s face staring out from a prominently displayed copy of
L’Uomo Vogue. He wondered why he hadn’'t made it to the cover
of any fashion magazines when he won his Nobel.

Most of the UA1 gang returned to Geneva and to work.

THURSDAY
At three-thirty on Thursday afternoon Rubbia left the conference,
on his way to Rome. An hour later, James Stirling and Steve Ellis
took over the job that Altarelli had started.
Stirling was a dapper Englishman, in his mid-thirties, who had
worked on QCD theory for years. Ellis was a bearded American of
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They had started working in January with the 1983 data from
UA1 and UAZ2; both experiments had published events in which
they had seen W’s or Z's created accompanied by gluon jets. With
these events, Ellis and Stirling had deduced what possible circum-
stances could occur to hide the W's and Z's when they were created,
leaving only the jets visible, which would appear in the detectors
as monojets. It was much like the work Denegri had been doing
sporadically at UA1. They had worked through the laborious calcu-
lations of QCD that specified the frequency with which those cir-
cumstances would be expected to occur. They were doing nothing
particularly original. They were simply doing more conclusively
what other physicists had done in bits and pieces. By early Febru-
ary, they had results for the possible background to the monojets
that were significantly larger than those UA1 had published. It was
then that they decided they would discuss their work at St. Vincent.
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RENEGADES, MADMEN, AND THE END OF THE ALPHABET 80

The run ended on December 7. Until then, the UA1 physicists
worked their insane hours and nursed the machine and the central
detector and tried to figure out how to prove that what they had
were W’s. By the time the collider shut down for the year, UA1 had
maybe five events that might be W's, although they could not prove
them. To make sure their physicists left the offices for the Christmas
vacation and maybe even relaxed, the management not only turned
off the heat, they turned off the computers They knew that many
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By the end of December, the UA1 physicists had concocted a bett8
way to prove whether an event was really a W or just looked like
one. In Paris over the vacation the Saclay physicists, particularly
Michel Spiro, the spokesman, and Denegri, had finally figured out
the details of how to prove the existence of the neutrino in the W,

decay. They created a program that would add up the energy depgé-

that every actio o a
the energy deposited from the collision on one side of the detector
had to balance with that on the other. If it didn't, it meant something
had escaped detection, and the only thing that could escape would
be a neutrino. If the missing energy, as it was called—the energy of
the neutrino—when added to the energy of the electron in the colli-
sion, equaled the expected mass of the W, then the probability that
the event was a W became overwhelmingly great.

The detector had been designed to completely surround the colli-
sion point for just this reason, to prove the existence of the neutrino
by proving that energy was missing. Now they really could prove
that they had W’s. Real W’s that even Richter would believe in.
They had only five of them. But they sure as hell appeared to be real.

Rubbia had spent Christmas with his family, “looking at the
Pyramids and sailing the Nile.” It was his longest vacation in a
decade, and the first time he had spent so much time with his family
in probably twice that long. He called it decompressing. Before he
left, Denegri had called him with the news that they could prove the
existence of the W's.

Rubbia’s only concern was whether they could make a convinc-
ing argument to the physics community. Whether he could over-
come his track record. People had not forgotten the Alternating
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Solution: Let the experimentalists calculate the backgrounds themselves. Hence automated
programs like GRACE, CompHEP, Madgraph, FeynCalc/FormCalc, Pythia, GoSam, ...

To create such a system, FORM was started in 1984 as the beginning of such a system (ESP
project). It is actually used in many of the automated systems.

FORM is however more useful and personally, after it came out in 1989, I got ‘sidetracked’
into 3-loop QCD. Hence today we are not going to concentrate on 1-loop automation but
more on what came out of that.



Computation of many loops is not always for direct confrontation with experiments, but often
just for setting the stage for other calculations. Examples:

e DBeta functions.
e Anomalous dimensions/Splitting functions. Leads to PDF’s.
Of course there are also more generic quantities that are much closer to the experiments like
e Sum rules.
e Total crosssections.
e Structure functions.
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What are the tools one has for such multi-loop calculations?

The main workhorse these days is IBP: integration by parts (Chetyrkin and Tkachov).

What does that mean in practise?

Each loop in a diagram corresponds to an integral / d”p where p is the loop momentum
and we integrate over DD = 4 — 2¢ dimensions. For such integrals holds that

d
[d"p

i (¢"1) = 0

in which [ is a typical integrant.
Let us see what that does to a typical Feynman diagram.
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This diagram represents the integral
1
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Let us assume that instead of over p; we integrate over P = p5. IBP gives:



d
0 = /dDPdPM<PMJ<n17n27n37n47n5)>

in which J is the integrant in the above formula.
Working out the derivative and using momentum conservation as in 2P.p; = P? + p7 — p3
we obtain:

0 = (D —2n5 —ny — na)l(n1,n2,n3, Ny, M)
— 711([(7?,1 —+ 1, No, N3, Ny, N5 — 1) — [(m —+ 1, N9 — 1, ns, Ny, n5))
— n4([(n1,n2, ns, N4 + 1,725 — 1) — [(nl,ng, nsg — 1, Ny + 1, n5))

What we see is that our original integral is equal to 4 other integrals that have different
powers of the denominators. AND it are always nq and ny4 that are raised while one of the
others is lowered.

HENCE: if no, ng and ns are integers, repeated application will make one of them zero.

This would be a simpler diagram which we know how to integrate.
This is the core of the IBP method.



Before we continue, let us introduce a new notation:

N~

o+
Il
~ M~

etc. which gives
0= (D—-2n5—mn; —ng)l —n175" +n1727 —myd™5 +myd™3”

Now we are ready for the next step: let us assume that ns is not an integer. In that case
repeated application does not terminate.



The solution is to write all possible IBP identities. For the derivative we have two choices:
p1 and py and for the extra momentum inside the derivative we have three choices: pq, po and
(. This means that we can construct 6 equations.

We have done this by computer and obtain:

0 = +n54 5" —ns3 5" +ns27 5" —nz1° 5"

+n44" —ny17 4T — 1T+ 1747 + (=g +ny)l (1)
0= +n527 5" —ns1 5" +nyd"™ —ny1 4" + (2 —2ny —ny—ns+4)1 (2)
0= 4n:2 5" —n:1"5"+n 4" +n 475

—ny3 4T —ngl 4T + 1757 — 1727 + (=g +nj)l (3)
0= —nsd4 5 +n:3 5" —ns2 57 +n;1"5"

+n337 — 132737 — 12T + 192737 + (—ny + n3)l (4)
0= —n:2 5" +n;1"5" +n33" +n33"5~

—n33747 — 3273 + 192757 —npl 2T + (—ny +m5)1 (5)

0 = —ns2 5" +n51 5" +n33" —n32 3" + (=2 — 2y —n3 —ns +4)1  (6)



and in case you are wondering where the original equation went, it is obtained by subtracting
the third equation from the second. Similarly we can subtract the fifth equation from the

sixth:
= —n44+5_ -+ 77143_4+ — n11+5_ + n11+2_ -+ (—26 — Ny — Ny — 2n5 + 4)1 (7)
0 = —n33"™57 +m33747 — 1275+l 2" + (=2 —ny —nz3 —2n5 +4)1  (8)
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Let us now take the second equation and rewrite it a bit:
nid" = —ns2° 5" +ns17 5 4yl 4T + (2¢ +2n1 +ny +n; —4)1
or

1 =

(527514 0175+ (= D1+ (26 + 200 05— 5)47)
|

This equation can be used to either lower ny or ny. The only problem is that once ny4 is equal
to one the denominator in the RHS becomes zero and the equation does not work. However,
by symmetry this equation can be used to bring nq, ns, n3, ngy down to one successively. After
that, combining equations and shifting ns; a few times we obtain the final equation:

I(1,1,1,1,1 4+ n35)(2e + 2n5) = I1(1,1,1,1,n5)(4e + 2n5; — 2)
+1(0,1,1,1, 1+ ns)ns + 1(0,1,1,2, n5)
—I(1,0,1,1,1 + n5)ns — I(1,1,0,1,1 + n5)ns
—1(1,1,0,2,1 +ns) + 1(1,1,1,0,1 + n5)ns
—1(2,0,1,1,1+ns) + 1(2,1,1,0,ns)
Note that all terms in the RHS, except the first, are missing one line. This equation can

be used to shift the value of ns by one. Hence we can express all our integrals in terms of
integrals that miss a line and the single integral I(1,1,1,1,1 + z) in which 0 < z < 1.



How do we obtain such non-integer powers?. It could have been that we had a three loop
diagram like

Integrating the internal loop over D dimensions gives a power with € in it. Hence if one
does a 4-loop computation, eventually there will be 3-loop diagrams in which one line is
non-integer, and 2-loop diagrams with up to two lines with a non-integer power.



Integrals that can not be reduced further and have to be computed by different means are
called master integrals. To compute those is a science by itself. Here we will assume that
somebody (Chetyrkin, Lee4+Smirnov+Smirnov) has already computed the ones we need and
concentrate on the reduction to the master integrals.

Currently there are two approaches.

e The Laporta method.
e The parametric method.

The equations we saw above follow the parametric method. This means that we have symbolic
equations to successively reduce parameters. Its advantage is that one goes more or less
directly towards simpler integrals. The disadvantage is that the derivation of the useful
equations can take much time. Each topology has to be treated separately and may take
much effort.



In the Laporta method we start with the basic equations and substitute a one for all variables.
In the above example that would give 6 equations. If we define the complexity of a parameter
the absolute value of the amount that it deviates from this start value, the complexity of the
integral is the sum of all those. Hence we start with equations of complexity zero.

Next we use Gaussian elimination to eliminate the terms with the highest complexity. And we
remember the identities by which we eliminated them. After this we generate more equations
by taking the original equations and raising the complexity of one of the variables. We can do
this for all 5 of the variables and this leads to 30 new equations, but there are also integrals
of higher complexity. Again we eliminate the integrals with the highest complexity first and
then there are some equations left with only integrals of a lower complexity that complement
our earlier integrals. If we keep doing this (creating more and more equations with higher and
higher complexity) eventually we will have solutions of all integrals in our problem, expressing
them in terms of a limited set of master integrals.

There are several programs that can do this automatically. The best known are Reduze and
Fire. The advantage is that they are very general once the basic set of equations is known.
The enormous disadvantage is that they only work well when all intermediate results can be
stored. The consequences are that they cannot go to very large complexities.
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[t should be clear that if a reduction can be used for many computations or need very large
complexities, it is worth making such a reduction program, while for computations that do
not recur often and have only limited complexities, the Laporta method is superior.



At Nikhef we have been involved mostly developing the parametric method. This was
needed for the computation of higher Mellin moments in Deep Inelastic Scattering (DIS).
This led at one time to integrals of complexity 59. (3-loop integrals, 9 variables). With the
parametric method they could be solved by brute force. For this we have the Mincer program
for 3-loop massless propagators. It is a FORM program that is very much optimized.

Thread 23 reporting

Time =  74215.89 sec Generated terms = 2904708739
d372c Terms in thread = 768150841
Harmonics,0 Bytes used = 333465128756
Time = 19414 .59 sec Generated terms = 70440435004
d372c Terms in output = 16284532632
Harmonics,0 Bytes used =4749134840748

Time = 122344.47 sec Generated terms = 3

d372c Terms in output = 8

Bytes used = 508

d372c



+ 961238123142708380223006161790446254101470094843071040203079020876834\

053372/28294434062104394976090603024843543192464092159681426876464843\
75 - 592616977488389683359511458824192/171150573951955826353125%ep~-3
- 4079702144323215591556486454261934693769214876672/1389457319508335\
28152778706734358359375*%ep”™ -2 + 3977935148744488205016978145931735245\
852266243198715120262848/20900268076148080101268838208052833200484510\
3515625%ep~-1 - 4644414393484969555603045635325952/
43792813525484570171625%ep~-1*%z3 - 346708546516013809664/31121455365%
z5 - 2322207196742484777801522817662976/14597604508494856723875%z4

- 9520732613532305198061305875037953452048269312/
39523986651792953877180696983525625*23;

122344 .47 sec + 10251515.20 sec: 10373859.67 sec out of 924983.33 sec



The Forcer project.

After three comes four. As part of the ERC project HEPGAME we developed a four-loop
program for the evaluation of four-loop massless propagator diagrams. This had to be seen
as an automation project: as much as possible should be automated, so that in the end,
changing 4 to 5 should hopefully create most of the parts needed for a 5-loop version. As such
it contains a number of elements of Al. In the future we hope to take this even further.

What goes in it?



We need a diagram generator. Fortunately this problem has been solved many years ago.
We use QGRAF, although others exist. It can give FORM-friendly output. It is kind of a
wild horse though, because the author has obfuscated the code and has particular ideas about
how the files should be dealt with. But eventually all worked well.

Currently an effort is under way to switch to the GRACE diagram generator written by

Kaneko-san. It is much faster and this project would give good access to detailed information
about the diagrams.



Next each diagram needs to get a notation. For this first its topology should be recognized
and it should get the notation for that topology. In the past that was pretty messy code (for
the Mincer programs), but FORM has gotten many new and original capabilities and in the
end it was relatively simple to do this. For 5 loops it might be slow though because the time
it needs is at least proportional to the number of diagrams times the number of topologies.
On the other hand, this program needs to run only once for each process under consideration.
The whole convdia.frm program has currently fewer than 1000 lines of which 250 lines of
commentary.



We need a reduction scheme for each topology. There may be hundreds or thousands of
topologies. In the case of Mincer each topology could be done ‘by hand’. Here this is worse
than impractical. This needs to be automated.

Some of the 'fun’ topologies:




Next, each time a line is removed, we obtain a simpler topology, which needs to be treated
as well. But each topology has its own ‘perfect’ notation. Hence we need a rewriting of the
variables, called rewiring. This is where traditionally most errors are made. It definitely needs
to be automated. And is has been.



For Forcer there are 17 topologies that still need special attention. 16 of those concern
master integrals. All other topologies can be treated either by doing one of the integrals
because we know how to deal with it, or by repeated use of a single identity. The master
topologies need a scheme in which the variables are reduced one by one. For 4-loop diagrams
there are 14 variables to be treated this way. Currently we had to derive these schemes by
hand guided computer programs and the process took typically several days to weeks for each.
Some schemes take more than 1000 lines of FORM code. The worst however was the one
topology that did not have a master integral. We call it bubu and it looks like

After quite a few weeks we did get a scheme that works and is not outrageously slow. This
did take the invention of extra capabilities in FORM.



We hope to automate the derivation of these reductions as well. Takahiro Ueda is currently
working very hard on it. In principle it is possible to give an algorithm, but there are some side
conditions. One is efficiency. One would like to live to see the answers. Another side condition

is that the whole derivation and the later computations should fit inside the computer and
the FORM capabilities.



Next one needs a program that manages the computation of all those diagrams. For this we
have the minos program. It is a kind of database that was designed in the early 90’s for just
this type of work. It works a bit like ‘make’ in running the diagrams one by one, just like the
compilation of source codes with many source files. At the same time it maintains databases
of the diagrams and the results of the calculations. More recently it has been reprogrammed
into the new language "Rust”. The hope is that also a new version of Form can be created in
this language.



To set up the topologies, the notations, the rewirings, the sequencing of the procedure
callings, the reductions, etc. Ben and Takahiro developed a Python program pathforcer.py
which sets up the complete infrastructure and derives all the necessary procedures (currently
with exception of the special topologies mentioned above). This is, at the moment of this talk,
about 2700 lines of Python code. The forcer.h library file contains the reductions of the special
topologies (21000 lines), a number of service routines and all necessary declarations(about 1000
lines). This file is almost 2 Megabytes, The generated pathforcer.h file is almost 3 Megabytes.
In addition there are three more files with libraries of which one for treating color factors.
Together they are about 8000 lines. This whole system took three people about a year to
contruct and is by now very reliable.

Together with optimizations for Higher Mellin moments of splitting functions, the whole
code is now more than 200000 lines. Mostly machine generated of course.



Where does this leave us?

With a few little shell scripts we can do the full 3-loop beta function for semi-simple Lie
groups (QCD is just a special case in which the group is SU(3)) here in the talk on my laptop.
And this with a check using a gauge parameter, which has to drop out in the final results.

Programs.

The final program to compute the beta function was made by Andreas Vogt.



Of course, in this setup one can also run the 4-loop beta function, but a demo would be
either a bit too slow or have to be run on some big remote computers, with, according to
Murphy will not work during a talk. The time on a decent computer with 24 cores: 7 hours

for all powers of the gauge parameter, 6™12° with one power of the gauge parameter and
1"07% without gauge parameter.



The 5-loop beta function, without gauge parameter, needed more sophistication. First of
all: we do not have a 5-loop program like Forcer. On the other hand: for the beta function
we need only the UV divergent parts of the diagrams. With the use of some theorems, one
can rework the diagrams such that one integral can be done trivially and the remaining part
can be done by Forcer. This goes however at the cost of introducing IR divergences. Hence
one needs a program that can take out the various divergences in a controled way. In our case
two of us constructed a program that could do this on an integral-by-integral basis (the Rstar
program, made by Franz Herzog and Ben Ruijl). As a result a few days running (without
gauge parameter) on a whole battery of computers gave the result.

It should be said that different groups used completely different methods to separate out
the various divergences.



History:

e Baikov, Chetyrkin and Kiithn: April 2016 (only for SU(3))

e Herzog, Ruijl, Ueda, JV and Vogt: Jan 2017 (Semi simple lie groups)

e Chetyrkin, Falcioni, Herzog and JV: Sept 2017 (S-S groups,Incl gauge check)
e Luthe, Maier, Marquard and Schroder: Sept 2017

All papers use a different method.

The Chetyrkin method (paper 3) uses a global IR subtraction method. Is fastest in CPU
time (with forcer) but most complicated conceptually.

The last method is simplest conceptually, but the master integrals are much harder.

The first paper uses the Baikov method to do 4-loop integrals and is by far the most time
consuming (quite a few years of CPU time), even though it uses a simplified version of the
Chetyrkin method. The third paper uses Forcer and is fastest.

The second paper uses Forcer and the Rstar program. This shows most potential for more
calculations (some have been done already). Used of the order of one week on a computer
with 32 cores, and worked for general gauge group.

Independently, all methods gave the same answer!
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Where does this leave us?

We have now a number of new tools: Forcer and the Rstar program. They can be used for
the computation of 4-loop (finite and infinite) quantities and 5-loop infinite objects.

In addition we have the (much more difficult) Chetyrkin method that might be usable as
well for the computation of more 5-loop divergent quantities. And it could also be useful for
high moments of 4-loop splitting functions (7).

We have produced a number of papers on splitting functions, Higgs decay at the 4 and 5
loop level. This has advanced QCD perturbation theory almost by a full order.

[t is very clear that more progress can only come from even higher levels of automation.



