Particle production at HERA

S.Chekanov Argonne National Laboratory

KEK seminar (Feb. 2004)

Proton 820/920 GeV

Electron/positron 27.6 GeV

Commissioned in 1992 Number of produced papers ~ 200 HERA II: 2001-2002 - prospects: ~ 1 fb⁻¹

HERA experiments

DIS variables

s: *e*-*p* c.m. energy

 $\sqrt{s} = 300 - 318 \, GeV$

- Q² = -q²: 4-momentum transfer squared
- x: fraction of proton momentum carried by quark
- y: scaled energy transf.
- *W*: γ -*p* c.m. energy

 $Q^2 \rightarrow 0$: photoproduction at large W(~200 GeV)

Theory

- Hadronisation one of the central mysteries of QCD
 - Not calculable directly in pQCD
- Plenty of analytical and numerical models based on general properties of QCD are available;
- Monte Carlo models are very useful:
 - JETSET/PYTHIA: Lund string fragmentation
 - HERWIG: Cluster fragmentation
 - etc..

- Simulate transition regions where partons transform into hadrons;
- Solve problem of multiple hadron production (difficult to solve analytically!);
- As time goes by, more QCD is incorporated;
- But large number of tunable parameters, little predictive power, especially with respect to particle spectroscopy

Highlights of this talk

- Leading mesons as a test of the proton structure;
- Cross sections of identified mesons; Universal law ?
- Multihadron production as a test of pQCD dynamics and hadronisation;
- Bose-Einstein effect universal final-state interaction?
- Particle spectroscopy:
 - Search for glueballs;
 - Search for pentaguarks

Leading mesons (best way to learn the Breit frame)

Leading mesons: p_{meson} ~ p_{quark} x_p=p/2Q ~ 1

Direct access to the proton structure

Detection of mesons with strangeness may allow the reconstruction of the strange "sea" due to quantum fluctuations

<u>Example:</u>

Rate of $\varphi(1020)$ mesons (~ss) should be sensitive to:

- Strange density inside proton x QED matrix element (known)
- Strangeness suppression factor (in $\Lambda_s = P_s / P_{u,d}$) modeled in Lund string model

Leading Φ(1020) mesons in DIS

Leading Φ(1020) mesons in DIS

hep-ex/0211025

Monte Carlo models have large uncertainty at low x_p region (sensitive to QCD effects!)

... but know very well what happens if the strange sea is OFF !

Data at large x_p are described by MC with CTEQ5L/GRV98 parameterization for strange sea

Direct evidence for strange sea via identified mesons

Spectra of identified mesons

- How to describe the production rates of identified hadrons?
- MC simulations have many (tunable) parameters to do this...
- In hadron collisions (at central values of rapidity) particle production is governed by the fundamental properties of the QCD vacuum;
- Latest H1 studies try to understand this issue by reconstructing neutral mesons using photoproduction sample (W=210 GeV)

η->2γ (Lar CAL) ρ^0 , $f_0(980)$, $f_2(1270)$ (-> π^+ π^-)

Spectra of identified mesons

- All cross sections follow the same power law as a function of p_T + m;
- (2j+1) spin counting factor is needed;
- Note: pions were not measured directly, but their rate was derived from charge multiplicity;
- p^o mass shift? (LEP observation)

Supports a thermodynamic picture in high-energy collisions

Unresolved problem in strangeness production

Strangeness production in e^+e^- can be well described by the LUND model with $\Lambda_s=0.3-0.4$ (LEP, SLD)

• Overwhelming evidence from HERA - Λ_s =0.20-0.24 (ZEUS, H1)!

Why strangeness suppression is higher for ep?

From single particle to multihadron system

- Multihadron production: analytical vs Monte Carlo models:
 - Most observables based on counting individual particles are infrared/collinear unsafe - sensitive to QCD cutoffs Q₀
 - In analytical QCD this cutoff is set to pion mass (LPHD hypothesis)
 - Parton showers in Monte Carlo models are terminated at $Q_0 \sim 1 \text{ GeV}$
 - Hadronisation stage also depends on Q_0 (should be tuned for each Q_0 value)

Main progress of the past decade:

Multihadron dynamics at high energies is driven by pQCD assuming LPHD hypothesis ("soft hadronisation")

-> Multiplicities, fragmentation functions, some correlations, global event shape variables ..

Multihadron correlations: example when LPHD fails

- Restricting particle transverse momenta with respect to original parton leads to a Poisson multiplicity distribution (all factorial moments F_q are close to unity);
- derived in analytical pQCD
 S.Lupia,W.Ochs,J.Wosiek, NP B580 (1999) 405
- MC models contain this effect

Data show rise with decrease of $p_{\scriptscriptstyle T}$! Clear deviation from LPHD

Hadronisation effects:

- 1) important at low p_T ;
- 2) reproduced by MC models !

Bose-Einstein correlations: example when MC fails

- Consider two π⁺ with p₁ and p₂:
 QM probability of finding a pion pair
 <|A|²> = 1 + <cos[(p₁-p₂)(r₁-r₂)]>
- For Gaussian weight function: $\rho(x_1, x_2) = (2\pi r^2)^{-3} exp(-(x_1^2 + x_2^2)/2r^2)$ $< |A|^2 > = 1 + exp(-(p_1 - p_2)r^2)$

where r is the size of the production source

Simple way to measure: $R(p_1, p_2) = N^{pairs}(\pm, \pm)/N^{pairs}(\pm, -)$

Fit using: $R=1+\lambda \exp(-r^2 Q_{12}^2)$; $Q_{12}^2=-(p_1-p_2)^2$

MC simulation does not contain the effect (but can mimic it using a given correlation function)

Bose-Einstein correlation

DIS and e^+e^- agree

Some (small) differences between DIS and hadron-hadron productions

BE effect universal?

Best way to check – use a single experiment to verify this!

S.Chekanov (ANL): "Particle production at HERA" (KEK seminar, Feb. 2004)

Bose-Einstein correlations: two interpretations

1) BE effect reflects size of the production region:

Production region decreases with increase of Q^2

2) BE contains no information on hard subprocess:

BE effect does not depend on Q^2 as assumed by the Lund fragmentation model, but is sensitive to a "string tension"

Bose-Einstein correlations as a function of Q²

hep-ex/0311030

BE does not depend on Q^2

Current and target regions show the same strength of the BE effect

BE effect does not depend on hard subprocess - universal property of hadronisation stage

Constituent Quark Model (CQM) describes:

- Mesons as bound state of a quark and an antiquark: $q\bar{q}$ (q=u,d,s)
- Baryons as bound state of three quarks: QQQ

+absence of baryons with strangeness S=+1

CQM does not predict more complicated states, but can accommodate them!

<u>Examples:</u>

- Excitations of QCD vacuum (glueballs): <u>gg</u>, <u>etc.</u>.
- States with an excited gluon (hybrids): QQQ, QQQQ
- Multiquark states: QQQQ, QQQQQ ... (could have S=+1)

Search for glueballs

- Lattice QCD predicts:
 - Scalar glueball with mass ~ 1700 ±100 MeV
 - Tensor glueball with mass ~ 2400 ±100 MeV
- Scalar glueballs can mix with qq states with J^{PC}=O⁺⁺
 - 4 states with J^{PC}=0⁺⁺ and I=0 were established:
 f₀(980), f₀(1370), f₀(1500), f₀(1710)
 - no general agreement which meson should go where

- $f_0(1710)$ most frequently considered as a glueball candidate (WA102)
 - most recent measurement by L3 at LEP
 - gluon content is not yet established!

Look at production rates in gluon- and quark-reach regions!

Search for glueballs: ZEUS results

Search for glueballs

Clear signals at:

● 1726±7 MeV

Γ=38⁺²⁰_-14 MeV

- 1537±9 MeV
 Γ=50⁺³⁴₋₂₂ MeV
- + "enhancement" at 1270-1320 MeV

Consistent with the PDG for peak positions, but the PDG reports Γ =125±10 MeV for f₀(1710)!

Signal at 1710 MeV is mainly in the target fragmentation region of the Breit frame (gluon-reach region!)

Search for pentaquarks

- Significant interest in baryon spectroscopy triggered by recent observations of possible pentaquark at 1530 MeV and width <15 MeV, predicted by D.Diakonov, V.Petrov and M. Polyakov within the Chiral Quark Soliton model;
 - Baryons are rotational states of the soliton nucleon in spin and isospin space
 - Predicted spin 1/2, isospin 0, strangeness S=+1
 - lightest baryon has quark structure uudds, and called Θ⁺
 - Very narrow CQM cannot explain this, the soliton model can!

In this talk I'll discuss recent measurements by HEPMES and ZEUS, both experiments attempted to find such a state by reconstructing K⁰-(anti)proton invariant mass

S.Chekanov (ANL): "Particle production at HERA" (KEK seminar, Feb. 2004)

 $\Theta^+ \rightarrow K_p \text{ or } K^+ n$

Recent HERMES results (hep-ex/0312044)

Resolution: δp/p=1.4-2.5%

Particle identification: TRD + RICH

 $e+D \longrightarrow \Theta^+ + X \longrightarrow K_s p + X$

- Quasi-real photoproduction on deuterium;
- Positron beam E=27.6 GeV, 250 pb⁻¹ lumi
- K_s reconstructed using decay length;
- Λ(1116) removed;
- Kinematic range: 4-9 GeV (protons), 1-15 GeV(pions)

Recent HERMES results (hep-ex/0312044)

- A few different models for background ->
- Several ways to determine the significance:
 Significance ranges from 3.4 to 6.3 σ
- Peak=1528 ± 2.6(stat.)±2.1(syst.) MeV
- Width may be larger than the experimental resolution: 4.2-6.3 σ
- No signal for pK⁺ channel (not isotensor)

Further evidence for the existence of possible pentaquark

- ZEUS is a colliding experiment high energies !
- → Easiest way to reconstruct Θ⁺ use the ZEUS central tracking region, where the particle production is dominated by fragmentation.

(anti)proton candidates were reconstructed using primary tracks taken f< dE/dX <F

- found from a visual examination of dE/dX;
- verified using a sample with reconstructed Λ ;
- (anti)protons from ARIADNE have a similar band.

Most protons are concentrated in the region $p \sim 0.8-2$ GeV:

Large pion background

Reject tracks with p>1.3 GeV inside the dE/dX band;

- Assign pion mass to proton candidate, reconstruct $K^0\pi$ mass, rejects pions; from K^* : 800 < M($K^0\pi$) < 980 MeV;
- E(proton)>E(K^o);
- P_T>0.5 GeV in the Breit frame to look at gluon-rich DIS region (applied posteriori!)

Combined sample: 372±75 candidates peak=1527±2(stat.) MeV, W=10 ±2(stat.) MeV

Σ(1480) bump?

K°-antiprotons: 126±50 candidates peak=1529±3(stat.) MeV, W=7±3 (stat) MeV

$\Sigma(1480)$ bump?

K°-protons: 393±86 candidates peak=1523±3(stat.) MeV, W=16 ±3(stat) MeV

Note: if the width is fixed to ~ 10 MeV, the fit is still OK

- A signal at 1527±2(stat.) MeV, with a Gaussian width of 10±2 MeV:
 - ~ 5 σ statistical significance (from Gaussian fit);
 - exists for both K^o-protons and K^o-antiproton channels (antipentaquark);
 - consistent with the predicted pentaguark (1530 MeV, <15 MeV width);
 - Systematics need to be estimated (~ a few MeV);
 - PRELIMINARY result!
- First evidence in HEP colliding experiment;
- First measurement in central fragmentation region

Summary

Word average
 (without ZEUS prel.)
 1536.2 ± 2.6 MeV

- HERA results prefer smaller pentaquark mass;
- Inclusion of the ZEUS result shifts the mass to a lower value

Summary

- HERA data provide many precise tests of theoretical models describing various aspects of particle productions – careful analysis of pre-upgrade data still producing a wealth of important results;
- Many challenges to describe multihadron production; BE universal feature of hadronisation; LPHD is not applicable for particle correlations at small p₊;
- Identified hadrons: First insight into the strange sea; Universal power low for different particle species? Strangeness withing the LUND model is not understood;
- HERMES and ZEUS consistent results for pentaquark masses; First measurement by a HEP colliding experiment in central fragmentation region → can this disfavor some pentaquark models?