Search for Electron Neutrino Appearance in a 250km Long-Baseline Neutrino Experiment

M. Yoshida (Osaka Univ.)

2004/03/16 KEK seminar

#### **K2K Collaboration**

~100 collaborators from;

- JAPAN: High Energy Accelerator Research Organization (KEK) Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo Kobe Univ. / Kyoto Univ.
   Niigata Univ. / Okayama Univ. / Osaka Univ. Tokyo Univ. of Science / Tohoku Univ.
- KOREA: Chonnam National Univ. / Dongshin Univ. / Korea Univ. Seoul National Univ.
- U.S.A.: Boston Univ. / Univ. of California, Irvine / Univ. of Hawaii Massachusetts Institute of Technology State Univ. of New York / Univ. of Washington
  - POLAND: Warsaw Univ. / Solton Institute for Nuclear Studies

Since 2002 (K2K-II);

- JAPAN: Hiroshima Univ.
- CANADA: TRIUMF / Univ. of British Columbia
- EUROPE: Rome / Saclay / Barcelona / Valencia / Geneva
  - RUSSIA: INR-Moscow

#### Contents

- Introduction to K2K
- Strategy for ve appearance search
- Event selection
- Systematic errors
- Oscillation Analysis
- Conclusion

# **K2K Long Baseline Neutrino Oscillation Experiment**



Neutrino beam almost pure  $v_{\mu}$  (98%)  $< E_{v} > \sim 1.3 \text{GeV}$ Near detectors Measure  $v_{\mu}$  flux/spectrum Far detector Super-Kamiokande (SK) 250 km far from KEK Probe to  $v_{\mu}$  disappearance and  $v_{e}$  appearance

#### **Neutrino Beam Line @KEK** $p+Al \rightarrow \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}}$ **Near neutrino detectors** Flux/spectrum 12GeV PS 1.1µsec / 2.2sec beam spill Front detec 6x10<sup>12</sup> protons/spill u-monito North Jecav section $(\Pi \rightarrow \mu V_{\mu})$ **Double Horn** Primary beam line $250kA \rightarrow x20 v_{...}$ **Pion monitor** $p_{\pi}, \theta_{\pi}$ after Hor Near to Far flux ratio

RENT

#### **Delivered Protons on Target**



#### **Near Neutrino Detectors**



- 1kton water Cherenkov detector (1KT)
- Fine Grained Detectors (FGD)
  - Scintillation fiber tracker (SciFi)
  - Scintillator wall
  - Lead glass calorimeter (LG)
  - Muon range detector (MRD)

same type as SK (25ton fiducial)

w/ water target (6ton fiducial) CCQE identification stamp event time detect electrons from SciFi measure muon momentum

where monitor (Eq. 220ton fiducial)

# 





 $\rightarrow$  Extrapolate to SK with Far/Near rati

# **Super-Kamiokande**



- 50kton Water Cherenkov detector
- 1000m underground
- 22.5kton fiducial mass
  - Inner detector 11146 PMTs(20'') Outer detector 1885 PMTs(8'')
- Atmospheric v B.G. against K2K ~10<sup>-5</sup> events/day in beam spill (1.1µs/2.2s)



#### **Neutrino Event Selection in SK**



# **K2K result on** $\nu \mu \rightarrow \nu_x$ **oscillation** ( $\nu \mu$ disappearance)



Consistent with atm. v result

### **Motivation of this analysis**

- K2K and atmospheric neutrino experiments have indicated neutrino oscillations from ν<sub>µ</sub> to ν<sub>x</sub>.
- How much fraction of  $\nu_{\mu}$  oscillates to  $\nu_{e}$ ?
  - The first search for  $v_e$  appearance sensitive down to  $\Delta m^2_{atm}$
- v<sub>e</sub> appearance is expected at ∆m<sup>2</sup><sub>atm</sub> in 3 flavor mixing framework

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{\mu\mu}) \sin^2\left(1.27 \frac{\Delta m^2 L}{E}\right)$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}(2\theta_{\mu e})\sin^{2}\left(1.27\frac{\Delta m^{2}L}{E}\right)$$

$$\sin^2(2\theta_{\mu e}) = 1/2 \sin^2(2\theta_{13})$$

# Strategy for $v_e$ appearance search

• Compare

$$- N_{exp} = N_{sig}(\theta_{\mu e}, \Delta m^2) + N_{BG}^{\nu\mu} + N_{BG}^{\nu e}$$

- N<sub>obs</sub>
- Significance calc'ed based Feldman&Cousins
- Norm. for 3  $N_{exp}$  terms determined by extrapolating  $N_{KT}^{obs}$
- N<sub>BG</sub><sup>ve</sup>
  - Expected  $\nu e/\nu \mu$  ratio calculated with beam MC
  - contamination is measured at near site
- $N_{BG}^{\nu\mu}(\theta_{\mu\mu},\Delta m^2)$ 
  - Dominant BG in K2K
  - Dominated by NC int. (87%)
  - NC/QE cross section ratio constraint by 1KT  $\pi^0/\mu$  measurement.
  - $\nu\mu$  energy spectrum is measured at near site.

#### Measurement of ve Contamination at Near Site



#### Deposit Energy Dist. for Electron Candidates



#### Electron Neutrino Contamination at Near Site

 $2.9 \times 10^{19} \text{ pot}$ 

|                       | DATA | BG   | 3        | #interaction                |
|-----------------------|------|------|----------|-----------------------------|
| Muon<br>candidate     | 3229 | 35.4 | 9.0<br>% | $3.5 \times 10^4 v_{\mu}$   |
| Electron<br>candidate | 51   | 23.8 | 4.7<br>% | $5.8 \times 10^2 v_{\rm e}$ |

$$R(v_e/v_\mu) = 1.6 \pm 0.4(\text{stat.})^{+0.8}_{-0.6}(\text{sys.})$$
 (%)

Consistent with beam MC prediction; 1.3% Enough low level to perform ve appearance search

# **Selection for** $v_e$ events in SK

- Fully Contained events in Fiducial Volume
- Single Ring events
  - reject  $\nu\mu$  pion productions
- PID : Ring pattern and opening angle consistent with electron
  - reject  $v\mu$  CC
- Visible Energy > 100MeV
  - reject low-momentum charged pions and decay-electron
- Without decay electrons
  - reject invisible muons, pions from  $\nu\mu$  CC

# **Single-Ring Event Selection**



#### **Particle ID**



likelihood of Cherenkov opening angle

## **Energy Cut**





#### **Reduction Summary** DATA SET June'99 – July'01 (4.8 × 10<sup>19</sup>POT)

|              |      |                   |                        | ······································                                   |
|--------------|------|-------------------|------------------------|--------------------------------------------------------------------------|
|              | DATA | $ u_{\mu}$ MC     | beam ${ m V_e}{ m MC}$ | signal V <sub>e</sub> MC (CC)                                            |
|              |      |                   |                        | $\sin^2 2\theta_{\mu e} = 1$ ,<br>$\Delta m^2 = 2.8 \times 10^{-3} eV^2$ |
| generated    |      | 104 events        | 0.99 events            | 28 events                                                                |
| FCFV         | 56   | 80 (78%)          | 0.82 (83%)             | 28 (98%)                                                                 |
| Single ring  | 32   | 50 (48%)          | 0.48 (48%)             | 20 (71%)                                                                 |
| PID (e-like) | 1    | 2.9 (2.7%)        | 0.42 (42%)             | 18 (63%)                                                                 |
| Evis>100MeV  | 1    | 2.6 (2.4%)        | 0.41 (41%)             | 18 (63%)                                                                 |
| w/o decay-e  | 1    | <u>2.0 (1.9%)</u> | 0.35 (35%)             | 16 (55%)                                                                 |

<u>NC:87% CC1 $\pi$ :7% CCm $\pi$ :4% CCQE:2% electron candidate: 1 event observed 2.4 events expected.</u>

#### **Electron Candidate**



reconst. momentum 597 MeV/c

reconst. Ev assuming ve CCQE 612 MeV

## Distributions for observed events and expected background



# $\pi^0$ in K2K-SK

#### check for amount of $\pi^0$ production

 $\pi 0$  : FCFV & 2 e-like ring & 90<mass<190MeV & Evis>100MeV w/o decay-e ve : FCFV & 1 e-like(tight) ring & Evis>100MeV w/o decay-e

ο

|         | DATA | νμ ΜC            |
|---------|------|------------------|
|         |      | (NC w/ $\pi^0$ ) |
| FCFV    | 56   | 80.1             |
|         |      | (7.7)            |
| $\pi 0$ | 2    | 2.6              |
|         |      | (2.4)            |
| ve      | 1    | 2.0              |
|         |      | (1.7)            |

Default NEUT4.3

Reconst. Mass = 119MeV  $_{300}$   $_{200}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$   $_{100}$ 

 $\frac{100}{200} \xrightarrow{100}{200} 300$ Reconst. Mass (MeV)

Expectation by vµ MC is consistent with observed 2 events

#### **Observed** $\pi^0$ candidates





Reconst. Mass = 119 MeV

150MeV

# Systematic errors

-  $\nu\mu$  background -  $N_{BG}^{\nu\mu} = 2.0+-0.6$  events w/o oscillations - ve contamination -  $N_{BG}^{\nu e} = 0.35+-0.11$  events - oscillation signal ve -  $\delta N_{sig}/N_{sig} \sim 15\%$  at  $\Delta m^2=2.8 \times 10^{-3} eV^2$ 

# **Systematic Error Estimation**

- Particle ID
  - shift likelihood distributions in MC
    - ± 11% in vµ BG
    - +7%-12% in ve appearance signal
- Ring Counting
  - shift likelihood distributions in MC
    - +15%-13% in vµ BG
  - compare likelihood function distributions for atm.v DATA and MC
    - ± 6% in ve appearance signal
- NC Cross Section
  - change NC cross section within 30%
    - +20%-25% in vµ BG



#### **Systematic error from Ring counting in** νμ **BG**



/ K2K νμ MC FCFV elike+X Evis>100MeV w/o decay-e

If likelihood for multi-ring shifts by ± 1 bin...,  $\frac{\delta N_{1ring}}{N_{1ring}} = ^{+14.8\%}_{-12.7\%}$ 

# **Constraint on NC/QE cross section ratio (R<sub>NC</sub>)**

- $\sigma_{tot} = \sigma_{QE} + R_{nQE} * \sigma_{CCnQE} + R_{NC} * \sigma_{NC}$
- $\pi 0/\mu$  ratio measurement in 1KT
  - DATA/MC= 1.06 +-0.02(stat.)+-0.10(reconst.)+-0.08(int. model)

$$\rightarrow R_{\rm NC} = 1.07 + 0.20 - 0.15$$

- consistent w/  $R_{NC}$ =1
- $\rightarrow \text{use } \mathbf{R}_{\text{NC}} = 1 \pm 0.3$

# **Oscillation Analysis**

- calculate confidence interval [1] (upper limit) on  $\sin^2 2\theta_{\mu e}$  using the number of electron events with the method suggested in [1].  $P(v_{\mu \rightarrow} v_e) = \sin^2(2\theta_{\mu e})\sin^2\left(1.27\frac{\Delta m^2 L}{E}\right)$
- assumption:

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{\mu\mu})\sin^2\left(1.27\frac{\Delta m^2 L}{E}\right)$ 

- one mass scale  $\Delta m^2$
- $-\sin^2 2\theta_{\mu\mu}=1$
- $-\sin^2 2\theta_{\mu e}$  bound in physical region [0,1]
- expected number of BG is distributed in Poisson × Gaussian(sys. err.)

[1] "Unified approach to the classical statistical analysis of small signal", Feldman and Cousins, Phys.Rev.D (1998)

#### PDF at $\Delta m^2 = 2.8 \times 10^{-3} eV^2$



Nobs=1  $\rightarrow \sin^2 2\theta_{\mu e} = 0.2$  is not allowed at 90%C.L.



#### **Effect of the systematic errors**

| $\Delta m^2 = 2.8 \times 10^{-3} eV^2$ | 90%CL | 95%CL |
|----------------------------------------|-------|-------|
| stat. only                             | 0.150 | 0.201 |
| stat. + sys.                           | 0.150 | 0.203 |



Very small effect of systematic errors on the limit calculation



#### Conclusion

- Electron search in the whole K2K-I data has been performed
  - 1 event observed
- The number of background events has been estimated
  - $(2.0 \pm 0.6 \text{ from } \nu\mu) + (0.4 \pm 0.1 \text{ from } \nu e) \text{ w/o oscillations}$
  - In total, BG= $2.4 \pm 0.6$  events ( $2.3 \pm 0.6$  in oscillation case)
- Limit for ve appearance using number of evens only has been obtained.
  - $\ sin^2 2\theta_{\mu e} <\!\! 0.15 \ @\Delta m^2 \!=\! 2.8 x 10^{-3} eV^2$