Searches for Baryon Instability Other than Proton Decay

Yuri Kamyshkov
University of Tennessee

E-mail: kamyshkov@utk.edu

Plan to discuss:

- Mode independent nucleon decay
- Neutron disappearance in KamLAND
- Search for (B–L) violation
- Neutron → Antineutron transition search
What motivates searches for baryon instability?

Need for explanation of the observed baryon asymmetry of the Universe (BAU)

A. Sakharov (1967): three ingredients needed for BAU explanation:

1. Baryon number violation
2. C and CP symmetry violation
3. Departure from thermal equilibrium

BAU does not give us a priori mode of nucleons decay. Particular decay modes are predictions of theoretical models.

- In Standard Model baryon number is not conserved \(\text{`t Hooft (1976)} \)
 (important in early Universe, but not observable at low temperatures. Alone can not explain BAU).

- Idea of Unification of particles and their interactions.
 Pati & Salam (1973): quark–lepton unification …
 Georgi & Glashow (1974): SU(5) - unification of forces …

- New low quantum gravity scale models.
Results of > 20 years of nucleon decay searches by Kamiokande, IMB, Super-K, Frejus, Soudan-2...

Impressive limits reached (S-K):
\[p \to e^+ \pi^0 > 5.7 \times 10^{33} \text{ years} \]
\[p \to \bar{\nu} K^+ > 2.0 \times 10^{33} \text{ years} \]

Did we explore all the possibilities? What can we say about nucleon lifetime?
Mode-independent limit for nucleon lifetime is only \(> 1.6 \times 10^{25} \) years!
Most of measured modes have lifetime > \(n \cdot 10^{30} \) years but few exceptions:

\[
\begin{align*}
n \to 3\nu & > 5 \times 10^{26} \text{ years} \\
nn \to \nu_e \bar{\nu}_e & > 1.2 \times 10^{25} \text{ years} \\
nn \to \nu_\mu \bar{\nu}_\mu & > 6 \times 10^{24} \text{ years}
\end{align*}
\]

\(pp \to K^+ K^+ \) not measured

\(nn \to K^0 K^0 \) not measured
What is “Mode-independent nucleon lifetime”?

$\tau > 1.6 \cdot 10^{25}$ years

based on the paper of E.W. Hennecke et al., Phys Rev C11(1975) 1378-1384

where Xe isotopes extracted from dated $2.46 \cdot 10^9$ years old 3.791 g telluride ore from Kalgoorlie lodes in Western Australia were analyzed.

$^{130}\text{Te (n decay)} \rightarrow ^{129}\text{Te} \rightarrow \beta \rightarrow ^{129}\text{Xe}$

$^{130}\text{Te (p decay)} \rightarrow ^{129}\text{Sb} \rightarrow \beta \rightarrow ^{129}\text{Xe}$

advantage: accumulation of potential signal for $\sim 10^9$ years

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Xe content ($\times 10^{-13}$ cm3 STP g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Xe - 128</td>
<td>0.63</td>
</tr>
<tr>
<td>Xe - 129</td>
<td>11.0</td>
</tr>
<tr>
<td>Xe - 130</td>
<td>509.7</td>
</tr>
<tr>
<td>Xe - 131</td>
<td>6.27</td>
</tr>
<tr>
<td>Xe - 132</td>
<td>4.71</td>
</tr>
</tbody>
</table>
Let’s use only conservation laws:

(energy-momentum, angular momentum, electric charge)

Neutrons can decay:

1. to charged particles + hadrons (well measured)
2. to invisible particles (ν) (not well measured!)
3. or disappear to unknown channels (not well measured!)

Protons can decay:

1. to charged particles + hadrons (well measured)
2. to invisible particles (ν) (not possible!)
3. or disappear to unknown channels (not possible!)
• Evans and Steinberg in the mode-independent lifetime limit addressed essentially \(\textcircled{2} + \textcircled{3} \). Some of modes \(\textcircled{1} \) would experience intranuclear final state interactions and can destroy residual daughter nucleus \((^{129}\text{Xe})\), but all these dangerous modes already had life-time limits above the mode-independent one.

• Super-K and future “proton decay” experiments are mostly focused on \(\textcircled{1} \) type of decays.

• Before exploring further type \(\textcircled{1} \) modes of decay one should measure all what was \emph{not well measured}. Corresponding mode-independent lifetime limits should be and can be improved up to the level of other modes \(10^{30}–10^{31}\) years.

• On this way one can either discover nucleon instability or establish a new (mode-independent) limit on the stability of matter.
Neutron disappearance can be searched in KamLAND

\[n \rightarrow \nu\nu\bar{\nu}, \quad nn \rightarrow \nu\bar{\nu} \quad \ominus \text{ and also } \ominus \]

Unique features of KamLAND detector:

- Large mass: 1,000 ton of Liquid Scintillator (~ CH₂)
- Low detection threshold: < 1 MeV
- Good energy resolution: \[\sim 7.5\% / \sqrt{E(\text{MeV})}\]
- Position reconstruction accuracy in x,y,z: ~ 25 cm
- Low background: 2700 mwe; buffer shield; veto-shield; Rn shield; LS purification for U, Th < 10⁻¹⁶ g/g

These features allow observation of the sequence of nuclear de-excitation states produces by disappearance of nucleon.
Disappearance of neutron from ^{12}C will result in nuclear de-excitations of $^{11}\text{C}^*$

De-excitation of $^{11}\text{C}^*$ state produced by disappearance of a $S_{1/2}$ neutron in $^{12}\text{C}_6$

(Excitation level 23 MeV, width 7 MeV)

<table>
<thead>
<tr>
<th>De-excitation branchings in %</th>
<th>only γ’s</th>
<th>2.68</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n + \text{gs}$</td>
<td>2.97</td>
<td></td>
</tr>
<tr>
<td>$n + \gamma$</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>$n + n$</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>$n + p$</td>
<td>5.57</td>
<td></td>
</tr>
<tr>
<td>$n + \alpha$</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>$n + X$</td>
<td>13.56</td>
<td></td>
</tr>
<tr>
<td>$p + \text{gs}$</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>$p + \gamma$</td>
<td>18.59</td>
<td></td>
</tr>
<tr>
<td>$p + n$</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>$p + p$</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>$p + \alpha$</td>
<td>33.24</td>
<td></td>
</tr>
<tr>
<td>$p + X$</td>
<td>63.07</td>
<td></td>
</tr>
<tr>
<td>$\alpha + \text{gs}$</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td>$\alpha + \gamma$</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td>$\alpha + n$</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>$\alpha + p$</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>$\alpha + \alpha$</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>$\alpha + X$</td>
<td>20.69</td>
<td></td>
</tr>
</tbody>
</table>

Branching $^{11}\text{C}^* \rightarrow ^{10}\text{C} + n + \gamma = 2.79 \pm 0.2 \%$ per $S_{1/2}$ neutron

E. Kolbe & Y.K. nucl-th / 0206030
Possible detection of $n \rightarrow 3\nu$ in KamLAND

$^{12}\text{C}(n\rightarrow 3\nu)^{11}\text{C}^*$
$\ni \quad n + ^{10}\text{C}^*$
$\Rightarrow \gamma + ^{10}\text{C} \ (3.35 \text{ MeV} \ \gamma)$
$\Rightarrow ^{10}\text{B} + \beta^+ \ (27 \text{ sec, } Q_{EC} = 3.65 \text{ MeV, 99%})$

3-hit signature: $\gamma \ (3.35 \text{ MeV}), \ n \ (\sim 200 \mu s, 2.2 \text{ MeV}), \ \beta^+ \ (27 \text{ sec, } 2-3.65 \text{ MeV})$

Rate of $n \rightarrow 3\nu$ events @ Limit

<table>
<thead>
<tr>
<th>Limit $\tau(n\rightarrow 3\nu)$</th>
<th>From</th>
<th>KamLAND events/kt/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present limit (90% CL) $> 5 \cdot 10^{26} \text{ yr}$</td>
<td>PDG’ 98</td>
<td>$\sim 5,000$</td>
</tr>
<tr>
<td>Possible limit (90% CL) $> 3.0 \cdot 10^{30} \text{ yr}$</td>
<td>KamLAND by 2005</td>
<td>Background < 1 event/year</td>
</tr>
</tbody>
</table>

- **Search limit for one neutron disappearance** ($n \rightarrow 3\nu$) **can be improved in KamLAND by 3-4 orders of magnitude**
- **Similar improvements can be made for two-neutron disappearance**
In nucleon disappearance the conservation of angular momentum requires that spin $\frac{1}{2}$ of nucleon should be transferred to another fermion:

That leads to the selection rule:

$$\Delta B = \pm \Delta L \quad \text{or} \quad |\Delta (B-L)| = 0, 2$$

- **In Standard Model** always $\Delta (B-L) = 0$
- Second possibility of $|\Delta (B-L)| = 2$ allows transitions:
 $$\Delta B = - \Delta L, \quad |\Delta B| = 2, \text{ and } |\Delta L| = 2$$

Conservation or violation of $(B-L)$ is an essential issue in the discussion of and search for baryon instability.
First Unification Models

First Unification Models:

\[SU(2)_L \otimes SU(2)_R \otimes SU(4)_C \leftrightarrow SO(10) \]

- Quark-lepton unification through SU(4) color \((J. \text{ Pati and A. Salam, 1973}) \)
- Restoration of Left-Right symmetry \((R. \text{ Mohapatra, J. Pati and G. Senjanovic}) \)
- Violation of Baryon and Lepton number
- Quantization of Electric Charge
- Existence of Right-Handed neutrinos
- \((B-L) \) as a Local Gauge Symmetry \((R. \text{ Mohapatra, R. Marshak; A. Davidson}) \)
- Violation of \((B-L) \): \(N \rightarrow \text{lepton} + X, \quad \nu \leftrightarrow \bar{\nu}, \quad n \leftrightarrow \bar{n} \) \((R. \text{ Mohapatra, R. Marshak}) \)

\[SU(5) \leftrightarrow SO(10) \]

- Grand Unification of forces at \(E \sim 10^{14} \text{ GeV} \) \((H. \text{ Georgi and S. Glashow, 1974}) \)
- Quark-lepton unification
- Violation of Baryon and Lepton number
- Quantization of Electric Charge
- Prediction of the proton decay \(p \rightarrow e^+ + \pi^0 \) with lifetime \(10^{31\pm1} \) years
- Neutrino masses = 0, no Right-Handed neutrinos
- Prediction of \(\sin^2 \theta_W = 0.214 \pm 0.004 \)
- Prediction of Great Desert between \(\sim 10^3 \) and \(\sim 10^{14} \text{ GeV} \)
- Global conservation of \((B-L) \)
(B–L) in searches for baryon instability

• So far searches for baryon instability were focused mainly on the (B–L) conserving processes, i.e. \(\Delta(B–L)=0 \), motivated by GUT and SUSY–GUT schemes with unification scale of \(\sim 10^{15–10^{16}}\) GeV.

\[N \rightarrow \text{anti-lepton} + X; \quad p \rightarrow e^+\pi^0; \quad p \rightarrow \nu K^+; \quad p \rightarrow \mu^+K^0 \text{ etc.} \]

• Pioneering experimental searches by IMB, Kamiokande, Fréjus, and later by Soudan-II and Super-K pushed the limits for some exclusive nucleon decay modes to the impressive \(\geq 10^{33} \) years.

• No nucleon decay was found so far, thus, ruling out:

 the original SU(5), one-step-broken SO(10), SUSY-extended SU(5), and almost excluding SUSY-extended SO(10) models.

In all these models (B–L) is conserved.
Is (B–L) quantum number conserved?

- In our laboratory samples \((B-L) = \#\text{protons} + \#\text{neutrons} - \#\text{electrons}:
 \[(B-L) \neq 0\]

- However, in the Universe most of the leptons exist as, yet undetected, relict neutrinos and antineutrinos (similar to CMBR) and conservation of \((B-L)\) on the scale of the whole Universe is an open question;

- Non-conservation of \((B-L)\) was discussed theoretically since 1978 by: Davidson, Marshak, Mohapatra, Wilczek, Chang, Ramond ...
Is (B–L) violated?

As theoretically discovered in 1985 by Kuzmin, Rubakov, and Shaposhnikov, the non-perturbative effects of Standard Model (sphalerons) will wipe out BAU at electro-weak energy scale if BAU was generated at some unification scale > 1 TeV by (B–L) conserving processes. If (B–L) is violated at the scale above 1 TeV, BAU will survive.

Violation of (B–L) implies nucleon instability modes:

\[n \rightarrow \bar{n}, \ p \rightarrow \nu \nu e^+, \ n \rightarrow \nu \nu \nu, \ etc. \ or \ \Delta (B–L) = -2 \]

rather than conventional p-decay modes:

\[p \rightarrow e^+ \pi^0, \ p \rightarrow \nu K, \ p \rightarrow \mu^+ K^0, \ etc. \ or \ \Delta (B–L) = 0 \]

If conventional (B–L) conserving proton decay would be discovered tomorrow by Super-K, it will not help us to understand BAU.

“The proton decay is not a prediction of the baryogenesis” T. Yanagida @ v2002
Need for (B–L) violation search

• Questions whether (B–L) is violated in nature and how it is violated can be answered only by experiments!

• All that was not “well measured” in nucleon decay might violate (B–L). Processes with (B–L) violation should be an essential part of experimental baryon instability search program.

\[n \rightarrow \bar{n}, \quad n \rightarrow VVV, \quad nn \rightarrow VV, \quad p \rightarrow e^+VV,... \]

• \(n \rightarrow \bar{n} \) is a most promising direction of (B–L) violation search and BAU explanation.

• Observation of \(n \rightarrow \bar{n} \) can be spectacular and unambiguous. Sensitivity for \(n \rightarrow \bar{n} \) search can be considerably improved by the next generation of experiments
 (with cold reactor neutrons ***, UCN **, underground *)
Neutron \rightarrow Antineutron Transition

- The oscillation of neutral matter into antimatter is well known to occur in $K^0 \rightarrow \bar{K}^0$ and $B^0 \rightarrow \bar{B}^0$ particle transitions due to the non-conservation of strangeness and beauty quantum numbers by electro-weak interactions.

- There are no laws of nature that would forbid the $N \rightarrow N\bar{n}$ transitions except the conservation of "baryon charge (number)"

 \begin{center}
 M. Gell-Mann and A. Pais, Phys. Rev. 97 (1955) 1387
 L. Okun, Weak Interaction of Elementary Particles, Moscow, 1963
 \end{center}

- First suggested as a possible BAU mechanism by V. Kuzmin, 1970

- First considered and developed within the framework of Unification models by R. Mohapatra and R. Marshak, 1979
Energy scale of $n \rightarrow \bar{n}$ transitions is intermediate between SM and GUT

- Most favorable in SU(5) $p \rightarrow e^+ \pi^0$ decay is due to X- & Y- bosons exchange (with masses $\sim 10^{15}$ GeV) with amplitude $\sim m_X^{-2}$ (for dimensional reason):

- In the lowest order the $n\bar{n}$-transition should involve 6-quark operator (dimension 9) with the amplitude (again for dimensional reason) $\sim m_X^{-5}$:

Observable $n \rightarrow \bar{n}$ transition rates would correspond to the mass scale $m_X \sim 10^5$ GeV
Observable neutron–antineutron oscillations in seesaw models of neutrino mass

K.S. Babu, R.N. Mohapatra

a Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
b Department of Physics, University of Maryland, College Park, MD 20742, USA

Received 12 August 2001; accepted 27 August 2001
Editor: M. Cvetić

Abstract

We show that in a large class of supersymmetric models with spontaneously broken $B-L$ symmetry, neutron–antineutron oscillations occur at an observable level even though the scale of $B-L$ breaking is very high, $v_{B-L} \sim 2 \times 10^{16}$ GeV, as suggested by gauge coupling unification and neutrino masses. We illustrate this phenomenon in the context of a recently proposed class of seesaw models that solves the strong CP problem and the SUSY phase problem using parity symmetry. We obtain an upper limit on $N-\bar{N}$ oscillation time in these models, $\tau_{N-\bar{N}} \leq 10^{9}-10^{10}$ s. This suggests that a modest improvement in the current limit on $\tau_{N-\bar{N}}$ of 0.86×10^{8} s will either lead to the discovery of $N-\bar{N}$ oscillations, or will considerably restrict the allowed parameter space of an interesting class of neutrino mass models. © 2001. Published by Elsevier Science B.V.

Quarks and leptons are separated by extra-dimension in this model; proton decay suppressed, n-nbar not since only quarks are involved.

Predicted n-nbar upper limit is within a reach of new reactor and UCN experiments.
Proton decay is strongly suppressed in this model, but $n\bar{n}$ is not since n_R has no gauge charges.
Probability of neutron-antineutron transition

\[\Psi(t) = \begin{pmatrix} \Psi_n(t) \\ \Psi_{\bar{n}}(t) \end{pmatrix} = a_n(t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{\bar{n}}(t) \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

where \[\Psi(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]; \[a_n(0) = 1; \ a_{\bar{n}}(0) = 0 \]

\[|\Psi|^2 = a_n^2 + a_{\bar{n}}^2 = 1 \quad \text{— normalization.} \]

Evolution of antineutron component vs time can be found from time-dependent Schrödinger equation:

\[i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi \]

with Hamiltonian of the system:

\[\hat{H} = \begin{pmatrix} E_n & \alpha \\ \alpha & E_{\bar{n}} \end{pmatrix} \]

where \(E_n, E_{\bar{n}} \) are non-relativistic energy operators:

\[E_n = m_n + \frac{p^2}{2m_n} + V_n; \ E_{\bar{n}} = m_{\bar{n}} + \frac{p^2}{2m_{\bar{n}}} + V_{\bar{n}} \]
• We assume CPT and \(m_n = m_{\bar{n}} = m \)
• We assume that the gravity is the same for \(n \) and \(\bar{n} \)
• In practical case (Earth magnetic field) \(V_n = -V_{\bar{n}} = V \):
 \[
 V_n = \mu \cdot \vec{B} \quad \text{and} \quad V_{\bar{n}} = -\mu \cdot \vec{B} \quad (\mu = \mu_n = -\mu_{\bar{n}})
 \]
 \[
 \hat{H} = \begin{pmatrix}
 m + V & \alpha \\
 \alpha & m - V
 \end{pmatrix}
 \]

 \[
 P_{n \to \bar{n}}(t) = \frac{1}{2} \cdot \frac{\alpha^2}{\alpha^2 + V^2} \cdot (1 - \cos \omega t); \quad \omega = \frac{2 \cdot \sqrt{\alpha^2 + V^2}}{\hbar}
 \]

external fields different for neutrons and antineutrons will suppress transition!

if external fields are small (vacuum transition) and \(\omega t << 1 \):

\[
P_{n \to \bar{n}}(t) \approx \frac{\alpha^2}{\hbar^2} \cdot t^2 = \left(\frac{t}{\tau_{nn}} \right)^2
\]

where \(\tau_{nn} = \frac{\hbar}{\alpha} \) or \(\alpha = \frac{\hbar}{\tau_{nn}} \);

where \(\tau_{nn} \) – characteristic transition time

All dynamics of \(n \to \bar{n} \) transition is determined by \(\alpha \)

Discovery potential \(\Rightarrow D.P. \sim N_n \cdot <t^2> \)

where \(N_n \) – number of neutrons/s on a detector

and \(\sqrt{<t^2>} \) – average neutron flight time
PDG 2002:
Limits for both free reactor neutrons and neutron bound inside nucleus

\[> 6.5 \times 10^{31} \text{ years} \rightarrow \text{(Fréjus)} \]

Mean Time for $n\bar{n}$ Transition in Vacuum

A test of $\Delta B = 2$ baryon number nonconservation. MOHAPATRA 80 and MOHAPATRA 89 discuss the theoretical motivations for looking for $n\bar{n}$ oscillations. DOVER 83 and DOVER 85 give phenomenological analyses. The best limits come from looking for the decay of neutrons bound in nuclei. However, these analyses require model-dependent corrections for nuclear effects. See KABIR 83, DOVER 89, ALBERICO 91, and GAL 00 for discussions. Direct searches for $n \rightarrow \bar{n}$ transitions using reactor neutrons are cleaner but give somewhat poorer limits. We include limits for both free and bound neutrons in the Summary Table.

<table>
<thead>
<tr>
<th>VALUE (s)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$> 8.6 \times 10^7$</td>
<td>90</td>
<td>BALDO-...</td>
<td>94</td>
<td>CNTR Reactor (free) neutrons</td>
</tr>
<tr>
<td>$> 1.2 \times 10^8$</td>
<td>90</td>
<td>BERGER</td>
<td>90</td>
<td>FREJ n bound in iron</td>
</tr>
<tr>
<td>$> 1.2 \times 10^8$</td>
<td>90</td>
<td>TAKITA</td>
<td>86</td>
<td>CNTR n bound in oxygen</td>
</tr>
</tbody>
</table>

We do not use the following data for averages, fits, limits, etc. • • •

<table>
<thead>
<tr>
<th>VALUE (s)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$> 1 \times 10^7$</td>
<td>90</td>
<td>BALDO-...</td>
<td>90</td>
<td>CNTR See BALDO-CEolin 94</td>
</tr>
<tr>
<td>$> 4.9 \times 10^5$</td>
<td>90</td>
<td>BRESSI</td>
<td>90</td>
<td>CNTR Reactor neutrons</td>
</tr>
<tr>
<td>$> 4.7 \times 10^5$</td>
<td>90</td>
<td>BRESSI</td>
<td>89</td>
<td>CNTR See BRESSI 90</td>
</tr>
<tr>
<td>$> 1 \times 10^6$</td>
<td>90</td>
<td>FIDECARO</td>
<td>85</td>
<td>CNTR Reactor neutrons</td>
</tr>
<tr>
<td>$> 8.8 \times 10^7$</td>
<td>90</td>
<td>PARK</td>
<td>85b</td>
<td>CNTR</td>
</tr>
<tr>
<td>$> 3 \times 10^7$</td>
<td>90</td>
<td>BATTISTONI</td>
<td>84</td>
<td>NUSX</td>
</tr>
<tr>
<td>$> 2.7 \times 10^7 - 1.1 \times 10^8$</td>
<td>90</td>
<td>JONES</td>
<td>84</td>
<td>CNTR</td>
</tr>
<tr>
<td>$> 2 \times 10^7$</td>
<td>90</td>
<td>CHERRY</td>
<td>83</td>
<td>CNTR</td>
</tr>
</tbody>
</table>

Soudan II result from 2002
\[\tau (\text{Fe}) > 7.2 \times 10^{31} \text{ years} \ (\text{Fe}) \]
\[n \rightarrow \bar{n} \] transition search experiments with free neutrons

<table>
<thead>
<tr>
<th>Year</th>
<th>Proposal</th>
<th>Institution</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1975</td>
<td>Luschikov...</td>
<td>@JINR</td>
<td>(\tau_{n\bar{n}} > 1 \cdot 10^3 \text{ s})</td>
</tr>
<tr>
<td>1980</td>
<td>Fidecaro...</td>
<td>@ILL</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>Goodman...</td>
<td>@ORR</td>
<td>(not approved)</td>
</tr>
<tr>
<td></td>
<td>(Harvard-ORNL-UT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>Ilyinov...</td>
<td>@INR</td>
<td>(approved, now stalled)</td>
</tr>
<tr>
<td></td>
<td>(INR/Moscow Meson Factory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>Fidecaro...</td>
<td>@ILL</td>
<td>(\tau_{n\pi} > 1 \cdot 10^6 \text{ s})</td>
</tr>
<tr>
<td>~1986</td>
<td>Baldo-ceolin...</td>
<td>@ILL</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>Baldo-ceolin...</td>
<td>@ILL</td>
<td>(\tau_{n\pi} > 1 \cdot 10^7 \text{ s})</td>
</tr>
<tr>
<td>1994</td>
<td>Baldo-ceolin...</td>
<td>@ILL</td>
<td>(\tau_{n\bar{n}} > 8.6 \cdot 10^7 \text{ s})</td>
</tr>
</tbody>
</table>

UCN neutrons have not been tried so far!
Schematic layout of Heidelberg - ILL - Padova - Pavia n\bar{n} search experiment at Grenoble 89-91

Discovery potential:
\[N_n \cdot t^2 = 1.5 \cdot 10^9 \text{ sec} \]

Measured limit:
\[\tau_{n\bar{n}} \geq 8.6 \cdot 10^7 \text{ sec} \]
Detector of Heidelberg - ILL-Padova-Pavia
Experiment @ ILL 1991
(size typical for HEP experiment)

No background;
no candidates observed
for a year of running \rightarrow
measured limit:

$$\tau_{n\pi} \geq 8.6 \times 10^7 \text{ sec}$$
ILL: Institute Max Von Laue-Paul Langevin in Grenoble
Suppression of $n \rightarrow \bar{n}$ in intranuclear transitions

(simple picture by V. Kuzmin)

due to nuclear potential different for neutron and anti-neutron:

$$\hat{H} = \begin{pmatrix} m + V & \alpha \\ \alpha & m - V \end{pmatrix} \quad P_{n \rightarrow \bar{n}}(t) = \frac{1}{2} \cdot \frac{\alpha^2}{\alpha^2 + V^2} \cdot \left(1 - \cos \omega t \right)$$

Neutrons inside nuclei are "free" for the time: $\Delta t \sim \frac{1}{E_{\text{binding}}} \sim \frac{1}{10 \text{MeV}} \sim 10^{-22} \text{s}$

and "experience" this condition N times per second: $\rightarrow \quad N \sim \frac{1}{\Delta t}$

Transition probability per second: $P_A = \frac{1}{\tau_A} = \left(\frac{\Delta t}{\tau_{n\bar{n}}} \right)^2 \cdot \left(\frac{1}{\Delta t} \right)$ and

$$\tau_A = \frac{\tau_{n\bar{n}}^2}{\Delta t} = R \cdot \tau_{n\bar{n}}^2 \quad R \sim \frac{1}{\Delta t} \sim 10^{22} \text{s}^{-1} \quad \text{“nuclear suppression factor”}$$
Intranuclear neutron → antineutron transitions:

Soudan II’2002 \[\tau_A \geq 7.2 \cdot 10^{31} \text{ years (Fe) (New!)} \]

IMB’84 \[\tau_A \geq 2.4 \cdot 10^{31} \text{ years (O}_2) \]

KAMIOKANDE’86: \[\tau_A \geq 4.3 \cdot 10^{31} \text{ years (O}_2) \]

FRÉJUS’90: \[\tau_A \geq 6.5 \cdot 10^{31} \text{ years (Fe)} \]

Experimental signature of \(n \rightarrow \bar{n} \) is \(<5> \pi’s\)

For vacuum transitions of free neutrons: M. Baldo-Ceolin et al., ZPHY C63 (1994) 409 at ILL/Grenoble reactor: \(\tau_{\text{free}} > 8.6 \cdot 10^7 \text{ sec} \)

Intranuclear transitions are heavily suppressed: \[\tau_A = R \cdot \tau_{\text{free}}^2 \text{ where R is “nuclear suppression factor” } \sim 10^{23} \text{ s}^{-1} \]

Theoretical progress on R during the last ~20 years was due to the works of: V. Kuzmin et al.; R. Mohapatra and R. Marshak, C. Dover, A. Gal, and J. M. Richard; P. Kabir; W. Alberico et al.; and most recently J. Hüfner and B. Kopeliovich \(\Rightarrow \)

\[^{15}\text{O}: \quad R = (1.7-2.6) \cdot 10^{23} \text{ s}^{-1} \quad ^{36}\text{Fe}: \quad R = (2.2-3.4) \cdot 10^{23} \text{ s}^{-1} \]

\[^{40}\text{Ar}: \quad R = (2.1-3.2) \cdot 10^{23} \text{ s}^{-1} \quad ^{2}\text{D}: \quad R = 2.5 \cdot 10^{22} \text{ s}^{-1} \]

Present PDG limit: \(\tau_{\text{free (intranuclear)}} \geq 1.2 \cdot 10^8 \text{s} \)
N→Nbar search limit of large detectors

(Reviewed at Indiana University Workshop on n-nbar search with UCN, September 13-14, 2002)

• New Soudan II 2002 limit for n→nbar search (*T. Mann*)

 \[
 \text{Soudan II limit} \quad \tau_{Fe} > 7.2 \times 10^{31} \text{ years}
 \]

• Future limits expected from SNO (*J. Formaggio*) and Super-K (*Ken Ganezer*)
 (guesstimate of *T. Mann*)

 \[
 \text{Future reach of SNO} \quad \tau_{O} \sim 4.8 \times 10^{32} \text{ years}
 \]
 \[
 \text{Future reach of S - K} \quad \tau_{O} \sim 7.5 \times 10^{32} \text{ years}
 \]

• Since sensitivity of SNO, Super-K, and future large underground detectors will be limited by atmospheric neutrino background (as demonstrated by Soudan II experiment, it will be possible to set a new limit, but difficult to make a discovery.)
Present search limits of $N \rightarrow \bar{N}$ transition

$\tau_A = R \cdot \tau_{nn \text{ free}}^2$

where R is "nuclear suppression factor"
Free neutrons are more advantageous for $N \rightarrow \overline{N}$ search

$$\tau_{\text{bound}} = R \cdot \tau_{\text{free}}^2$$
How to improve sensitivity of experiments with free neutron?

Naive scheme of $n\bar{n}$ experiment

Without neutron focusing:

$$\Delta \Omega = \frac{A_{\text{tar}}}{L^2}; \quad D. \ P. = N_n \cdot \Delta \Omega \cdot (t)^2 = N_n \cdot \frac{A_{\text{tar}}}{L^2} \cdot \frac{L^2}{v_n^2}$$

Discovery potential doesn't depend on L!
Schematic layout of a new experiment with focusing reflector

(not to scale)

HFIR 100 MW Reactor

Focusing Reflector

Cold neutron moderator (low T_n) with A_{cnm} area

Reflection:

$\xi = \sin \xi = \frac{V_x}{V}$

$\Delta \Omega \sim \frac{1}{V^2} \sim \frac{1}{T_n^{oK}}$

$\theta_1 < \theta < \theta_2 \rightarrow \Delta \Omega$; $\Delta \Omega \sim \left(\frac{1}{T_n}\right)$

D.P. $\sim N_n \sim \Phi_n \cdot A_{cnm} \cdot \frac{\Delta \Omega}{4\pi} \cdot \left(\frac{L}{V_n}\right)^2$; $\Phi_n \sim V_n$

D.P. $\sim N_n \sim \frac{L^2}{T_n^{3/2}}$ (if no gravity)

When focusing reflector is used, the large distance L and low neutron temperature T_n are most essential for discovery potential improvement.
Technical issues

- Residual pressure $< 10^{-4}$ Pa
- Earth magnetic field must be shielded down to residual < 5 nT

Schematic layout of n\bar{n}-search experiment at HFIR

- 100 MW HFIR reactor
- Cold Neutron Moderator
- Reactor core
- Focusing reflector
- Magnetic shield
- Vacuum tube
- Beam dump
- Annihilation target
- Detector
- Typical neutron flight time ~ 0.3 sec
- L $\sim 200 - 500$ m
The conceptual scheme of antineutron detector
Monte Carlo simulated antineutron annihilation event in N-Nbar Detector

Intranuclear anti-neutron-carbon annihilation model/generator
Antineutron detection is well understood

(thanks to LEAR physics)

\[\bar{n} + A \rightarrow \langle 5 \rangle \text{ pions} \quad (1.8 \text{ GeV}) \]

Target: \(~100\mu\text{ thick Carbon film}\)

\[\sigma_{\text{annihilation}} \sim 4 \text{ Kb} \quad \sigma_{\text{nC capture}} \sim 4 \text{ mb} \]

(Typical cold neutron: \(E \approx 6 \text{ meV}; \nu \approx 1000 \text{ m/s}; \lambda \approx 4 \text{ Å}\))
High-Flux Isotope Reactor at Oak Ridge National Laboratory where sensitivity of n-nbar search can be increased from the present level by factor of $>1,000$

$$\tau_{n\bar{n}} > 3 \times 10^9 \text{ sec}$$

With no background one event can be a discovery!

Unfortunately, this US national facility, managed by BES/DOE, has different scientific priorities. HFIR is not available for $N \rightarrow N\bar{N}$ search experiment.

Very strong support of HEP and NP communities in US is needed to change this attitude.
New approach: Ultra-Cold Neutrons (UCN)

Typical UCN: $E \approx 100 \text{ neV}$, $v \approx 6 \text{ m/s}$, $\lambda \approx 600 \text{Å}$

- Recent progress in UCN production/storage:
 from $\sim 40 \text{ ucn/cc (ILL/Grenoble)}$ to
 to $\sim 150 \text{ ucn/cc (Los Alamos)} \rightarrow 400 \text{ ucn/cc} \rightarrow 10^4 \text{ ucn/cc}$
 by using solid D_2 converter at 5 K.

- This technique (due to finite thermal conductivity of D_2)
 can provide UCN production rate up to $2 \cdot 10^7 \text{ UCN/sec}$
 even at low-power spallation sources or reactors.

- Based on this technique several labs are building or planning UCN production facilities:
 PSI at Zürich, FRMII at München, North Carolina State University Reactor, Compact Neutron Source at Indiana University, StPNPI at Gatchina. Dedicated UCN target facility is proposed for 10 MW ESS.

- Plans for N-Nbar search are being discussed at some of these facilities.
UCN factory under construction at PSI/Zürich

Dedicated proton beam with duration 4 sec every 400 sec
Experimental Facilities of UCN Factory for ESS

1 – neutron EDM experiment
2, 3, 5, 6 – UCN setup
4 – n-nbar experiment
7, 8, 9, 10 – VCN setup
11 – proton beam
12 – UCN Factory (without shielding)
N-Nbar search with UCN

UCN lifetime in the large storage bottle can be ~ 600 s, i.e. much larger than in approach with cold neutron beam (~ 0.3 s). However, the sensitivity gain is not quadratic with time but rather linear. Since nuclear potential of the wall is different for two components of neutron-antineutron wave function, \(t^2 \)-clock resets at the collision.

Whether the materials of the wall can be “tuned” to minimize the loss of coherence of N-Nbar wave function, is an interesting quantum mechanics problem that is not yet completely understood.

New UCN production technique being developed in Japan by Y. Masuda and his collaborators, based on super-fluid He converter, potentially offers highest UCN production rates (even with low-power neutron sources) > \(6 \times 10^7 \) UCN/s corresponding in small volumes to UCN density ~ \(2 \times 10^5 \) ucn/cc. This production rate should allow with sufficiently large detector reach a sensitivity corresponding to N-Nbar oscillation time > \(1 \times 10^9 \) s (assuming reset of wave function).
A new UCN source at RCNP

UCN guide

He-II cryostat

proton beam

moderator

target
Typical Detector for the UCN $N \to \bar{N}$ Experiment

- **Typical detector size:**
 - Height: 2.5 m
 - Diameter: 5 m

- **Typical n-\bar{n} event:**
 - $E_{vis} \sim 1.5$ GeV
 - $N_{pions} \sim 5$
 - $E_{pion} \sim 0.3$ GeV
$n \to \bar{n}$ Search Sensitivity

Soudan II limit \approx Grenoble limit = 1 unit (1 u) of sensitivity

<table>
<thead>
<tr>
<th>Method</th>
<th>Present limit</th>
<th>Possible future limit</th>
<th>Possible sensitivity increase factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intranuclear (in N-decay expts)</td>
<td>$7.2 \cdot 10^{31}$ yr = 1 u (Soudan II)</td>
<td>$7.5 \cdot 10^{32}$ yr (Super-K) $4.8 \cdot 10^{32}$ yr (SNO)</td>
<td>$\times 16$ u (*)</td>
</tr>
<tr>
<td>UCN trap</td>
<td>none</td>
<td>$\sim 1 \cdot 10^9$ s</td>
<td>$\times 100$ u (**)</td>
</tr>
<tr>
<td>Geo-chemical (ORNL)</td>
<td>none</td>
<td>$4 \cdot 10^8 \div 1 \cdot 10^9$ s (Tc in Sn ore)</td>
<td>$\times 20 \div 100$ u (*)</td>
</tr>
<tr>
<td>Cold reactor beam</td>
<td>$8.6 \cdot 10^7$ s = 1 u (@ILL/Grenoble)</td>
<td>$> 3 \cdot 10^9$ s (@HFIR/ORNL)</td>
<td>$\times 1,000$ u (***))</td>
</tr>
</tbody>
</table>
Stability of matter from Neutron-Antineutron transition search

\[T_A = R \times (\tau_{\text{free}})^2, \text{ where } R \text{ is "nuclear suppression factor" in intranuclear transition} \]

- \(T \) (intranuclear transition), years
- \(\tau \) (free neutron), seconds

Graph showing different experimental results and future prospects.
CPT test \((m = \bar{m})?\) in \(n \rightarrow \bar{n}\) transitions

(if the latter can be observed)

\[i\hbar \frac{\partial \Psi}{\partial t} = \hat{H} \Psi, \quad \text{where} \quad \hat{H} = \begin{pmatrix} m_n & \alpha \\ \alpha & m_{\bar{n}} \end{pmatrix}, \quad \Delta m = m_{\bar{n}} - m_n \quad \text{(assuming no external fields)} \]

\[P = \frac{\alpha^2}{\alpha^2 + (\Delta m/2)^2} \cdot \sin^2 \left(\frac{\sqrt{\alpha^2 + (\Delta m/2)^2}}{\hbar} \cdot t_{\text{obs}} \right), \quad \text{where} \quad t_{\text{obs}} < \frac{\hbar}{\Delta m} \]

If \(\alpha \neq 0\), then \(n \rightarrow \bar{n}\) transition exists. If then \(\Delta m\) would be larger than \(\sim 1/t_{\text{obs}}\), the \(n \rightarrow \bar{n}\) transition of free neutrons in vacuum will be suppressed, but the intranuclear \(n \rightarrow \bar{n}\) transitions will not be suppressed significantly more than they already are by the difference of intranuclear potential for neutron and anti-neutron.

\(\Delta m/m\) experimentally known as:

- \(9 \pm 5 \cdot 10^{-5}\) for neutrons
- \(< 8 \cdot 10^{-9}\) for \(e^+\) and \(e^-\)
- \(1.5 \pm 1.1 \cdot 10^{-9}\) for protons
- \(< 10^{-18}\) for \(K^0\)s

With \(n \rightarrow \bar{n}\) transitions the \(\Delta m = m\) can be tested
down to \(\Delta m/m \sim 10^{-23}\), i.e. below the \(m_n/m_{\text{Plank}} \approx 10^{-19}\)
Why we need to search for n-nbar?

If discovered:

- $n \to \bar{n}$ will establish a new force of nature and a new phenomenon leading to the physics at the energy scale of $\sim 10^5$ GeV.
- Will provide an essential contribution to the understanding of BAU.
- New physics emerging from low quantum gravity scale models can be revealed.
- New symmetry principles can be experimentally established: $\Delta(B-L) \neq 0$.
- Further experiments with UCN and free reactor neutrons will allow testing with high sensitivity:
 - whether $m_n = m_{\bar{n}}$ (CPT theorem) with $\Delta m/m \approx 10^{-23}$ \textit{(L. Okun et al.)}
 - gravitational equivalence of baryonic matter and antimatter \textit{(S. Lamoreaux et al.)}

If NOT discovered:

- Within the reach of improved experimental sensitivity a new limit on the stability of matter can be established competitive with that in large nucleon decay experiments.
- Wide class of SUSY-based models will be removed \textit{(K. Babu and R. Mohapatra, 2001).}
Conclusions

Thinking of 2000’s is different from 1980’s:

<table>
<thead>
<tr>
<th>1980’s</th>
<th>2000’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GUT models conserving (B–L) were thought to work for BAU</td>
<td>• Proton decay is not a prediction of baryogenesis! $\Delta(B–L)$≠0 is needed for BAU</td>
</tr>
<tr>
<td>• No indications for neutrino mass</td>
<td>• m_ν ≠ 0 and Majorana nature of neutrino</td>
</tr>
<tr>
<td>• Great Desert from SUSY scale to GUT scale</td>
<td>• No Desert. Possible unification with gravity at $\sim 10^5$ GeV scale</td>
</tr>
</tbody>
</table>

$\rightarrow p \rightarrow e^+\pi^0, p \rightarrow \bar{v}K^+, etc.$

$\rightarrow n \rightarrow \bar{n}, \nu_R, 2\beta 0\nu, n \rightarrow 3\nu, etc.$

→ Future searches should look for $n \rightarrow \bar{n}$ and $B–L$ violation
UCN production technique being developed in Japan offers the best opportunity to search for neutron-antineutron transition and hopefully to discover it …