Neutrino Masses and Mixing: New Symmetry of Nature?

A. Yu. Smirnov

International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia

Summary of results Pattern of lepton mixings: New theoretical puzzle?

- Towards the underlying physics: New symmetry of Nature?
- Symmetry case
 - ``No symmetry" framework

0

0.2

0.4

 $|\sin \theta|$

0.6

0.8

bi-maximal + corrections?

Predictions:

$$\frac{\sin\theta_{sun} \sim \sin(\pi/4 - \theta_{C})}{\sin^{2}\theta_{13}} = -\sin\theta_{sun} V_{cb} = 0.03$$
$$D_{23} = \cos\theta_{sun} V_{cb} \cos\delta < 0.03$$

H. Minakata, A.S.

Toward the underlying physics

Neutrino masses and mixing - important message which we can not understand yet

> In which terms, at which level theory (principles) should be formulated?

Observables

masses mixing angles are fundamental parameters which show certain symmetry Schemes with bi-maximal mixing, or broken bi-maximal mixing; Tri-bimaximal mixing

> Smallness of neutrino masses and pattern of lepton mixing are related?

Mass matrices

their properties, symmetries at certain energy scale

observables are outcome, can be to some extend accidental numbers which do not reflect the underlying symmetry No regularities - ``anarchy"

Mixing and Mass Matrix

Mixing:

Mass matrix for the flavor states $v_f = (v_e, v_\mu, v_\tau)^T$, m_f is not diagonal

Diagonalization

$$v_{f} = U_{v} v_{mass} \quad v_{mass} = (v_{1}, v_{2}, v_{3})^{T}$$
 (Majorana)
$$m_{f} = U_{v}^{T} m_{diag} U_{v}^{*} \quad m_{diag} = diag (m_{1}, m_{2}, m_{3})$$

Charged Jeptons In general (symmetry) basis the mass matrix of the charaed leptons is also non-diagonal $I_{SL} = U_{||L} I_{mass L}$ $I = (e, \mu, \tau)^T$

Lepton mixing matrix

$$U_{P-MNS} = U_{IL}^+ U_v$$

Lepton mixing --> the mismatch of rotations of the neutrinos and the charge leptons which diagonalize the corresponding

 $v_e v_\mu$

ve

 ν_{μ}

ν

Has important implications for phenomenology and theory:
supernova neutrinos: can lead to O(1) effect; atmospheric neutrinos (resonance
enhancement, parametric effects);
allows to establish mass hierarchy;

- LBL experiments;
- CP-violations requires U_{e3} = 0; key test of models of large

Two extreme cases

Quasi-degenerate spectrum

- New symmetry SO(3), A₄, Z₂,...
- Quark -lepton symmetry?

S Barshay, M. Fukugita, T. Yanagida

Hierarchical Spectrum

- No particular symmetry
- Deviation from maximal mixing
- Quark-lepton analogy/symmetry

Realization requires introduction of

- New leptons and quarks;
- Extended non-trivial Higgs sector to break symmetry;
- Additional symmetries to suppress unwanted interactions of new particles
- Often difficult to embed into Grand Unified schemes

Misleading approach

LNA oscillations of atmospheric neutrinos

Excess of the e-like events in sub-GeV

$$\frac{F_{e}}{F_{e}^{0}} - 1 = P_{2}(r c_{23}^{2} - 1)$$

`screening factor" $P_2 = P(\Delta m_{12}^2, \theta_{12})$ is the 2v transition probability

In the sub-GeV sample $r = F_{\mu}^{0} / F_{e}^{0} \sim 2$

The excess is zero for maximal 23- mixing

Searches of the excess can be used to restrict deviation of the 2-3 mixing from maximal

Zenith angle dependences of the e-like events

Y₀ is ``unstable": det (Y₀) = 0 (as well as determinants of sub-matrices) small perturbations produce significant change of masses and and mixings

Assume:

$$\mathbf{Y}_{0} = \begin{pmatrix} \lambda^{4} & \lambda^{3} & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & \lambda \\ \lambda^{2} & \lambda & 1 \end{pmatrix}$$

Other forms are possible

Provide the structure given by
$$V_0$$
 $(y \neq y) = (y_0)_{ij} \in f_{ij}$ $(\Delta y^{i})_{ij} \ll (y_0)_{ij}$ $f = u, d, L, D, M$ $(\Delta y^{i})_{ij} = (y_0)_{ij} \in f_{ij}$ $e^{f_{ij}} \ll M$ Perturbation of a given element is proportional to the element itself $(\Delta y^{i})_{ij} = (y_0)_{ij} \in f_{ij}$ $e^{f_{ij}} \ll M$ Perturbation of a given proportional to the element itself $(\Delta y^{i})_{ij} = (y_0)_{ij} \in f_{ij}$ $e^{f_{ij}} \ll M$ Perturbation of a given proportional to the element itself $(\Delta y^{i})_{ij} = (f_{ij})^{ij} ($

Theory is reduced to theory of ϵ^{f}_{ij} , though some qualitative features follow from general form of matrices

E. Akhmedov, G. C. Branco, F. R. Joaquim J. Silva-Marcos, 2000 R. Dermisek, 2003

H. Fritzsch, M. Fukugita, T. Yanagida

 $Y_{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

One can ``work" immediately in this basis.

Key point is how perturbations are introduced This can lead to different predictions and different implications to theory Enhances (by factor ~ 2) the mixing which comes from diagonalization of the neutrino mass

matrix

Leads to smallness of neutrino masses Changes the relative sign of ``rotations" which diagonalize mass matrices of the charge leptons and neutrinos

For the RH neutrino mass matrix we take for simplicity the same form

 λ is determined by the weakest mass hierarchy of leptons (muon and tau) and by inequality of masses of the s-quark and the muon (one would expect m_u = m_s in the case of exact q-l symmetry)

 $m_s/m_b = k_q \lambda^3$

$$m_{\mu}/m_{\tau} = k_{L}\lambda^{3}$$

$$k_f \lambda \sim \varepsilon_{22} - 2\varepsilon_{23}$$

These mass ratios can be reproduces if

Quark mixing and masses

Quark and charged lepton mass ratios

$$m_1 / m_2 = \lambda^2 \epsilon$$

$$m_2 / m_3 = \lambda^2 r(\epsilon)$$

$$m_1 / m_3 = \lambda^4 \epsilon$$

 ϵ are combinations of ϵ_{ij} in the mass matrices

 $r(\epsilon) \sim O(1)$ is the ratio of combinations of ϵ_{ij}

Quark mixing:

Reproduces correct hierarchy of mixings

$$V_{ub} / V_{cb} = \lambda$$

$$V_{cb} / V_{us} = \varepsilon$$

Froggatt- Nielsen: U(1) family symmetry

$$(Y^{f})_{ij} = a_{ij} \lambda^{q(i) + q(j)}$$
$$\lambda = \langle \sigma \rangle / M_{F}$$

q(i) is the U(1) charge of i-family $a_{ii} = O(1),$ (o) is the F-N scalar field which violates U(1) symmetry M_F is the mass scale at which F-N operators are produced:

$$a_{ij}f_if_j H \left(\frac{\sigma}{M_F} \right)^{q(i)+q(j)}$$

For the simplest prescription q(1) = 2, q(2) = 1, q(3) = 0, $q(\sigma) = -1$ the required structure is reproduced

No special symmetry for neutrinos of for lepton sector

 Y_0 can be reproduced with U(1) family symmetry and charges q, q + 1, q + 2 charges, if unut charge is associated with one degree of ε (a la Froggatt-Nielsen)

> Violation of the symmetry appears at the level $\varepsilon^2 - \varepsilon^3 \sim (1 - 3) 10^{-2}$

> > If the flavor symmetry is at GU scale its violation can come e.g. from the string scale

