

A novel method to study hyperons Andrzej Kupsc

nature physics

Ι ΕΤΤΕΡς https://doi.org/10.1038/s41567-019-0494-8

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

Nature Phys. 15 (2019) 631

 $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$:

Observation of Λ transverse polarization

- Determination of Λ decay asymmetry
- **CP** test

- G.Fäldt, AK PLB772 (2017) 16 1.
 - E.Perotti,G.Fäldt,AK,S.Leupold,JJ.Song PRD99 (2019)056008
- G. Fäldt, K. Schönning arXiv:1908.04157 3.
- P.Adlarson, AK arXiv:1908.03102

KEK, 6 Nov. 2019

Methods (UU):

Picture:Piotr Kupsc

 $e^+e^- \rightarrow J/\psi \rightarrow \Xi\overline{\Xi}$

 $e^+e^- \rightarrow \gamma^* \rightarrow B\overline{B} \text{ (spin 1/2)}$

F₁ (Dirac) and F₂ (Pauli) Form Factors

Sachs Form Factors (FFs) ⇔ helicity amplitudes:

 $G_M(s) = F_1(s) + F_2(s), \quad G_E(s) = F_1(s) + \tau F_2(s)$ helicity non-flip helicity flip

$$\tau = \frac{s}{4M_B^2}$$

$$e^+e^- \rightarrow \mu^+\mu^-$$

At high energies annihilating e+e- have opposite helicities.

 $F_1(0) = 1, \ F_2(0) = a_\mu$

 $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s}(1 + \cos^2\theta)$

 γ^* has ± 1 helicity

$$\rho_1(\theta) = \begin{pmatrix} \frac{1+\cos^2\theta}{2} & -\frac{\cos\theta\sin\theta}{\sqrt{2}} & \frac{\sin^2\theta}{2} \\ -\frac{\cos\theta\sin\theta}{\sqrt{2}} & \sin^2\theta & \frac{\cos\theta\sin\theta}{\sqrt{2}} \\ \frac{\sin^2\theta}{2} & \frac{\cos\theta\sin\theta}{\sqrt{2}} & \frac{1+\cos^2\theta}{2} \end{pmatrix}$$

Baryon FFs (continuum):

Fäldt EPJ A51 (2015) 74; EPJ A52 (2016)141

$$e^+e^- \rightarrow \gamma^* \rightarrow B\overline{B}$$

For spin $\frac{1}{2}$ *B* production two complex FFs: $G_M(s)$, $G_E(s)$

 \Rightarrow process described by three parameters at fixed \sqrt{s} :

- \Box cross section (σ)
- **G** FFs ratio R or angular distribution parameter α_{ψ}
- \Box relative phase between FFs ($\Delta \Phi$)

$$R = \left| \frac{G_E}{G_M} \right| \quad \left(\alpha_{\psi} = \frac{\tau - R^2}{\tau + R^2} \right) \qquad G_E = R G_M e^{i\Delta\Phi}$$
$$\tau = \frac{s}{\tau + R^2}$$

Angular distribution:

$$\frac{d\Gamma}{d\Omega} \propto 1 + \boldsymbol{\alpha}_{\boldsymbol{\psi}} \cos^2 \theta \quad -1 \leq \boldsymbol{\alpha}_{\boldsymbol{\psi}} \leq 1$$

 $4/1/1_{0}$

Phase $\Delta \Phi$ expected/predicted for continuum but neglected/not expected for the decays

Baryon-antibaryon spin density matrix $e^+e^- \rightarrow B_1\overline{B}_2$

General two spin ¹/₂ **particle state**:

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{B_1} \otimes \sigma_{\overline{\nu}}^{\overline{B}_2}$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

$$e^{-} B_1 \qquad \theta$$

$$\hat{x}_2 \qquad \theta^{-} B_2 \qquad \theta^{+} \hat{z}$$

$$B_2 \qquad \theta^{+} \hat{z}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Spin ¹/₂ baryon octet

hyperon	Mass	c au	decay (BF)
	$[\text{GeV/c}^2]$	[cm]	
$\Lambda(uds)$	1.116	7.9	$p\pi^{-}$ (63.9%)
			$n\pi^0$ (35.8%)
$\Sigma^{-}(dds)$	1.197	4.4	$n\pi^{-}$ (99.8%)
$\Sigma^+(uus)$	1.189	2.4	$p\pi^0$ (51.6%)
			$n\pi^+$ (48.3%)
$\Xi^0(uss)$	1.315	8.7	$\Lambda \pi^0$ (99.5%)
$\Xi^{-}(dss)$	1.321	5.1	$\Lambda\pi^{-}$ (99.8%)
1		r	1
(uus)			
(0000)			
	hyperon $\Lambda(uds)$ $\Sigma^{-}(dds)$ $\Sigma^{+}(uus)$ $\Xi^{0}(uss)$ $\Xi^{-}(dss)$ (uus)	hyperon Mass [GeV/c ²] $\Lambda(uds)$ 1.116 $\Sigma^{-}(dds)$ 1.197 $\Sigma^{+}(uus)$ 1.189 $\Xi^{0}(uss)$ 1.315 $\Xi^{-}(dss)$ 1.321	hyperon Mass $c\tau$ [GeV/c ²] [cm] $\Lambda(uds)$ 1.116 7.9 $\Sigma^{-}(dds)$ 1.197 4.4 $\Sigma^{+}(uus)$ 1.189 2.4 $\Xi^{0}(uss)$ 1.315 8.7 $\Xi^{-}(dss)$ 1.321 5.1

$$\frac{d\Gamma}{d\Omega} = \frac{1}{4\pi} (1 + \alpha_{-}\hat{n} \, \bar{P}_{\Lambda})$$

α_=0.642±0.013

Value in PDG≤2018 established in 1978 based on 1963-75 experiments

It was used/assumed in all experiments where Λ polarization is measured. Also decay parameters of all baryons decays into final states with $\Lambda: \Xi \to \Lambda \pi, \Omega \to \Lambda K, ...$

Measuring α , β , γ in the 20th century

Oliver Overseth

PHYSICAL REVIEW

VOLUME 129, NUMBER 4

15 FEBRUARY 1963

Measurement of the Decay Parameters of the Λ^0 Particle*

JAMES W. CRONIN AND OLIVER E. OVERSETH[†] Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received 26 September 1962)

The decay parameters of $\Lambda^0 \to \pi^- + p$ have been measured by observing the polarization of the decay protons by scattering in a carbon-plate spark chamber. The experimental procedure is discussed in some detail. A total of 1156 decays with useful proton scatters was obtained. The results are expressed in terms of polarization parameters, α , β , and γ given below :

 $\begin{aligned} \alpha &= 2 \operatorname{Res} p^{\bullet} / (|s|^2 + |p|^2) = +0.62 \pm 0.07, \\ \beta &= 2 \operatorname{Ims} p^{\bullet} / (|s|^2 + |p|^2) = +0.18 \pm 0.24, \\ \gamma &= |s|^2 - |p|^2 / (|s|^2 + |p|^2) = +0.78 \pm 0.06, \end{aligned}$

where s and p are the s- and p-wave decay amplitudes in an effective Hamiltonian $s + \rho \sigma \cdot \mathbf{p} / |\mathbf{p}|$, where **p** is the momentum of the decay proton in the center-of-mass system of the Λ^0 , and σ is the Pauli spin operator. The helicity of the decay proton is positive. The ratio |p|/|s| is $0.36_{-0.66}^{+0.06}$ which supports the conclusion that the $K\Lambda N$ parity is odd. The result $\beta = 0.18 \pm 0.24$ is consistent with the value $\beta = 0.08$ expected on the basis of time-reversal invariance.

$$P_{p} = \frac{\left(\alpha + P_{\Lambda}\cos\theta\right)\dot{z} + \beta P_{\Lambda}\dot{x} + \gamma P_{\Lambda}\dot{y}}{1 + \alpha P_{\Lambda}\cos\theta}$$

no H_2 target, no magnet; use kinematics and proton's range in carbon to infer E_p

Olsen et al., α_0 parameter in $\Lambda^0 \rightarrow n\pi^0$ decays

R-scan

W Grad

 $J/\psi, \psi(2S) \rightarrow BB$

$\mathcal{B}(J/\psi \to p\overline{p}) = (21.21 \pm 0.29) \times 10^{-4}$

decay mode	$\mathcal{B}(\text{units } 10^{-4})$	$lpha_{oldsymbol{\psi}}$	eff	events
				proposal
$J/\psi \to \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	3200×10^3
$\psi(2S) \to \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	650×10^{3}
$J/\psi \rightarrow \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	670×10^3
$\psi(2S) \to \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	160×10^3
$J/\psi \to \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	810×10^3
$\psi(2S) \to \Xi^- \bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	210×10^3

(Feb 2019): 10¹⁰ J/ψ

PRD 93, 072003 (2016) PLB770,217 (2017) PRD 95, 052003 (2017)

BESIII proposal: $3.2 \times 10^9 \psi(2S)$

Hyperon-hyperon pair production at BESIII

Thresholds:

- $\Lambda\overline{\Lambda}$: 2.231 GeV $\Xi^{0}\overline{\Xi}^{0}$ 2.630 GeV $\Xi^{-}\overline{\Xi}^{+}$ 2.643 GeV
- $\Lambda \overline{\Sigma}^0$ 2.308 GeV

J/ψ

Ecm [GeV]

3.5

 \Box better resolution: at J/ψ 0.9 MeV: 10¹⁰ J/ψ

(Nam (pt - 100 MeV) 1000 (Nam - 1000 MeV) (Nam - 1000 MeV) (Nam - 1000 MeV) (Nam - 1000

500

0 2.0

2.2

2.4

2.6

2.8

33

Picture:Wolfgang Gradl & Xiaorong

□ boost of hadronic system may help efficiency

Belle 11, 50/ab, 2027

Belle II, 10/ab, 2023

4.5

Hyperon-antihyperon pairs from J/ ψ and ψ (2S) decays

Motivations: CP violation, QM tests (entangled system) :

CP Asymmetries in Strange Baryon Decays I. I. Bigi, Xian-Wei Kang, Hai-Bo Li CPC42 (2018) 013101 arXiv:1704.04708 & BESIII Hai-Bo: arXiv:1612.01775

Hyperon decay parameters, hyperon FSI, charmonium decay mechanism,...

Ground state hyperons analyses: MLL fits of angular distributions:

• $\Lambda \overline{\Lambda}, \Sigma^+ \overline{\Sigma}^-, (\Sigma^- \overline{\Sigma}^+)$ • $\Lambda \overline{\Sigma}^0, \Sigma^0 \overline{\Sigma}^0$ • $\Xi \overline{\Xi}$ • $\Omega \overline{\Omega}$ Covariant formalism Ref 1&3 Government of the second second

Amplitudes for precision BESIII data:

$$e^+e^- \to \gamma^* (\to \psi)$$

$$\to B_{1/2} \ \overline{B}_{1/2}$$

$$\to B_{3/2} \ \overline{B}_{1/2}$$

$$\to B_{3/2} \ \overline{B}_{3/2}$$

Ref 2: Modular framework for entangled **exclusive (DT)** distributions with modifiable decay chains, Use correct variables vs amplitudes Weak decays sensitive to the helicity rotation definition

Inclusive decay angular distribution

 $\Lambda \rightarrow p\pi^{-}: \widehat{\mathbf{n}}_{1} \rightarrow \Omega_{1} = (\cos \theta_{1}, \phi_{1}) : \boldsymbol{\alpha}_{-}$

 \Rightarrow Determine product: $\alpha_P_v \sim \alpha_sin(\Delta \Phi)$

 $e^+e^- \rightarrow J/\psi \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$

event in **BESIII** detector

Exclusive joint angular distribution

$$e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$$

 $\Lambda \to p\pi^{-}: \widehat{\mathbf{n}}_{1} \to (\cos \theta_{1}, \phi_{1}) : \boldsymbol{\alpha}_{-} \qquad \overline{\Lambda} \xrightarrow{\vee} \overline{p}\pi^{+}: \widehat{\mathbf{n}}_{2} \to (\cos \theta_{2}, \phi_{2}) : \boldsymbol{\alpha}_{+}$

 $\boldsymbol{\xi}:(\cos\theta_{\Lambda},\widehat{\mathbf{n}}_{1},\widehat{\mathbf{n}}_{2})$ 5D PhSp

 $d\Gamma \propto W(\boldsymbol{\xi}; \boldsymbol{\alpha_{\psi}}, \boldsymbol{\Delta \Phi}, \boldsymbol{\alpha_{-}}, \boldsymbol{\alpha_{+}}) =$ $1 + \alpha_{\psi} \cos^2 \theta_{\Lambda}$ Cross section $+ \alpha_{-} \alpha_{+} \left\{ \sin^{2} \theta_{\Lambda} (n_{1,x} n_{2,x} - \alpha_{\psi} n_{1,y} n_{2,y}) + (\cos^{2} \theta_{\Lambda} + \alpha_{\psi}) n_{1,z} n_{2,z} \right\}$ $+ \boldsymbol{\alpha}_{-} \boldsymbol{\alpha}_{+} \sqrt{1 - \boldsymbol{\alpha}_{\psi}^{2}} \cos(\boldsymbol{\Delta}\boldsymbol{\Phi}) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(n_{1,x} n_{2,z} + n_{1,z} n_{1,x} \right)$ $+\sqrt{1-\alpha_{\psi}^{2}}\sin(\Delta \Phi)\sin\theta_{\Lambda}\cos\theta_{\Lambda}(\alpha_{-}n_{1,y}+\alpha_{+}n_{2,y})$ Polarization $\Delta \Phi \neq 0 \Rightarrow$ independent determination of α_{-} and α_{+}

Fäldt, Kupsc PLB772 (2017) 16

Exclusive joint angular distribution (modular form) $e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$

General two spin ¹/₂ **particle state:**

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{\Lambda} \otimes \sigma_{\overline{\nu}}^{\overline{\Lambda}}$$

$$(\sigma_0 = \mathbf{1}_2, \sigma_1 = \sigma_x, \sigma_2 = \sigma_y, \sigma_3 = \sigma_z)$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

Apply decay matrices:

$$\sigma^{\Lambda}_{\mu} \to \sum_{\mu'=0}^{3} a^{\Lambda}_{\mu,\mu'} \sigma^{p}_{\mu'}$$

The angular distribution:

$$W = Tr\rho_{p,\bar{p}} = \sum_{\mu,\overline{\nu}=0}^{3} C_{\mu\overline{\nu}} a^{\Lambda}_{\mu,0} a^{\overline{\Lambda}}_{\overline{\nu},0}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Fit results

 $\Delta \Phi = 42.3^{\circ} \pm 0.6^{\circ} \pm 0.5^{\circ}$

Parameters	This work	Previous res	ults
$lpha_\psi$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027	BESIII
$\Delta \Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_	
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013	PDG
α_+	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 {\pm} 0.08$	PDG
$ar{m{lpha}}_0$	$-0.692 \pm 0.016 \pm 0.006$	_	

BESIII Nature Phys. (2019)

$e^+e^- \rightarrow \gamma^* \rightarrow \Lambda \overline{\Lambda}$ (continuum: 2.396 GeV)

BESII

PHYSICAL REVIEW LETTERS 123, 122003 (2019)

 $(\alpha_{\psi}"=0.13\pm0.16)$ $\Delta \Phi = 37^{\circ} \pm 12^{\circ} \pm 6^{\circ}$ $R = 0.94 \pm 0.16(\text{stat.}) \pm 0.03(\text{sys.}) \pm 0.02(\alpha_{-})$ The same fit as for $J/\psi \to (\Lambda \to p\pi^{-})(\overline{\Lambda} \to \overline{p}\pi^{+})$ but $\alpha_{-} = \alpha_{+}$ and fixed

Phys.Rev. D100 (2019) 072004

Implications of the BESIII result

A_{Λ} = 0.013 ± 0.021 PS185 PRC54(96)1877

PDG 2019 update:

$lpha_- \ {\sf FOR} \ {f \Lambda} o p \pi^-$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.750 \pm 0.009 \pm 0.004$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$
••• We do not use the following	data for averages, fits, lim	its, etc. •••			
0.584 ± 0.046	8500	ASTBURY	1975	SPEC	
0.649 ± 0.023	10325	CLELAND	1972	OSPK	
0.67 ± 0.06	3520	DAUBER	1969	HBC	From Edecay
0.645 ± 0.017	10130	OVERSETH	1967	OSPK	$arLambda$ from $\pi^- p$
0.62 ± 0.07	1156	CRONIN	1963	CNTR	Λ from $\pi^- p$

NSPIRE search

INSPIRE search

Reset of α_{-} value

$lpha_+ \operatorname{\sf FOR} \overline{\mathbf{\Lambda}} o \overline{{m p}} \pi^+$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$-0.758 \pm 0.010 \pm 0.007$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$
· · · We do not use the following dat	a for averages, fits, limits,	etc. •••			
$-0.755 \pm 0.083 \pm 0.063$	≈ 8.7k	ABLIKIM	2010	BES	$J/\psi o \Lambda \overline{\Lambda}$
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi ightarrow \Lambda \overline{\Lambda}$

news & views

PARTICLE PHYSICS

Anomalous asymmetry

A measurement based on quantum entanglement of the parameter describing the asymmetry of the Λ hyperon decay is inconsistent with the current world average. This shows that relying on previous measurements can be hazardous.

Ulrik Egede

2) Why the big change in α ?

Why different?

from: Kiyoshi Tanida JAEA Japan

• Multiple scattering:

- E.g., at 95 MeV with 3 cm scatterer (target),
- θ_0 becomes as large as 1.5 degree.
- \rightarrow 5 degree multiple scattering occurs with a probability of 1 % order and dominates over single scattering
- Actual scatterer thickness is even larger
- Of course, analyzing power for multiple Coulomb scattering is almost 0
 - ightarrow Can explain the difference
- Note: effective A_N depends on target thickness
 - This is why target thickness is explicit in the new data.
 - We have to be careful!!

Also: in PDG \leq 2018 syst uncertainty was not included

Parity conserving / violating amplitudes

How to verify the result?

 $\vec{\gamma}p \rightarrow K^+\Lambda$ $\alpha_- = 0.721(6)(5)$ D. Ireland et al arXiv:1904.07616

Measure proton polarization?

Independent verification at BESIII eg:

$$J/\psi \to \gamma \eta_c \to \gamma \Lambda \overline{\Lambda}$$
$$BF = 1.7\% \times 1.1 \times 10^{-3}$$

 $\langle \alpha_- \rangle_{\text{BESIII}} = \frac{\alpha_- - \alpha_+}{2} = 0.754(3)(2)$

Since $\rho(stat) = 0.82!$ and using quoted syst uncertainties for $\alpha_-, \alpha_+, A_\Lambda$ to deduce $\rho(syst) = 0.835$

ie 4% difference with 3.8 σ new puzzle?...

 $\eta_c \to \Lambda \overline{\Lambda}$

$$W = (1 - \alpha_{-}\alpha_{+}\cos\theta_{p\bar{p}})$$

Foundations of Physics, Vol. 11, Nos. 1/2, 1981

Suggestion for Einstein–Podolsky–Rosen Experiments Using Reactions Like $e^+e^- \rightarrow \wedge \overline{\Lambda} \rightarrow \pi^- p \pi^+ \overline{p}$

THE DECAY $J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow \pi^- p \pi^+ \overline{p}$ AS AN EINSTEIN–PODOLSKY–ROSEN EXPERIMENT

Nıls A. TÖRNQVIST PLA117(1986)1

Modern view: S. Chen, Y. Nakaguchi, and S. Komamiya, PTEP 2013, 063A01 (2013) B.C. Hiesmayr, Sci.Rep. 5 (2015) 11591

Comparison of $\Lambda\overline{\Lambda}$ **and** $\Xi\overline{\Xi}$ (simplified)

$$e^+e^-\to J/\psi\to\Lambda\overline\Lambda$$

 $e^+e^- \to J/\psi \to \Xi^- \bar{\Xi}^+ \to \Lambda \pi^- \bar{\Lambda} \pi^+$

Λ from $Ξ^- → Λπ^-$ is polarized even if $Ξ^-$ unpolarized: $P_Λ = |α_Ξ| ≈ 39\%$

 $W \propto 1 + \alpha_{\Lambda} \alpha_{\Xi} \cos \theta_p$

Question: Can one determine α_{Λ} in unique way?

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+ \rightarrow \Lambda \pi^-\overline{\Lambda}\pi^+ \rightarrow p\pi^-\pi^-\overline{p}\pi^+\pi^+$

 $d\Gamma \propto W(\boldsymbol{\xi}; \boldsymbol{\omega})$ $\boldsymbol{\xi}$ 9 kinematical variables 9D PhSp

Parameters: 2 production + 6 for decay chains $\omega = (\alpha_{\psi}, \Delta \Phi, \alpha_{\Xi}, \phi_{\Xi}, \alpha_{\Lambda}, \overline{\alpha}_{\Xi}, \overline{\phi}_{\Xi}, \overline{\alpha}_{\Lambda})$

$$W = \sum_{\mu,\overline{\nu}} C_{\mu\overline{\nu}} \sum_{\mu',\overline{\nu}'} a_{\mu,\mu}^{\Xi} a_{\overline{\nu},\overline{\nu}'}^{\overline{\Xi}} a_{\mu',0}^{\Lambda} a_{\overline{\nu}',0}^{\overline{\Lambda}}$$

Variables and parameters factorize: $W(\xi; \boldsymbol{\omega}) = \sum_{k=1}^{M} f_k(\boldsymbol{\omega}) T_k(\xi)$ $\Delta \Phi \neq 0$ is not needed!

$$\Xi^{-}\overline{\Xi}^{+} \Lambda\overline{\Lambda}$$

 $\Delta \Phi \neq \mathbf{0}: \quad M = 72 \quad (7)$

 $\Delta \Phi = 0: \quad M = 56 \quad (5)$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Asymptotic likelihood method

$$V_{kl}^{-1} = E\left(-\frac{\partial^2 \ln \mathcal{L}}{\partial \omega_k \partial \omega_l}\right) = N \int \frac{1}{\mathcal{P}} \frac{\partial \mathcal{P}}{\partial \omega_k} \frac{\partial \mathcal{P}}{\partial \omega_l} d\boldsymbol{\xi}$$

Tool to determine:

$$V_{kl}$$
 – covariance matrix
 $\mathcal{L}(\omega) = \prod_{i=1}^{N} \mathcal{P}(\boldsymbol{\xi}_i, \omega) \equiv \prod_{i=1}^{N} \frac{\mathcal{W}(\boldsymbol{\xi}_i, \omega)}{\int \mathcal{W}(\boldsymbol{\xi}, \omega) d\boldsymbol{\xi}},$

- Best possible (ultimate) sensitivity and correlations for parameters
- Structure of complicated angular distribution: e.g. V_{kl}^{-1} singular – parameters cannot be determined separately

Consistent with BESIII Nature Phys. 15,631(2019)

e^+e^-	\rightarrow]	[/ψ →	$\Xi\overline{\Xi}$
----------	-----------------	---------------	---------------------

Correlation matrix:

	$ar{lpha}_{arepsilon}$	α_{Λ}	\bar{lpha}_A	ϕ_{\varXi}	$ar{\phi}_arepsilon$	$lpha_\psi$	$\varDelta \Phi$
$lpha_{\varXi}$	0.03	0.37	0.11	0.0	0.0	0.0	0.0
\overline{lpha}_{\varXi}		0.11	0.37	0.0	0.0	0.0	0.0
α_A			0.43	0.0	0.0	-0.1	0.0
\overline{lpha}_A		I	0	0.0	0.0	0.1	0.0
ϕ_{\varXi}		$\Phi = 0$	0		0.0	0.0	0.0
$ar{\phi}_{\scriptscriptstyle arEomega}$						0.0	0.0
$lpha_\psi$							0.0

$$\sigma(\alpha_{\Xi}) = \frac{2}{\sqrt{N}}$$
$$\sigma(\phi_{\Xi}) = \frac{6}{\sqrt{N}}$$
$$\sigma(\alpha_{\Lambda}) = \frac{3}{\sqrt{N}}$$

 $\sigma(A_{\Lambda}) = \frac{3.3}{\sqrt{N}}$

P.Adlarson, AK arXiv:1908.03102

e^+	e ⁻ -	→ J /	ψ-	→ Ξ	Ξ

Correlation matrix:

	\overline{lpha}_{\varXi}	α_{Λ}	$\bar{\alpha}_A$	ϕ_{\varXi}	$ar{\phi}_arepsilon$	$lpha_{\psi}$	$\Delta \Phi$
$lpha_{\varXi}$	0.03	0.37	0.11	0.0	0.0	0.0	0.0
$ar{lpha}_{arepsilon}$		0.11	0.37	0.0	0.0	0.0	0.0
α_{Λ}			0.43	0.0	0.0	-0.1	0.0
$\bar{\alpha}_{\Lambda}$	Δ	A	0	0.0	0.0	0.1	0.0
ϕ_{\varXi}		$\Phi = 0$	U		0.0	0.0	0.0
$ar{\phi}_arepsilon$		$\overline{\alpha}_{\pi}$	Ω.	$\overline{\alpha}$		0.0	0.0
$lpha_{oldsymbol{\psi}}$	α_{π}	0.01	0.31	0.07			0.0
	$\bar{\alpha}_{\Xi}$		0.07	0.31			3.3
	α_{Λ}	٨	π	0.39		$\sigma(A_A)$	$(\Lambda) = \frac{1}{\sqrt{N}}$
		ΔΨ	$\frac{1}{2}$				

$$\sigma(\alpha_{\Xi}) = \frac{2}{\sqrt{N}}$$
$$\sigma(\phi_{\Xi}) = \frac{6}{\sqrt{N}}$$
$$\sigma(\alpha_{\Lambda}) = \frac{3}{\sqrt{N}}$$

P.Adlarson, AK arXiv:1908.03102

Spin density matrix for $e^+e^- \rightarrow \Omega^-\Omega^+$

$$\rho_{3/2,\overline{3/2}}^{\lambda_1\lambda_2,\lambda_{1'}\lambda_{2'}} = \sum_{\kappa=\pm 1} D_{\kappa,\lambda_1-\lambda_2}^{1*} (0,\theta_{\Omega},0) D_{\kappa,\lambda_{1'}-\lambda_{2'}}^1 (0,\theta_{\Omega},0) A_{\lambda_1\lambda_2} A_{\lambda_{1'}\lambda_{2'}}^* A_{\lambda_{1'}\lambda_{2'}}^* A_{\lambda_1}^* A$$

Using base 3/2 spin matrices Q:

M.G.Doncel, L.Michel, P.Minnaert Nucl. Phys. B38, 477(1972)

$$\begin{split} r_{-1}^{1} &\to P_{y} \ r_{0}^{1} \to P_{x} \ r_{1}^{1} \to P_{z} \\ \rho_{3/2} &= r_{0} \left(Q_{0} + \frac{3}{4} \sum_{M=-1}^{1} r_{M}^{1} Q_{M}^{1} + \frac{3}{4} \sum_{M=-2}^{2} r_{M}^{2} Q_{M}^{2} + \frac{3}{4} \sum_{M=-3}^{3} r_{M}^{3} Q_{M}^{3} \right) \\ \frac{3}{4} Q_{M}^{L} \to Q_{\mu} , \mu = 1, \dots, 15 \\ Q_{0} &= \frac{1}{4} I \qquad \rho_{3/2} = \sum_{\mu=0}^{15} r_{\mu} Q_{\mu} \qquad \rho_{3/2,\overline{3/2}} = \sum_{\mu=0}^{15} \sum_{\bar{\nu}=0}^{15} C_{\mu,\bar{\nu}} Q_{\mu} \otimes Q_{\bar{\nu}} \end{split}$$

Single tag $e^+e^- \to \Omega^-\overline{\Omega}^+$

Single 3/2-spin baryon density matrix is

$$\rho_{3/2} = \sum_{\mu=0}^{15} r_{\mu}Q_{\mu} = \sum_{\mu=0}^{15} C_{\mu,0}Q_{\mu}$$

Angular distribution (using decay matrices in helicity frames):

$$r_{0} = (1 + \cos^{2}\theta_{\Omega})(h_{2}^{2} + 2h_{3}^{2}) + 2\sin^{2}\theta_{\Omega}(h_{1}^{2} + h_{4}^{2})$$

$$r_{1} = 2\sin^{2}\theta_{\Omega}\frac{2\Im(\mathbf{h}_{1}\mathbf{h}_{2}^{*}) + \sqrt{3}\Im(\mathbf{h}_{3}^{*}(\mathbf{h}_{1} + \mathbf{h}_{4}))}{\sqrt{30}}$$

$$r_{6} = -\frac{2\sin^{2}\theta_{\Omega}(h_{1}^{2} - h_{4}^{2}) + h_{2}^{2}(\cos^{2}\theta + 1)}{\sqrt{3}}$$

$$r_{7} = \sqrt{2}\sin^{2}\theta_{\Omega}\frac{\Re(\mathbf{h}_{3}(\mathbf{h}_{4} - \mathbf{h}_{1}))}{\sqrt{3}}$$

$$r_{8} = 2\sin^{2}\theta_{\Omega}\frac{\Re(\mathbf{h}_{3}\mathbf{h}_{2}^{*})}{\sqrt{3}}$$

$$r_{10} = 2\sin^{2}\theta_{\Omega}\frac{\Im(\mathbf{h}_{3}\mathbf{h}_{2}^{*})}{\sqrt{3}}$$

$$r_{11} = 2\sin^{2}\theta_{\Omega}\frac{\Im(\sqrt{3}\mathbf{h}_{2}\mathbf{h}_{1}^{*} + \mathbf{h}_{3}^{*}(\mathbf{h}_{1} + \mathbf{h}_{4}))}{\sqrt{15}}$$

Degree of polarization

$$d(\rho_{3/2}) = \sqrt{\sum_{L=1}^{3} \sum_{M=-L}^{L} (r_M^L)^2}$$

At threshold: d(3/2)=23%

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Conclusions:

Polarization in $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ observed at J/ ψ [phase close to 40°]

 J/ψ and ψ' decays into hyperon-antihyperon: unique spin entangled system for CP tests and for determination of (anti-)hyperon decay parameters

BESIII In progress: analyses using 10^{10} J/ ψ ...

17(3)% larger value for the $\Lambda \rightarrow p\pi^-$ decay asymmetry (α_-) \Rightarrow calls for reinterpretation of **all** Λ polarization measurements!

 α_{-} : 0.642±0.012 (PDG1978-2018) \Rightarrow 0.750±0.009±0.004 (PDG 2019)

Reaction	σ (μb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)
$\bar{p}p \rightarrow \bar{\wedge} \wedge$	64	10	30 s ⁻¹
$\bar{p}p \rightarrow \bar{\Lambda}\Sigma^0$	~40	30	30 s ⁻¹
$\bar{p}p \rightarrow \Xi^+\Xi^-$	~2	20	2 s ⁻¹
p̄p → ΩΩ	~0.002	30	~4 h ⁻¹
$\bar{p}p \rightarrow \bar{\Lambda}_c \Lambda_c$	~0.1	35	~2 day ⁻¹

Nuclear Physics News, Vol. 27, No. 3, 2017

3) $\alpha_{+}/\overline{\alpha}_{0} \neq 1: \Delta I = 1/2$ law violation

