Development of an Hadronic Tile Calorimeter for TESLA

E. Garutti (for DESY-HCAL group)

- New calorimeter concept for linear collider detector
- The analogue hadronic calorimeter for TESLA
- Detector R&D:
 - -Tile-fiber system
 - Fiber coupling to photo-detector
 - Photo-detectors options
 - → Avalanche Photo-Diode (Hamamatsu)
 - → Silicon Photo-Multiplier (MEPHI, PULSAR)
- Results from first prototype \rightarrow establish new technologies
- Preparation of physics prototype → physics studies
 10 March 2004
 Erika Garutti KEK, Japan

Physics Motivation

From the 4th ECFA workshop (Jean Claude Brient):

Di-jet mass resolution, lepton tagging in jet environment, etc...

Shower to shower separability

Separation charged hadrons/photon and charged hadrons/neutral hadrons

Give access to the best possible Ejet and di-jet mass resolution

Lepton identification in jet

electron, mu and tau tagging in jet Identification of jet flavor, W vs Z, etc.

GeV

<u>]</u>24

Masse

Total segmentation and high granularity is mandatory !!!

10 March 2004

Needed to see a signal at 5 or ➤ Higgs self-coupling and ?? ttH ,...??

Dependence on the measurement precision → Higgs BR in WW

 \gg W_L coupling (vvW⁺W⁻ versus vvZZ)

Particle Flow Algorithm

Based on two ideas:

-TPC momentum resolution higher than calorimeter energy resolution -Vector subtraction from overlapping showers is more effective than scalar subtraction

Particle flow concept:

- for all charged particles merge TPC track

- to calorimeter clusters
- substitute calorimeter energy with momentum

the rest of energy is assigned to neutral clusters, divided into: gammas (ECAL) neutral hadrons (HCAL)

→ Such a technique requires high granularity of both ECAL and HCAL

The CALICE Collaboration

CAloremeter for the LInear Collider with Electrons

168 physicists from 28 institutes and 8 countries Coming from the 3 regions (America, Asia and Europe)

ECAL project:

- 40 layers of W-Si sandwich with pads of $1 \times 1 \text{ cm}^2 \rightarrow \text{TRACKER CALORIMETER}$ energy resolution on electron/photon ~ $\Delta E/E = 11\% / \text{sqrt(E)}$

- other options are also possible

HCAL project:

Solution 1) Tile HCAL

3x3 to 12x12 cm² tiles with analogue readout

→Developed at DESY

← see the rest of the talk

Solution 2) Digital HCAL

A tracker calorimeter with 1x1 cm² pads and 40 layers with digital readout 10 March 2004 Erika Garutti - KEK, Japan 4

Tile HCAL

Tile readout:

+ Photo-detector

Sampling structure:

20mm Fe + 5mm Scintillator

(~ 1.15 X_0 or 0.12 λ)

10 March 2004

Erika Garutti - KEK, Japan

Photo Detectors

Silicon photo-multiplier (SiPM):

- new detector concept, first test with beam
- sizes: 1x1mm², 1024 pixels/mm²
- gain ~ 2*10⁶, quantum eff. ~ 15-20%
- single tile read out / mounted directly on tile
 Avalanche photo-diode (APD):
- different from those used by CERN experiments
- 3x3mm² low capacity
- gain ~ 500, quantum eff. ~ 75%
- cell read out: 3 tiles

→ APDs are well known and studied at KEK !!! 10 March 2064 on SiPM Erika Garutti - KEK, Japan

SiPM

Pixels of the SiPM

Principle of operation

- ADP operated with avalanche multiplication ~ 50-500 →signal proportional to energy deposited
- SiPM operated in Geiger mode avalanche multiplication ~2*10⁶ - R = 400 k Ω prevents detector break down

10 March 2004

Erika Garutti - KEK, Japan

SiPM main characteristics

>Pixel size ~20-30µm → important quantity: Inter-pixel cross-talk

• electrical minimized by:

- decoupling quenching resistor for each pixel

boundaries between pixels to decouple them
 electrically

 reduce sensitive area

 \rightarrow geometrical efficiency

• optical:

-due to photons created in Geiger discharge per one electron and collected on adjacent pixel

> Working point: $V_{Bias} = V_{breakdown} + \Delta V \sim 50-60 V$ $\Delta V = 10-15\%$ above breakdown voltage Each pixel behaves as a Geiger counter with $Q_{pixel} = \Delta V C_{pixel}$ with $C_{pixel} \sim 50 \text{fmF} \rightarrow Q_{pixel} \sim 300 \text{fm}C = 2*10^6 \text{e}$

10 March 2004

9

SiPM main characteristics (II)

Depletion region is very small ~ 2µm →strong electric field (2-3) 10⁵ V/cm →carrier drift velocity ~ 10⁷ cm/s →very short Geiger discharge development < 500 ps →pixel recovery time = (C_{pixel} R_{pixel}) ~ 30 ns

Photon detection efficiency (PDE):
for SiPM the QE (~90%) is multiplied by Geiger efficiency (~60%) and by geometrical efficiency (sensitive/total area ~30%)
highest efficiency for green/blue light
→ important when using with WLS fibers

Temperature and voltage dependence:

-7 °C \rightarrow +3% Gain and PDE +0.15 V \rightarrow +3% Gain and PDE

SiPM response function

SiPM dark rate

Spectrum of β -electrons from Sr⁹⁰ source on tile-fiber system with SiPM readout

efficiency ~ 90%
→ dark rate ~ 2 Hz
Determined by optical crosstalk
between adjacent pixels

→Ongoing studies at
 MEPHI/PULSAR
 to reduce dark rate

Signal to Noise ratio

Signal to noise ratio of SiPM at room temperature compared to APDs and Visible Light Photo Detectors

→Improvement w.r.t. APD due to absence of electronics noise (no preamplifier needed for SiPM) and low Excess Noise Factor (ENF) connected with Geiger discharge development (<1.05 for SiPM, 2-3 for APD)

Detector characterization

SIPM Z200 SIPM Z200

Fig 1: Current measurement for different voltages (notice log-scale) U [V] - high systematic uncertainty due to electronical noise - difference in measurements due to relaxation

find working point:
~10-15% above breakdown voltage

optimize working point for: Noise frequency ~ 1MHz

Gain ~ 10⁶ e

Japan

The MiniCal Prototype

First working prototype of Analogue HCAL:

Study of energy resolution and shower shape Control calibration and monitoring

Compare with MC prediction \rightarrow tune MC Study various photo-detectors against tuned MC

Saturation effects in the range 1 - 7 GeV

- → dynamic range
- → linearity

> get detector hardware under control !!!

Get ready for studies on Physics Prototype ...

The MiniCal Prototype

The Cassette structure

MIP Calibration for PM

- → Obtained using 3 GeV electron beam on single tile, w/o absorber in front
- MIP = MPV pedestal
- Gauss for peak position
- + Landau for tail
- Pedestal determination: 1 ADC channel shift = 1% uncertainty in σ/E

MC simulation of MIP

detector description implemented
 in GEANT4

• MC has to be smeared according to detector properties

- single tile MC calibration needed:
 - # photo electrons /MIP
 - width of 1st photo electron

good description of MIP shape
 after MC calibration

hit energy in ADC

Erik from M. Groll apan

Slow Control Monitor

Daily monitor of MIP calibration versus:

- temperature fluctuations
- High Voltage stability

(example for PM monitoring)

→ 2% calibration reproducibility

→ related to temperature variation

Tile Calibration Scan

10 March 2004

Erika Garutti - KEK, Japan

Tile homogeneity

25 points scan over tile \rightarrow homogeneity better than 4%

Two Particle Events

10 March 2004

Erika Garutti - KEK, Japan

Linearity of PM Response

Results comparison: N MIP

Sum of total energy deposited in calorimeter calibrated in number of MIPs

→ Very good agreement between SiPM and PM

→Ideal MC does not include detector properties, just MiniCal geometry

Energy Resolution

σ/E (%)

→Problems with 1 GeV beam probably related to magnet hysteresis

Very good agreement between PM and SiPM

→Ideal MC does not include detector properties, just MiniCal geometry

Future: the physics prototype

Mechanical structure

Cassette insertion from the side
VFE electronic
VME-DAQ on platform

Beam height 2,30 m, platform: weight ~ 10 t, width ~ 5 m, depth ~ 2 m10 March 2004Erika Garutti - KEK, Japan28

Tile geometry for Physics Prototype

Total number of layers: Tile sizes: 39

3x3 cm², 6x6 cm², 12x12 cm²

Geometry optimization

Define physical observable for optimization:
 Shower reconstruction/separation

- •Generate two 10 GeV showers initiated by π + and K_0^L
- •Use track information for π +

•Complete shower reconstruction algorithm used (see papers from Vasilly Morgunov)

•Test three options of tile size and readout scheme:

- 1 layer of 3x3 cm² tiles
- 2 layers of 3x3 cm² tiles
- 1 layer of 5x5 cm² tiles

Compare to ideal particle flow algorithm

10 March 2004

Erika Garutti - KEK, Japan

Geometry optimization

Shower separation quality is defined as the fraction of events in which the neutral shower is consistent with the energy in the case of ideal P-flow within 3σ .

Shower separation quality versus generated shower distance gives a good criterion for geometry comparison

→ Final choice: 1 layer of 3x3 cm² tiles in the core

LED Monitoring

Next studies will focus on a reliable LED monitoring system for large number of tiles

- low light yield (~ 5-10 ph.e.) pre-amplification is required

→ to monitor SiPM gain

- medium light yield (~ 25 ph.e ~ 1 MIP)

→ to monitor stability of MIP calibration

- high light yield (~ 200-500 ph.e.)

➔ to monitor saturation behaviour

Outlook

- Successful test of MiniCal prototype with PM/SiPM readout
- Established SiPM technology for calorimeter readout
- ADP test still undergoing at DESY
 - exchange experience with KEK on APD and other photo-detectors
- Physics prototype under construction
- Geometry optimized for best shower separation
- First tests planed for beginning of 2005

MC Simulation of Two-particle Events

