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The observational evidence for dark matter is 
overwhelming

• Observed mass to light ratios increase with cosmic length 
scale: Ωm varies from ~.001 to ~0.3 from solar neighborhood to 
cluster of galaxy scale

• Galactic have flat rotation curves beyond their visible mass 
distributions → extended dark halos

• X-ray emitting gas in hot clusters: mass required to bind gas to 
clusters is much greater than radiatively emitting gas

• Galaxy formation theory: cannot explain the power spectrum of 
galaxies without invoking existence of dark matter
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The observed dark matter must be primarily non-
baryonic and primarily “cold”

• Observed deuterium abundance + big bang puts upper limit in 
baryons Ωb ~ 0.04 << Ωm (MAP Ωb = .032)

• Cold (non-relativistic) dark matter (CDM) is required to obtain 
adequate growth of fluctuations at epoch of recombination so 
that CMB power spectrum and galaxy power spectrum agree

• Hot dark matter (such as light neutrinos) generate too little 
power on small scales to be significant DM source (also ruled 
out by WMAP: universe reionized too early for neutrinos as DM)

• Microlensing searches show massive compact halo objects 
(MACHO) eg. brown dwarf, white dwarf, black hole are a 
negligible contributor to dark matter in our galaxy in mass 
range ~10-7- 10 Msolar
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Several cold dark matter candidates are well-motivated 
by theoretical considerations

Axion: 
• explains why P and PC are conserved in strong interactions but 

not weak interactions
• Current search uses microwave cavity – spans 1 of 3 decades 

of mass where axion can lie

• Supersymmetric (SUSY) dark matter candidates:
• Charginos: ruled out by accelerator and underground searches 

since color and charge would bind to normal matter making 
very heavy isotopes  

• Gravitinos: difficult to rule out
• Neutralino
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The neutralino is a cold dark matter candidate 
particularly well-motivated by SUSY theory

• SUSY solves the mass hierarchy problem between weak scale 
and Planck scale

• To avoid rapid proton decay assume R-parity conservation     
(R = (-1)3B+L+2S) is unbroken → the lightest supersymmetric
particle (LSP) must be stable

~              ~               ~               ~
• Neutralino Χ = a B + b W3 + c H1 + d H2

• Coefficients a, b, c, d depend on common gaugino mass, Higgs 
mass mixing parameter and ratio of Higgs VEV

• For a broad range of SUSY parameters can obtain 
cosmologically significant relic LSP density
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Direct searches for the neutralino are plentiful  

Direct searches rely on neutralino-nucleon elastic scattering and search for a 
recoiling target nucleus

• Working in Xenon: ZEPLIN I 
• Planned in Xenon: ZEPLIN II/III; XENON; XMASS
• Working in Si/Ge: CDMS II, EDELWEISS
• Working in CaW04 : CRESST I; CRESST II (planned)
• Low Z gas: DRIFT I (working), DRIFT II (planned)
• Germanium: GENIUS (planned)
• Argon (planned? )

Must do these experiments deep underground to avoid contamination from tertiary 
muon produce neutrons and secondary atmospheric neutrons



KEK, March 2003
7

Indirect searches can exploit neutralino annihilation, 
since the neutralino is a Majorana particle

• Neutrinos
• Gamma-ray searches with Compton Gamma-ray Observatory 

(continuum) and GLAST (line emission) – not very sensitive

• Positron searches: HEAT reported a high energy bump ~ 1 GeV
(Tarle 2002)

• Antiproton searches with BESS 95 and 97, BESS POLAR

• Antideuteron searches : GAPS ? 
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The low energy antiproton spectrum is adequately fit 

by models without primary antiprotons
• Primaries:

_
χ + χ→ p + p

• Secondaries:
_

p + p → p+p+p+p
_

p + He → p + He + p + p

• Tertiaries:
_
p with diffusive energy loss to 
low energies
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To search for new physics requires ultra-low energy 
antiprotons and this is difficult

• To get new physics (dark 
matter, evaporating black 
holes) must get to low 
antiproton energies BUT

• Solar modulation effects in 
low earth orbit wash out low 
energy antiproton signal: 
must launch satellites out of 
the heliosphere

• Kinematic effects allow 
secondary antiproton signal 
to contaminate spectrum to 
very low energies 

P. Ullio (2000)
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Cosmic antideuterons are an indirect but clear sign of 
dark matter

Antideuteron flux at the earth 
(w/propagation and solar 
modulation)

primary component:
neutralino annihilation

_  _ 
χ+χ→γ, p, D

Secondary component:
spallation

_
p + H → p + H + X + X

_  
p + He→ p + He + X + X

Cleaner signature than antiprotons

Antideuteron flux ~10-8 m-2s-1sr-1GeV-1

Large grasp AΩ [m2 sr] required 

Primary

Secondary
(Spallation)

(SUSY)
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GAPS measures low energy antideuterons produced 
by neutralino annihilation in the mass range  

Mχ ~80-350 GeV

Direct Dark Matter Searches GAPS (3 year Explorer Mission)

GAPS
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GAPS plays a complementary role to direct detection 
neutralino searches
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Current antimatter detection methods exploit particle 
deflection or calorimetery

• Magnetic Spectrometers
momentum (deflection angle in B-field + velocity (TOF)
AMS (2005?), PAMELA (2003), BESS (95, 97), BESS POLAR

• Calorimeters
deposited energy (calorimeter) + velocity (TOF)

Problems:
Heavy mass (magnetic spectrometers)
poor background rejection power (calorimeters)
limited field of view and small effective grasp (both)



KEK, March 2003
14

Gaseous Antiparticle Spectrometer (GAPS) operating 
principles

• Particle identification and energy determination >> spectroscopy
• Velocity measurement by TOF + mass >> energy
• Deceleration of incident particle by dE/dx in degrader and gas
• Capture of antiparticle into exotic atom >> negative charge
• Detection of photons from radiative deexcitation by X-ray detectors
• Well-defined hard X-rays (~20-150 KeV) >>particle ID >>mass
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The atomic physics of GAPS is well understood

• Capture of antiparticle into 
highly-excited state

• Deexcitation via radiative or 
Auger transition (emitting 
electrons)

• Complete depletion of 
bound electrons

• Radiative ladder deexcitation
>> X-rays

• Annihilation with nucleus 
emitting pionic shower
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• All bound electrons are 
depleted via Auger ionization at 
n~ 19 for antideuteron

>> decays only via radiative
deexcitation

Ladder Transitions for
antideuteron in Nitrogen

Operating range for gas 
pressure is determined by:

• Stark mixing (∆n=0 transitions)
• electron refilling

10448.226.2Photon 
energy 
(KeV)

4 → 35 → 46 → 5Ladder 
transition

Atomic physics sets operating range for GAPS gas cell
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Gas and pressure optimization is based on minimizing 
Stark mixing and gas opacity for X-rays

Electron refilling suppresses Stark mixing at high n
Radiative transition rate is higher than Stark mixing rate at low n

→ adjust pressure so that Stark mixing rate is lower than electron refilling 
rate UNTIL radiative rate of X-ray transitions is dominant

Require Γrefill > Γstark while n > n(lines) [this will suppress Stark effect]
Require Γladder >  Γstark when Γladder >  Γrefill [radiative transitions dominate]

• H, He  Stark effect too big

• Xe, Kr photelectric absorption (~Z4) too large

• Conclude N2 ,O2 , Ne, Ar  ~ 5-50 atmospheres
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GAPS atomic physics is complex

• Normal transition Γ(ladder)~ (zZ)4 n-5

• Complete Ionization due to Auger effect when E(ladder) = IK = Z2

Ry

• Stark splitting due to E-field of adjacent atoms leads to critical 
density ώstark(R) =Γladder(n) 
R(n) ~ (zZ)-5/2 n7/2

require R = intermolecular distance > R(n)

• gases Γstark (n) = <NaπR(n)2 v> ~ n7ρT1/2 (zZ)-5

• Γrefill = <ne v σr> ~ ρ σr T1/2 : electron shell refill time
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Total antideuteron losses by nuclear
processes are <~ 5 - 10%

Calculated probability of antideuteron loss by integrating the energy-dependent 
cross section of the following nuclear processes over the particle paths in the 
GAPS detector.

• Direct annihilation
_
D + N → C(Z+1, A+2)

• Coulomb disintegration
_             _    _             
D + N → p + n + N

• Oppenheimer – Phillips process
_
D + N → C’(Z, A+1) or C’’(Z+1, A+1)
Irrelevant because antiproton and antineutron are both attracted to the nucleus 
by Coulomb and strong force
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GAPS background is complicated

• High proton flux, ~109 proton per antideuteron

• Coincidence of proton + 3 photon background is primary problem

• spallation and activation produce beta-particles, neutrons 
(n,gamma),(n,n’)

• gamma-ray from diffuse continuum
Rejection power ~ (τ ∆E)n n = # ladder γ
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Accelerator tests can address fundamental issues 
prior to flight testing

• 6 panels of 4 x 2 NaI(Tl) + PMTs
• NaI 5mm thick
• Carbon composite gas cell
• ~100 g/cm2 degrader

Antiprotons address all 
key physics with simple scaling to
antideuterons

• Yield of ladder transitions as a 
function of gas type and pressure 
(Stark mixing)?

• Fraction of captures with abrupt 
ladder termination?

• Statistical distribution of captures 
into high angular momentum states? 

• Lifetime of antiparticle in exotic 
atom

• Triggers in presence of pionic
shower and exploitation of higher 
energy X-rays in coincidence

• Overall detector performance
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A proposal for accelerator testing has been submitted 
to KEK

Test matrix for GAPS in 
accelerator testing

• O2, N2, Ar, Ne
• 5, 10, 15, 20 atmosphere

Gas Cerenkov counters and 
plastic scintillators to 
provide particle 
discrimination
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Good detection efficiency combined with high 
antiproton intensity allows rapid data taking

1/.021/.021/.021/.0220 atm
1/.021/.021/.021/.0215 atm
1/.021/.021/.021/.0210 atm
1/.021/.021/.021/.025 atm
NeArN2O2

• Test matrix showing number of shifts required to get 6% and 3% 
statistics on the π2 and K2 beam lines respectively

• Higher count rate allows probing > 3 X-ray coincidences
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Background count rate is high at π2 beamline but 
produces little effect on GAPS

• ~10,000 counts/s in π+, π -, p respectively
• Kaons ~ few hundred counts/s
• π – can produce exotic atom in gas but they have too much 

energy to stop in significant numbers; small number of 
interactions are uniquely identified by pionic X-rays

• π+, kaons are too energetic to stop
• Protons stop, but do not produce exotic atoms
• dE/dx loss of particles in gas can produce delta electrons 

which produce bremstrahlung – this process is very rare and 
generally produces a single X-ray event.

We calculated this background using the known delta-electron 
spectrum
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Calculation of antiprotonic X-ray signal in GAPS is 
straightforward

· εa(p) = degrader absorption
· εf = fraction of captures with 3 

X-rays hitting separate cells  
• εx = fraction of captures with 3 

ladder X-rays generated
• εpa = fraction of X-rays 

photoabsorbed in crystal
• R(p) = incident antiproton count 

rate as function of p
• Γ = beam straggling loss
• fp = beam repetition rate
• εu = abs. downstream of 

degrader

Rdet = ( 1 – εa(p)) Γεf εu εpa fp R(p)
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GAPS sensitivity to new physics is obtained by 
maximizing grasp and sacrificing bandwidth

• GAPS degrader leads to 
narrow energy band in which 
antiparticles can be stopped

• Can use several degraders 
to obtain two color 
spectroscopy

• For broad bandwidth survey 
magnetic spectrometers are 
still the detector of choice

GAPS grasp in satellite experiment
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An ultralong balloon mission would cover about ½ of 
the searchable SUSY parameter space where the 

neutralino is likely to be

• ubGAPS concept

9.7 x 10-8Sensitivity (m2

sr s GeV)-1

200 daysMission life

1012Background 
rejection power

0.88 NaIPk. Eff. Grasp
(m2 sr)

0.125-0.36
NaI

Energy band
(GeV/n)

ubGAPS
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GAPS antideuteron search on Explorer class mission 
in low earth orbit

• Probe primary antideuterons at E < 
0.2 GeV

• NASA Explorer mission (total cost = 
199.6 M$)

• Delta II 2420-10 3m rocket
• High latitude orbit (L = 70oN)
• 3 year mission
• Total size = 5 m
• Total weight = 2200 kg
• 27 CZT cells with Nitrogen gas
• Total column density = 5 g/cm2

• Energy band  0.1-0.2 GeV/n
• Peak eff. Grasp 45 m2 sr
• Background rejection 1012

• Imin  2.6 x 10-9m-2 s-1 sr-1 GeV-1

>> 20 times more sensitive than a 
magnetic spectrometer type 
mission
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Antiproton search with GAPS in probe beyond the 
heliosphere can yield new physics too

• Grasp 65 cm2 per channel
• Cube 6 cm per side
• Mass ~ few kilograms
• Argon gas cell

400280Primordial 
black hole
(Maki et.al. 
1996)

10060Neutralino
annihilation

3020Secondary
(no p-p)

100-120 
MeV

40-60 
MeV

Source
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