Recent Physics results from BESII and Future BEPCII/BESIII project

Changchun Zhang Institute of High Energy Physics, Beijing presented at KEK, Tsukuba 20 May 2003

- 1. Introduction
- 2. R measurement
- **3.** J/ψ radiative decays
- 4. New measurements of $\psi(2s)$, η_c and χ_{cJ} states
- **5. BEPCII/BESIII project**
- 6. Summary

The Beijing Electron Positron Collider (BEPC)

A unique e⁺e⁻ machine operating in 2-5 GeV since 1989

- Single bunch, $E_{cm} \sim 2-5$ GeV, $L \sim 1 \times 10^{31}$ /cm²·s at 3.68 GeV
- 5-6 months/year for HEP
- 140mA @ 2.2 GeV, 3 month/year for synchrotron radiation run

The BES Collaboration

Political Map of the World, June 1999

HETMOLA BAYENDIAN Reveals: Control and grant Annuality Million Addition Explore Explore Additional and grant Additional Addita Additional Additional Addit

> University of Hawaii University of Texas at Dallas Colorado State University Stanford Linear Accelerator

USA (4)

Queen Mary University

UK (1)

China (18)

IHEP of CAS Univ. of Sci. and Tech. of China Shandong Univ., Zhejiang Univ. Huazhong Normal Univ. Shanghai Jiaotong Univ. Shanghai Jiaotong Univ. Peking Univ., CCAST Wuhan Univ., Nankai Univ. Henan Normal Univ. Hunan Univ., Liaoning Univ. Tsinghua Univ., Sichuan Univ. Guangxi Univ., Guangxi Normal Univ. Jiangsu Normal Univ.

Korea (4)

Korea University Seoul National University Chonbuk National University Gyeongsang Nat. Univ.

Nikow University Tokyo Institute of Technology Miyazaki University KEK U. Tokyo

Japan

Ann 1999 Statement Statement Statements

BESII Detector

R Measurement in 2-5 GeV

R : directly counts * number of quarks * flavor

* colors

Experimentally

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had}} \cdot (1 + \delta)$$

 $\begin{array}{ll} N_{had}: \mbox{ observed hadronic events} \\ N_{bg}: \mbox{ background events} \\ L: \mbox{ integrated luminosity} \\ \epsilon_{had}: \mbox{ detection efficiency for } N_{had} \\ \delta: \mbox{ radiative correction} \end{array}$

• Hunting for new physics from $a_{\mu} \equiv (g-2)/2$ (muon magnetic anomaly) derivation between E821 at BNL and prediction $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{had} + a_{\mu}^{weak}$ $DH 98 (e^+e^- + \tau + QCD)$ 176.8 ± 7.2

$$a_{\mu}^{had,LO} = \frac{\alpha^{2}(0)}{3\pi^{2}} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{K(s)}{s} R(s)$$

Uncertainty in calculation
mostly from S < 2 GeV region
2nd largest of 2-5GeV
B.Pietrzyk et al., talks at ICHEP2000
A.Martin et al., PLB 492,69(2000)

- Perfect consistency between global fits and the SM (B Pietrzyk, talk at ICHEP2000)
- The Higgs mass can be
- determined from radiative corrections in the SM
- * mainly depends on the top mass and $\alpha(M^2_Z)$.

B. Pietrzyk and H.Burkhardt (1997).

Relative uncertainties of three input parameters in the SM fit

Indirect determination of m_H depends critically on precision of $\alpha (M_Z^2)$

• Reducing the uncertainty of $\alpha (M_Z^2)$

essential for precision tests of the SM $\alpha \equiv \alpha_0 / (1 - \Delta \alpha)$ $\Delta \alpha(s) = \Delta \alpha(s)_{lep} + \Delta \alpha(s)_{had}$

$$\Delta \alpha_{had} \left(M_{Z}^{2} \right) = -\frac{\alpha \left(0 \right) M_{Z}^{2}}{3 \pi} \operatorname{Re} \int_{4 m_{\pi}^{2}}^{\infty} ds \frac{R(s)}{s \left(s - M_{Z}^{2} \right) - i \varepsilon}$$

Dominant uncertainty due to effects of vacuum polarization Measured R values are input to dispersion integral

BES R Measurement

ISR: remove high order effects from

$$\sigma^{\scriptscriptstyle obs}_{\scriptscriptstyle had}$$

Leading order $[O(\alpha^2)]$ \downarrow $\sigma_{had}^{obs} = \sigma_{had}^0 \cdot \overline{\varepsilon}_{had} \cdot (1+\delta)$

all high order contributions

Runs

Year	E	Pts	Single	Separated	Time Spent
	(GeV)		Beam Pts	Beam Pts	(days)
1998	2.6 - 5.0	6	1	6	40
1999	2.0 - 4.8	85	7	24	105

~ 1000 hadronic events per energy point

Initial States Radiative Correction

- Four schemes are compared to calculate ISR.
 - (1) G. Bonneau and F. Martin, NP B 27(1971)387
 (2) F.A. Berends and R. Kleiss, NP B 178(1981)14
 (3) E. A. Kuraev and V.S. Fadin, Sov. J. NP 41(1985)3
 (4) A. Osterheld et al., SLAC-PUB-4160, 1986. (T/E)
- (2) + multi-soft photon = (4)
 - (1) and (4) are consistent
 - within 1% in the continuum region, 1-3% above charm threshold

BES R-scan

Results published:

J.Z. Bai et.al., Phys. Rev. Lett. **88**, 101802 (2002). **69 citations so far**

Systematic Error in R

Contributions to systematic error in %

Ecm	hadron	Lumi	MC	trigger	Radiative	total
(GeV)	selection	7	modeling		correction	
2.000	7.07	2.81	2.62	0.5	1.06	8.13
3.000	3.30	2.30	2.66	0.5	1.32	5.02
4.000	2.64	2.43	2.25	0.5	1.82	4.64
4.800	3.58	1.74	3.05	0.5	1.02	5.14

error dominated by

- hadron selection
- luminosity
- MC simulation

• big error in hadron selection at Ecm=2 GeV

R Below 10 GeV

BES reduces R errors from 15 – 20 % to an average of 6% in the 2 – 5 GeV region.

Before BES R Scan

After BES R Scan

Burkhardt and Pietryzk have updated analysis [Phys. Lett. **B513**, 46 (2001).]

 $lpha^{-1}(M_Z^2) = 128.936 \pm 0.046$ $\Delta lpha_{
m had}^{(5)} = 0.02761 \pm 0.00036$

Previously:

 $\alpha^{-1}(M_Z^2) = 127.90 \pm 0.07 \text{ (PDG1998)}$

Current Status

Shifts Standard Model Higgs mass upward.

The SM Fit to m_H

Current status

• Low energy R values (< 10 GeV) including BES R data and pQCD used to determine $\alpha_s(M_Z)$: $\alpha_s(5 \text{ GeV}) = 0.235^{+0.047}_{-0.047}$ $\alpha_s(M_Z) = 0.124^{+0.011}_{-0.014}$ (0.119(2) in PDG1998) agrees with other determinations, but errors larger. (J. H. Kühn and M. Steinhauser, Nucl. Phys. B619, 588, 2001)

• c quark mass is determined by input BES R data at charm threshold region

 $M_c = 1.304(27) \text{ GeV}$

more accurate than other recent determinations (J.H.Kuhn and M. Steinhauser, hep-ph/0209357)

World J/ ψ and ψ (2S) Samples (10⁶)

 J/ψ Physics

3-gluon

Radiative

Electromagnetic

Via η_c

good lab in studying hadron spectroscopy
good lab for excited baryon states
hunting for glueballs in J/ψ radiative decays

Glueballs

- predicted in QCD
- enhanced in J/ψ radiative decays
- Could mix with $q\overline{q}$

candidates: $f_0(1500)$, $f_0(1710)$ $\xi(2230)$

LQCD calculations

- ground state (0⁺⁺) : 1611±163 MeV

C.Michael : hep-ph/0101287 (2001)

J/ψ radiative decays at BES

- Partial Wave Analysis(PWA) of $J/\psi \rightarrow \gamma K\overline{K} , \gamma \pi^+ \pi^-$
- Enhancement near $p\overline{p}$ threshold from $J/\psi \rightarrow \gamma p\overline{p}$

Based on 58M J/ψ events

$PWA \text{ of } J/\psi \rightarrow \gamma K^{+}K^{-} \text{ and } \gamma K^{0}_{s}K^{0}_{s}$

• $J/\psi \rightarrow \gamma KK$ is very important channel to investigate $f_0(1710)$

BESII preliminary

measurements of $f_0(1710)$

Process	Collaboration	M(MeV)	Γ (MeV)	$J^{_{PC}}$
$J / \psi \rightarrow \gamma \eta \eta$	CBAL (82)	1640 ± 50	220 ⁺¹⁰⁰	2++
$\pi^- p \rightarrow K_s^0 K_s^0 n$	BNL (82)	1771_{-53}^{+77}	200+156	0++
$\pi^- N \rightarrow K_s^0 K_s^0 n$	FNAL (84)	1742±15	57 ± 38	3 <u></u> 3
$\pi^- p \rightarrow \eta \eta N$	GAMS (86)	1755 ± 8	< 50	0++
$J/\psi \rightarrow \gamma K^+ K^-$	MARKIII (87)	1720 ± 14	130 ± 20	2++
$J/\psi \rightarrow \gamma K K \gamma \pi^+ \pi^-$	DM2 (88)	1707±10 1698±15	166±33 136±28	
$pp \rightarrow ppK^{+}K^{-}$ $ppK^{0}_{3}K^{0}_{3}$	WA76(89)	1713±10 1706±10	181±30 104±30	2++
$J/\psi \to \gamma K \overline{K}$	MARKELL (91)	1710 ± 20	186±30	0++
$n\overline{n} \rightarrow \pi^0 nn$	E760 (93)	1748 ± 10	264±25	$(even)^{++}$
$\begin{array}{c} pp \to \pi & \eta\eta \\ J/\psi \to \gamma 4\pi \end{array}$	MARKIII data D.Bugg et al. (95)	1750 ±15	160±40	0++
$J/\psi \to \gamma K^+ K^-$	BES (96)	$1696 \pm 5^{+9}_{-34}$ $1781 \pm 8^{+10}_{-31}$	$103 \pm 18^{+30}_{-11}$ $85 \pm 24^{+22}_{-10}$	2 ⁺⁺ 0 ⁺⁺
$J/\psi \to \gamma K \overline{K}$	MARKIII data W.Dunwoodie(97)	$1704 \begin{array}{c} +16 \\ -23 \end{array}$	124 ⁺⁵² -124	0++
$pp \to p_f(K^+K^-)p_s$	WA1 02 (99)	1730 ±15	100±25	0++
$pp \rightarrow p_f(\pi^+\pi^-)p_s$	Wa102 (99)	1750 ± 25	105±34	0++
$pp \rightarrow K^+ K^- \pi^+ \pi^-$	Wa102 (99)	1710 ± 16	126 ± 24	0++
$pp \rightarrow p_f(K^+K^-)p_s$	WA76 (99)	1710 ± 25	105±34	0++
$pp \rightarrow p_f \eta \eta p_s$	WA1 02 (00)	1698 ± 18	120±26	0++
$J/\psi \rightarrow \gamma 4\pi$	BES (00)	$1740 \begin{array}{c} +20 \\ -25 \end{array}$	135 ⁺⁴⁰ 135 ₋₂₅	0++
$\gamma\gamma \to K^0_S K^0_S$	L3(01)	1767±14	187 ± 60	2++

 $f_0(1710)$:

- long-standing ambiguity 0⁺⁺ or 2⁺⁺
 J^{pc} = 0⁺⁺ favored

PWA of $J/\psi \rightarrow \gamma K^+K^-$ and $\gamma K^0_S K^0_S$

- Global fit and bin-by-bin fit are performed
- 0⁺⁺ is dominant in 1.7GeV region
- Clear f₂'(1525) 2⁺⁺ signal
- Evidence of $f_2(1270)$ 2⁺⁺ seen

Preliminary Results ($J/\psi \rightarrow \gamma K\overline{K}$)

Masses and Widths (statistical errors only):

$$f'_{2}(1525): M = 1518 \pm 6 \text{ MeV}, \Gamma = 84^{+28}_{-24} \text{ MeV}$$

 $f_0(1710): M = 1703^{+8}_{-10} \text{ MeV}, \Gamma = 163^{+27}_{-22} \text{ MeV}$

Preliminary Results $(J/\psi \rightarrow \gamma \pi^+ \pi^-)$

- well known f₂(1270) 2++
- two 0⁺⁺'s at around 1.4 and 1.7 GeV mass regions.

The ratio for $f_0(1710)$:

 $\frac{\Gamma(f_0(1710) \to \pi\pi)}{\Gamma(f_0(1710) \to K\overline{K})} \sim 30\%$

$\psi(2S)$ Hadronic Decays

Expectations: T. Applequist and D. Politzer, Phys. Rev. Lett. 51, 43 (1975).

 $\mathcal{B}(\psi \rightarrow Final \ State) \propto \Gamma(\psi \rightarrow Final \ State)$

 $\frac{\mathcal{B}[\psi(2S) \to X+Y]}{\mathcal{B}[J/\psi \to X+Y]} = \frac{\mathcal{B}[\psi(2S) \to \mu^+\mu^-]}{\mathcal{B}[J/\psi \to \mu^+\mu^-]} f(\alpha_s(s)) = (12.2 \pm 2.0)\%$

$\psi(2S)$ Radiative decays into $_{s_2}(1270)$, $f_{o}(1710)$

 $f_0(1710)$ and hint of $f'_2(1525)$ in charged mode.

$\psi(2S)$ Radiative decays into $f_2(1270)$, $f_0(1710)$

 $f_2(1270)$ in neutral mode.

$\psi(2S)$ Radiative decays into $f_2(1270)$, $f_0(1710)$

Mode	BES	$B(\times 10^{-4})$
$\psi(2S) \rightarrow \gamma f_2(1270) \text{ from } \gamma \pi^+ \pi^-$		$2.08 \pm 0.19 \pm 0.33$
$\psi(2S) \rightarrow \gamma f_2(1270) \text{ from } \gamma \pi^0 \pi^0$		$2.90 \pm 1.08 \pm 1.07$
$\psi(2S) \rightarrow \gamma f_2(1270) \text{ from } \gamma \pi \pi$		$2.12 \pm 0.19 \pm 0.32$
$\psi(2S) \to \gamma f_0(1710) \to \gamma \pi \pi \text{ from } \gamma \pi^+ \pi^-$		$0.301 \pm 0.041 \pm 0.124$
$\psi(2S) \rightarrow \gamma f_0(1710) \rightarrow \gamma K^+ K^-$		$0.302 \pm 0.045 \pm 0.066$
$\psi(2S) ightarrow \gamma f_0(1710) ightarrow \gamma K^0_S K^0_S$		$0.206 \pm 0.094 \pm 0.108$

Final state	BES	$B(\psi(2S) \rightarrow)(\times 10^{-4})$	PDG	$B(J/\psi \rightarrow)(\times 10^{-4})$	$B(\psi(2S))/B(J/\psi)$
$\gamma f_2(1270)$		$2.12 \pm 0.19 \pm 0.32$		13.8 ± 1.4	$(15.4 \pm 3.1)\%$
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$		$0.302 \pm 0.045 \pm 0.066$		$4.25^{+0.60}_{-0.45}$ [8]	$(7.1^{+2.1}_{-2.0})\%$

Decays are consistent with 12% rule.

Discussion

- **PWA** is performed
- $\bullet \quad \text{for} \quad J/\psi \to \gamma K^+ K^-, \gamma K_s^0 K_s^0, \gamma \pi^+ \pi^-$
- $f_0(1710)$ **0**⁺⁺ is confirmed with large statistics
- Both $\pi^+\pi^-$ and $K\overline{K}$ decays of $f_0(1710)$ are observed
- First observation of f₀(1710)
 in ψ(2s) radiative decay
 Ratio of ψ(2s) over J/ψ follow 12% rule

Observation of an enhancement near $p\overline{p}$ threshold in $J/\psi \rightarrow \gamma p\overline{p}$

Besides η_c peak, there is a clear enhancement near threshold.

Backgrounds

Large background from $J/\psi \rightarrow \pi^0 p \overline{p}$ • With asymmetric $\pi^0 \rightarrow \gamma \gamma$ decay

Selected $J/\psi \rightarrow \pi^0 p\overline{p}$ events • from data sample and MC • Suvived from $J/\psi \rightarrow \gamma p\overline{p}$ cuts

No clear enhancement near threshold

Fit to the structure near threshold

 $M_{p\bar{p}} - 2m_p$ distribution : data points a) background shape from $J/\psi \rightarrow \pi^0 p \overline{p} MC$ fit with S-wave BW + bg ... detection efficiency b) Weighted by q0/q removing kinematic threshold behavio (see : hep-ex/0303006, 3 Mar 2003)

Its Mass $M = 1859 \pm_{10}^{3} (stat) \pm_{25}^{5} (sys) MeV$ width $\Gamma < 30 Mev$ at 90% CL

Discussion

- An enhancement in $M_{p\bar{p}}$ distribution observed
- ✤ near pp threshold
- from J/ψ radiative decay
- $p\overline{p}$ molecular state?

>

- no similar structure in $J/\psi \rightarrow \pi^0 p \overline{p}$
- 0⁻⁺ glueball?
 Dynamical effect?
 - \Rightarrow why so close to $2m_p$? \Rightarrow no evidence in $\gamma \Lambda \overline{\Lambda}$ or $\gamma \Xi^+ \Xi^$
 - search for other decay modes

 \Rightarrow pp system with different quantum number **Belle** observed enhancement in pp invariant mass

near $2m_p$ from $B^+ \to K^+ p\overline{p}$ and $\overline{B}{}^0 \to D^0 p\overline{p}$

Phys.Rev.Lett. 88,181803(2002); Phys.Rev.Lett. 89, 151802(2002).)

Status of $\xi(2230)$ at BES II

- No clear evidence of ξ(2230) was observed.
- All possible problems are still being checked

$\psi(2S)$ scan

Purpose: Improve accuracies of ψ (2S) parameters: Γ, Γ_h , Γ_μ , $\Gamma_{\pi\pi J/\psi}$, B(h), B(μ), and B($\pi^+ \pi^- J/\psi$).

Group	ут	$\Gamma(\text{KeV})$	$\Gamma_h({ m KeV})$	$B(\mu\mu)(10^{-3})$	$B(\pi^+\pi^-J/\psi)~(\%)$
MARKI	75	228 ± 56	224 ± 56	9.3 ± 1.6	32 ± 4
SPEC	75			7.7 ± 1.7	
DASP	79	202 ± 57		9.9 ± 3.2	36 ± 6
E760	92	306 ± 39			
E760	97			8.3 ± 0.86	28.3 ± 2.9
E835	00			7.4 ± 0.53	
PDG	00	277 ± 31		10.3 ± 3.5	31.0 ± 2.8

Ψ(2S) → μ⁺ μ⁻ and Ψ(2S) → π⁺ π⁻ J/ψ are important for identifying Ψ(2S) decays in B-factory and other experiments.

$\psi(2S)$ scan

- 24 energy points from 3.67 to 3.71 GeV
- Integrated luminosity : 1.15 pb⁻¹
- Four channels: $\psi(2S) \rightarrow$ hadrons, $\mu^+ \mu^-$, $e^+ e^-$, and $\pi^+ \pi^- J/\psi$

Scan of $\psi(2S)$ resonance

Fitting

- Fit with input of σ_h(W), σ_{ππ J/ψ}(W), σ_{ee}(W), and σ_{μμ}(W)
 Include effects of
- Assume that

a)
$$\Gamma_{ee} = \Gamma_{\mu\mu} = \Gamma_{\tau\tau} / 0.3885$$

b) $\Gamma_t = \Gamma_h + \Gamma_{\mu\mu} + \Gamma_{ee} + \Gamma_{\tau\tau}$

- Fit Γ_h, Γ_{µµ}, Γ_{ππ J/ψ}, M(ψ(2S)), Δ, and R simultaneously
 Consistency check:
 - $R = 2.15 \pm 0.17$ consistent with
 - $R = 2.25 \pm 0.06$ at 3.55 GeV from BES R measurement
 - $\Delta = 1.298 \pm 0.007$ agrees with expected beam spread

Fitting Result

Parameter	BES	MARK I	PDG2002
Γ_t (keV)	264 ± 27	228 ± 56	300 ± 25
Γ_h (keV)	258 ± 26	224 ± 56	
$\Gamma_{\pi\pi J/\psi}$ (keV)	85.4 ± 8.7		
Γ_{μ} (keV)	$\textbf{2.44} \pm \textbf{0.21}$	2.1 ± 0.3	2.19 ±0.15
B_h (%)	$\textbf{97.8} \pm \textbf{0.15}$	98.1±0.3	98.10 ±0.30
$B_{\pi\pi J/\psi}$ (%)	32.3 ± 1.4	32 ± 4	30.5 ± 1.6
B_{μ} (%)	$\boldsymbol{0.93 \pm 0.08}$	0.93 ±0.16	0.7 ±0.09

Phys. Lett. B550, 24 (2002)

Discussion

* $\psi(2S)$ total width shifted by 12% Γ_t : 300 KeV ----

264 KeV

Sirst measurement of $\Gamma_{\pi\pi J/\psi}$

η_c Parameters

- Precise $m_{J/\psi}$ $m_{\eta c}$ needed for QCD potential models
- But η_c mass not well determined: CL = 0.001 (PDG02)

Measurement of η_c width

Exp.	Туре	Year	Value (MeV)
Crys. Ball	$J/\psi, \psi(2S) \to \gamma X$	1986	11.5 ± 4.5
MARKIII	$J/\psi o \gamma p ar p$	1986	$10.1\substack{+33.0\-8.2}$
SPEC	$ar{p}p o \gamma\gamma$	1987	$7.0^{+7.5}_{-7.0}$
E760	$ar{p}p ightarrow \gamma\gamma$	1995	$23.9^{+12.6}_{-7.1}$
BESI	$J/\psi, \psi(2S) \to \gamma X$	2000	$11.0 \pm 8.1 \pm 4.1$
CLEO	$e^+e^- \to \gamma\gamma$	2000	$27.0\pm5.8\pm1.4$
PDG2002		2002	$16.0^{+3.6}_{-3.2}$

η_c signals in 5 decay channels

Fit with 5 channels combined

$$M_{\eta_c} = 2977.5 \pm 1.0 \pm 1.2 \text{ MeV}/c^2$$

$$\Gamma_{\eta_c} = 17.0 \pm 3.7 \pm 7.4 \text{ MeV}/c^2$$

BES:

PDG values: (2002) : $M_{\eta_c} = 2979 .7 \pm 1.5 \text{ MeV}/c^2$ $\Gamma_{\eta_c} = 16.0^{+3.6}_{-3.2} \text{ MeV}/c^2$

$\chi_{cJ} \to \Lambda \overline{\Lambda}$ from $\psi(2s) \to \gamma \chi_{cJ}$

- Color Octet Mechanism (COM) in QCD important for P-wave quarkonium decays
- BES $\Gamma(\chi_{c0})$ agrees with COM

BBL, Phys.Rev. D51,1125(1995);
HC, Phys.Rev.D54,6850(1996);
BKS, Phys.Lett.B392,198(1997).

Phys.Rev.Lett. 81,3091(1998)

 COM + baryon wave-function agree with existing measurements

Generalizing to other baryons, partial widths of other baryons can be predicted:

 $\Gamma(\chi_{cJ} \to \Lambda \overline{\Lambda}) \approx \Gamma(\chi_{cJ} \to p\overline{p})/2 \quad \text{for } \chi_{c1} \text{ and } \chi_{c2}$

S.M.Wong, Eur. Phys. J C14, 643 (2000)

from $\psi(2s) \rightarrow \gamma \chi_{cJ}$

$m(\Lambda \Lambda$ -bar) plot

X

 $\chi_{cJ} \to \Lambda \overline{\Lambda}$ from $\psi(2s) \to \gamma \chi_{cJ}$

Main backgrounds: a) $\psi(2s) \rightarrow \Lambda \overline{\Lambda}, \Sigma^{0} \overline{\Sigma}^{0}$ b) $\psi(2s) \rightarrow \gamma \chi_{cJ}$ with $\chi_{cJ} \rightarrow \Sigma^{0} \overline{\Sigma}^{0}$

fixed in fit :

- background shape (MC)
- detector resolutions (MC)
- χ_{cJ} widths to PDG

floating in fit:

Background level

Fitted masses agree with PDG

exp	$M(\chi_{c0})$	$M(\chi_{c1})$	$M(\chi_{c2})$
	(MeV / c^2)	(MeV / c^2)	(MeV / c^2)
BES	3425.6±6.3	3508.5±3.9	3560 .3 ± 4.6
PDG	3415.1±0.8	3510.51±0.12	3556 .18 ± 0.13

 $\chi_{cJ} \to \Lambda\Lambda$ from $\psi(2s) \to \gamma \chi_{cJ}$

- $N_{\psi(2s)}$ estimated from $\psi(2s) \rightarrow \pi \pi J / \psi, J / \psi \rightarrow p\overline{p}$
- some systematic errors cancel

Results	quantity	χ_{c0}	χ_{c1}	χ_{c2}
I CSUITS	n^{obs}	$15.2^{+4.2}_{-4.0}$	$9.0^{+3.5}_{-3.1}$	$8.3^{+3.7}_{-3.4}$
	ε (%)	6.07 ± 0.24	6.65 ± 0.25	6.09 ± 0.24
	$N_{\psi(2S)}(10^6)$		14.9 ± 1.2	
	${\cal B}(\Lambda o \pi^- p)$		0.639 ± 0.005	
1 Call	$\mathcal{B}(\psi(2S) o \gamma \chi_{cJ})$ (%)	8.7 ± 0.8	8.4 ± 0.7	6.8 ± 0.6
BES	${\cal B}(\chi_{cJ} o \Lambda \overline{\Lambda})(10^{-4})$	$4.7^{+1.3}_{-1.2}\pm1.0$	$2.6^{+1.0}_{-0.9}\pm0.6$	$3.3^{+1.5}_{-1.3}\pm 0.7$
	$n^{obs}_{\pi^+\pi^-J/\psi}$		1826 ± 44	
	$arepsilon_{\pi^+\pi^- J/\psi}$ (%)		17.88 ± 0.12	
PDG	$B(\chi_{CJ} \rightarrow p p-bar)(10^{-4})$	2.2 ± 0.5	0.72 ± 0.13	0.74 ± 0.10

- **BES** central value is higher than COM/QCD prediction on $\Gamma(\chi_{cJ} \to \Lambda \overline{\Lambda}) \approx \Gamma(\chi_{cJ} \to p\overline{p})/2$ but big error
 - More data is still required for clarification

BEPCII Double Ring Design

To compete with CESRc, the double ring as final design:

- Design Luminosity $\sim 10^{33}$ cm⁻² s⁻¹
- Estimated Cost ~ 80M US\$
- Less technical challenges
- More physics potential: J/ψ and $\psi(2s)$

Beam energy range	1–2 GeV	
Optimized beam energy region	1.89GeV	
Luminosity @ 1.89 GeV	$1 \times 10^{33} \mathrm{cm}^2 \mathrm{s}^{-1}$	
Injection from linac	E_{inj} =1.55 ? .89GeV 50mA/min for e ⁺	
Dedicated SR operation	250 mA@2.5 GeV	

Double Ring

- Build new ring inside existing BEPC tunnel
- Two rings cross at two IR
- large crossing angle: 11 mrad.
- 93 bunch / ring with total current $\sim 1A$
- Lumi. estimated ~ 10^{33} cm⁻²s⁻¹ @ 1.89 GeV

 \Rightarrow Competitive to CESRc

• SR run uses both RF systems: 250 mA @ 2.5 GeV

BEPCII Main Parameters

Parameter	'S	Unit	BEPCII	BEPC
Operation energy (<i>E</i>)		GeV	1.0–2.0	1.0–2.5
Injection energy	y (E _{inj})	GeV	1.55–1.89	1.3
Circumferenc	e (<i>C</i>)	m	237.5	240.4
β^* -function at IP	$(\boldsymbol{\beta}_x^*/\boldsymbol{\beta}_y^*)$	cm	100/1.5	120/5
Tunes (v_x/v_y)	(v_s)		6.57/7.61/0.034	5.8/6.7/0.02
Hor. natural emitt	$\operatorname{ance}\left(\varepsilon_{x0}\right)$	mm·mr	0.14 @1.89 GeV	0.39 @1.89 GeV
Damping time ($(\tau_x/\tau_y/\tau_e)$		25/25/12.5 @1.89 GeV	28/28/14@1.89 GeV
RF frequency (<i>f_{rf}</i>)		MHz	499.8	199.533
RF voltage per ring (V_{rf})		MV	1.5	0.6–1.6
Bunch number	r (N _b)		93	2×1
Bunch spaci	ing	m	2.4	240.4
Ream current	Colliding	mA	910 @1.89 GeV	~2×35 @1.89 GeV
Deam current	SR	IIIA	250 @ 2.5GeV	130
Bunch length (cm) <i>o</i> į	cm	~1.5	~5
Impedance 2	Z/n ₀	Ω	~ 0.2	~4
Crossing angle		mrad	±11	0
Vert. beam-beam param. ξ_v			0.04	0.04
Beam lifetir	ne	hrs.	2.7	6–8
luminosity@1.8	9 GeV	$10^{31} \text{cm}^{-2} \text{s}^{-1}$	100	1

Key Technologies

- Injector upgrading
- 500 MHz SC RF System
- SC Micro-b Quads and IR
- Low Impedance Kickers
- Vacuum System
- Cryogenic system
- Power Supply System
- Instrumentation Upgrade
- Control Upgrade: EPICS

to adapt Lumi. 10³³cm⁻² s⁻¹ and bunch spacing 8ns, hardware trigger rate: 4000 Hz

BES III design

- > New detector
- Performance significantly improved
 - Detection efficiency for photon
 - particle IDentification
 - detector solid angle acceptance
 - Interaction Region to fit SC Q magnets

BESIII may compete with CLEOc

BES III Expected Event Rates

Particle	Energy	Single Ring (1.2fb ⁻¹)	Double Ring (4fb ⁻¹)
D ⁰	ψ″	7.0×10 ⁶	23×10 ⁶
D +	ψ″	5.0×10 ⁶	17×10 ⁶
Ds	4.14GeV	2.0×10 ⁶	4×10 ⁶
τ+τ-	3.57GeV 3.67GeV	0.6×10 ⁶ 2.9×10 ⁶	2×10 ⁶ 9.6×10 ⁶
J /ψ		3-4×10 ⁹	6-10×10 ⁹
ψ		0.6×10 ⁹	2×10 ⁹

DAQ: Event rate = 3KHz Throuput ~ 50 MB/s

- Reducing sys. error , getting high statistics photon measurement, PID...
- Increasing detector acceptance

Comparison between BESIII and CLEOc

Sub- system	BES III	CLEOc
	σ _{XY} (μm) = 130	110-130
MDC	△P/P (⁰/₀) = 0.5 %(1 GeV)	0.5 %(1 GeV)
1 million	σ _{dE/dx} (⁰/₀) = 6-7 %	6%
EMC	△ E/√E(⁰/ ₀) = 2.3 %(1 GeV)	2.3 %(1 GeV)
a summer of	σ _z (cm) = 0.5cm/√E	0.5 CM /\E
TOF	σ _τ (ps) = 90 ps Barrel 110 ps endcap	RICH
μ counter	9 layers	3layers
magnet	1.0 tesla	1.0 tesla

Physics expected from BESIII

BEPCII's luminosity

- Increased by two-orders of magnitude from BEPC
- Factor of 3 7 of CLEOc's
- BES III can obtain

important and interesting results in tau-charm physics Examples:

- Precise measure CKM parameters
- Precise **R** measurement
- Search for glueballs, determine spin and parity
- Search h'_c and 1P_1

Precise measurement of CKM matrix

- Determine V_{cd} & V_{cs} from pure- and semi-leptonic decays of charmed mesons
- Determine V_{cb} from hadronic decays of charmed mesons
- Measure f_D and f_{Ds} for determining V_{td} and V_{ts}
- Measure semi-leptonic shape of D and Ds for V_{ub}
 CKM unitarity check

Br. Fractions of D decays (involving leptons)

Decay Mode	Input Br(%)	Measured Br(%)(80 pb ⁻¹)	Relative Error (stat.)(5 fb ⁻¹)
$D^0 \to K^- e^+ v_e$	3.4	3.36 ± 0.13	069/
$D^0 \rightarrow K^- \mu^+ \nu_{\mu}$		3.59 ± 0.17	0.0 %
$D^0 \rightarrow \pi^- e^+ \nu_e$	0.4	0.42 ± 0.04	1 50/
$D^0 \rightarrow \pi^- \mu^+ \nu_\mu$	0.4	0.41 ± 0.05	1.3%
$D^+ \rightarrow \overline{K^0} e^+ \nu_e$	0 5	8.8 ± 0.8	1 50/
$D^+ \rightarrow K^0 \mu^+ \nu_{\mu}$	0.0	7.7 ± 1.0	1.5%
$D^+ \rightarrow \mu^+ \nu_{\mu}$	0.03	$4\pm\sqrt{4}$	~ 340 events
· · ·	$f_{\rm D} = 220 {\rm MeV}$	events	δ f_D/f_D ≈3%

Error in R measurement

Error Source	BESII reach(%)	BESIII goal(%)
Luminosity	2 - 3	1
Selection effi.	3 - 4	1 - 2
Trigger effi.	0.5	0.5
Radiation corr.	1 - 2	1
Model of hadron decay	2 - 3	1 – 2
Statistical	2.5	
Total error	6 – 7	2 - 3

Glueball search xi(2230)

J/ψ → γηη ' η -> γγ η ' → γρ⁰ → γ π⁺π⁻

assuming four resonances[:] f0(1500), X(1910), X(2150), ξ(2230)

Partial Wave Analyses:Spin-parity

Search for ${}^{1}P_{1}$

$$\begin{split} \psi(2\mathbf{S}) & \rightarrow \pi^{0-1} \mathbf{P}_{1} \rightarrow \gamma \gamma \gamma \eta_{c} \rightarrow \gamma \gamma \gamma \ 4K \\ \text{Br} = (\mathbf{1.2} - \mathbf{3.3}) \times \mathbf{10^{-6}} \\ \text{Background: } \psi(2\mathbf{S}) \rightarrow \gamma \ \chi_{c1}, \ \gamma \chi_{c2,,,} \ \eta \psi, \\ \pi^{0} \pi^{0} \psi \end{split}$$

> 15000 evts/year

450-1200 evts/year

Schedule

- China government approved BEPCII Feb 2003
- Construction started by Spring of 2003
- Summer of 2004 : Linac upgrade + remove BESII detector
- BEPC shutdown for installation : Apr Dec 2005
- Tuning of Machine without detector : Jan May 2006
 BESIII detector moved into IR, Jun Aug 2006
- Machine-detector tuning Sep Dec 2006
 Physics run by end of 2006

The budget estimated : 640M RMB (77M US\$) 46 M > Linac: 239 M >Machine: **Detector:** 219 M >Utility and infrastructure: 106 M Contingency **30 M** Funding agency and CAS : 600 M, covering most of cost of machine and about ³/₄ of the cost of the detector. Intl. Contribution and collaboration needed

Inter. Collab. on BEPCII / BESIII

- Inter. collaborators are encouraged to join in facing technical challenges, improving detector performance and extracting physics results
- **BESIII** is competitive in frontier field of tau-charm physics with its precise measurements
- Many physicists from Japan, US and EU show strong interest to join in both collaboration and technical transfer
- Major items for China US HEP cooperation are made

• BES R has significant impact on Higgs mass expectation from the SM fit.

- Results of interesting states, f0(1710) and enhanced signal near pp_bar threshold, from J/ψ radiative decays are presented.
- Our measurements of $\psi(2s)$, η_c and χ_{cJ} are new input data for test of QCD models.

• BESIII with high performance will face new challenge in precise measurement of tau-charm physics in 2006/2007

Thank You!

ιÜ