

Update of *CP* Violation Study in $B^0 \rightarrow \pi^+\pi^-$ decay

KEK seminar,

January 23, 2003,

Outline

- 1. Introduction
- 2. Experimental Apparatus (KEKB & Belle)
- 3. Analysis procedure
 - Event and time reconstruction for $B^0 \rightarrow \pi^+\pi^-$ events
 - Time-dependent analyses
- 4. Results
 - *CP*-asymmetry parameters $A_{\pi\pi}$ and $S_{\pi\pi}$
 - Constraints on the CKM angle ϕ_2
- 5. Conclusion

Brandnew result ! Paper is ready for submission to Phys. Rev. D !

KEK seminar,

January 23, 2003,

1. Introduction

KEK seminar,

January 23, 2003,

KEK seminar,

January 23, 2003,

Time-dependent CP asymmetries in $B^0 \rightarrow \pi^+\pi^-$ -- the best way to access the CKM angle ϕ_2

KEK seminar,

January 23, 2003,

$$A_{\pi\pi} = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1}, \quad S_{\pi\pi} = \frac{2Im\lambda}{|\lambda|^2 + 1},$$
$$\lambda = e^{-2i\phi_{\pi}} \frac{A(\overline{B} \to \overline{f})}{A(B \to f)}$$
$$\mathbf{A}_{\pi\pi} = 0, \quad \mathbf{S}_{\pi\pi} = \frac{\sin 2\phi_2}{2}$$
if "penguin" is negligible

KEK seminar,

January 23, 2003,

Direct *CP* violation in $B^0 \rightarrow \pi^+\pi^-$

Penguin diagram is not negligible at all. $|P/T| \sim 0.3$ (theoretical preference)

Nasty "pollution" for precise ϕ_2 measurements

Wonderful "contribution" for the first observation of direct *CP* violation in *B*-meson decays !

Previous results at Belle

KEK seminar,

January 23, 2003,

- More data ! [85×10⁶ B pairs (78 fb⁻¹)]
- Improvements to the analysis
 - Better track reconstruction algorithm
 - More sophisticated Δt resolution function
 - Inclusion of additional signal candidates by optimizing event selection
- Thorough frequentist statistical analyses using Monte Carlo (MC) pseudo-experiments

2. Experimental apparatus KEKB & Belle

KEK seminar,

January 23, 2003,

Peak Luminosity

Recorded Integrated Luminosity

Aomori U. BINP Chiba U. Chuo U. U. of Cincinnati Frankfurt U. Gyeongsang Nat'l U. U. of Hawaii Hiroshima Tech. IHEP, Beijing ITEP Kanagawa U. KEK Korea U. Krakow Inst. of Nucl. Phys. Kyoto U. Kyungpook National U. U. of Lausanne

Belle Collaboration

Jozef Stefan Inst. U. of Maribor U. of Melbourne Nagoya U. Nara Women's U. National Central U. Nat'l Kaoshiung Normal U. Nat'l Lien-Ho Inst. of Tech. Nat'l Taiwan U. Nihon Dental College Niigata U. Osaka U. Osaka City U. Panjab U. Peking U. Princeton U. Riken Saga U. USTC

Seoul National U. Sungkyunkwan U. U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of A and T. Toyama Nat'l College U. of Tsukuba Utkal U. IHEP, Vienna VPI Yokkaichi U. Yonsei U.

Belle Detector

- Vertex measurement
 - Impact parameter resolution
 - = 55µm for 1GeV/c normal track
 - $\rightarrow \, 100 \mu m$ vertex resolution in z
- Tracking system

 $(\sigma_{pt}/p_t)^2 = (0.19p_t)^2 + (0.30)^2 (\%^2)$

• EectroMagnetic calorimetry photon : $\sigma_E/E \sim 1.8\%$ at $E\gamma \sim 3 \text{GeV}$ electron : e^{\pm} efficiency > 90% $\sim 0.3\%$ fake at p>1GeV/c

Detector performance

- K/π separation
 - CDC dE/dx (σ=6.9%)
 - TOF (σ=95ps)
 - Aerogel Cerenkov counter

Kaon efficiency~84%, mis-id($\pi \rightarrow K$)~5% Pion efficiency~91%, mis-id($K \rightarrow \pi$)~10%

K_L and μ detection
 μ efficiency > 90%
 <2% fake at p>1GeV/c

Analyzed data

85 million BB events (78fb⁻¹) at the Y(4S) resonance recorded by the Belle before the summer 2002 are used in this analysis.

KEK seminar,

January 23, 2003,

KEK seminar,

January 23, 2003,

Event and time reconstruction (1)

KEK seminar,

Event reconstruction

Event reconstruction

$B^0 \rightarrow \pi^+\pi^-$ example

10 cm

 Exp
 13
 Kun
 561
 Form
 0
 Event
 190507

 Eher
 0.00
 Fri Nov
 2.08221208
 2001

 TrgID
 0.DetVer
 0.MagID
 0.Bfeidd
 1.50
 DspVer
 5.10

 Ptot(ch)
 9.7
 Etot(gm)
 0.7
 SVD-M
 0.CDC-M
 0.KLM-M
 0

KEK seminar,

January 23, 2003,

Event and time reconstruction (2)

Event and time reconstruction (3)

January 23, 2003,

0.75

0.75

0.82

0.75

KEK seminar,

January 23, 2003,

Event and time reconstruction (4)

Vertex reconstruction

- The same algorithm as that used for $\sin 2\phi_1$ meas.
- Resolution mostly determined by the tag-side vtx.
- B lifetime demonstration with 85 million B pairs

Example vertices

KEK seminar,

January 23, 2003,

$B^0 \rightarrow \pi^+\pi^-$ candidates

KEK seminar,

January 23, 2003,

Time-dependent analyses

• Now we are able to obtain $A_{\pi\pi}$ and $S_{\pi\pi}$.

- But let's go through several crosschecks before opening the box.
 - Lifetime measurement
 - $B^0
 ightarrow \pi^+\pi^-, \ B^0
 ightarrow K^+\pi^-$
 - $-\Delta t$ asymmetry
 - Sideband (qq), Non-CP sample, $B^0 \rightarrow K^+\pi^-$
 - MC pseduo-experiments

Positively-identified kaons (opposite use of PID)

1371 candidates

January 23, 2003,

Mixing fit using $B^0 \rightarrow K^+\pi^-$: OK !

Consistent with the world average (0.489±0.008) ps⁻¹ PDG2002

KEK seminar,

January 23, 2003,

Lifetime measurements: also good !

Null asymmetry tests: OK !

KEK seminar,

January 23, 2003,

MC pseudo-experiments

Generate events according to the PDF used for the fit \rightarrow

Good linearity over the entire range←

- > Feldman-Cousins approach for $A\pi\pi$ and $S\pi\pi$ confidence regions \leftarrow <u>MC pseudo-experiments to determine acceptance regions.</u>
- > We quote the <u>**rms**</u> values of the $A_{\pi\pi}$ and $S_{\pi\pi}$ distributions in the MC pseudoexperiments as the standard errors of $A_{\pi\pi}$ and $S_{\pi\pi}$.

A_{ππ} error: ±0.27] larger than errors defined by log-likelihood $S_{ππ}$ error: ±0.41] curves in this measurement

▷ PDF is based on data (control samples, sideband) → MC pseudo-experiments are free from possible systematics in Geant-based MC.

KEK seminar,	January 23, 2003,	H.Sagawa(KEK)
		8 1 1 1 1

KEK seminar,

January 23, 2003,

Fit results

Fit results

$$A_{\pi\pi} = +0.77 \pm 0.27(\text{stat}) \pm 0.08(\text{syst})$$

$$S_{\pi\pi} = -1.23 \pm 0.41(\text{stat}) \stackrel{+0.08}{_{-0.07}}(\text{syst})$$

Consistent with previous results

Fit result:outside the physical region $(A_{\pi\pi}^2 + S_{\pi\pi}^2 \le 1)$ Indication of large CP-violating parameters

Then check **how often we are outside physical region** and **significance** next .

How often are we outside the physical region?

Systematic uncertainties

	Αππ		S ππ	
source	+error	-error	+error	-error
Background fractions	+0.058	-0.048	+0.044	-0.055
Vertexing	+0.044	-0.054	+0.037	-0.012
Fit bias	+0.016	-0.021	+0.052	-0.020
Wrong tag fraction	+0.026	-0.021	+0.015	-0.016
$\tau_B, \Delta m_d, A_{K\pi}$	+0.021	-0.014	+0.022	-0.022
Resolution function	+0.019	-0.020	+0.010	-0.013
Background shape	+0.003	-0.015	+0.007	-0.002
Total	+0.08	-0.08	+0.08	-0.07

Systematic error << Statistical error

* Actual estimations were done before seeing the fit result, as we adopted a blind analysis technique.

KEK seminar,

January 23, 2003,

BELLE

Confidence Regions; Evidence for CP Violation

Constraints on the CKM angle ϕ_2

$$\begin{split} A(B^{0} \rightarrow \pi^{+}\pi^{-}) &= -(|T| e^{i\delta_{T}} e^{i\phi_{3}}) + |P| e^{i\delta_{P}}), & \text{convention taken from} \\ A(\overline{B}^{0} \rightarrow \pi^{+}\pi^{-}) &= -(|T| e^{i\delta_{T}} e^{-i\phi_{3}}) + |P| e^{i\delta_{P}}), & \text{Phys. Rev. D65, 093012 (2002)} \\ \lambda_{\pi\pi} &= e^{i\phi_{2}} \frac{1 + |P/T| e^{i(\delta+\phi_{3})}}{1 + |P/T| e^{i(\delta-\phi_{3})}} & \text{4 parameters} \\ & \delta_{\pi\pi} &= [\sin 2\phi_{2} + 2 |P/T| \sin(\phi_{1} - \phi_{2}) \cos \delta - |P/T|^{2} \sin 2\phi_{1}]/R_{\pi\pi}, \\ & A_{\pi\pi} &= -[2 |P/T| \sin(\phi_{1} + \phi_{2}) \sin \delta]/R_{\pi\pi}, \\ & R_{\pi\pi} &= 1 - 2 |P/T| \cos(\phi_{1} + \phi_{2}) \cos \delta + |P/T|^{2} \\ & \delta_{\pi\pi} &= \delta_{P} - \delta_{T} \\ & \text{Strong phase} \\ & \text{difference} \end{split}$$

KEK seminar,

January 23, 2003,

Constraint on ϕ_2

- Confidence region for $S_{\pi\pi}$ and $A_{\pi\pi}$
- Input values for *φ₁* and |P/T|
 > *φ*₁=23.5°(sin2*φ*₁=0.73)
 > |P/T| = 0.3
- \$\overline{\phi_2}\$ constraint w/o isospin analysis !
- > both $A_{\pi\pi}$ and $S_{\pi\pi}$ large
- less restrictive on δ
- > $\delta < 0$ favored
 - \succ no constraint at 3σ

Constraint on ϕ_2

KEK seminar,

January 23, 2003,

Constraint on ρ - η

KEK seminar,

January 23, 2003,

Evidence for CP violation in $B^0 \rightarrow \pi^+\pi^-$! CP conservation ruled out at the 99.93% CL (3.4 σ)

• Large $A_{\pi\pi}$ value indicates direct CP violation. More Belle data will come (x 5 by ~2005) for confirmation.

First constraints (within the SM) on the CKM angle ϕ_2 ! $78^{\circ} \le \phi_2 \le 152^{\circ}$ (95.5% CL) [for 0.15 < |P/T| < 0.45 and $\phi_1 = 23.5^{\circ}(\sin 2\phi_1 = 0.73)$] Consistent with indirect constraints on the unitarity triangle from other measurements.

The best is yet to come.

KEK seminar,

January 23, 2003,