

K. Long, June 08, 2004

The international Muon Ionisation Cooling Exp^t

status and prospects

Motivation: high-sens^{ty} studies of v-osc^{tions}

Neutrino Factory machine: overview

Ionisation cooling: principle

Muon Ionisation Cooling Experiment

Conclusions

Motivation: headlines Neutrino oscillations – established exp^{tly} Implications for particle physics: Neutrino mass > 0 Neutrinos violate matter-antimatter symmetry? New state of matter (Majorana?) Impact on astrophysics and cosmology: Origin of matter (leptogenesis) Dark matter Require dedicated expt^l programme to: Search for matter-antimatter symm^y violation Precisely measure parameters

Motivation: phenomenology

$$\begin{pmatrix} v_{\rm e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Motivation: phenomenology

sin²θ ₁₃	δ	Δm_{23}^2

δ

Neutrino Factory

 $\sin^2\theta_{13}$

- $\nu \mu^{-} \rightarrow \nu_{\mu} + \nu_{e}$ $\nu \mu^{+} \rightarrow \overline{\nu} + \nu_{e}$
- $_{\nu}$ $\mu^{+} \rightarrow \bar{\nu}_{\mu} + \nu_{e}$
- High-energy
 - Require 'tracking' detector
 - Long (~n × 1000 km) baseline indicated

Features:

Beam composition known

 Δm^2_{23}

- Energy spectrum known
- Neutrino flux measured
- 1,000 times more intense than conventional beams

$$\begin{array}{c} \begin{array}{c} \mu^{-} \rightarrow e^{-} \nu_{\mu} \overline{\nu}_{e} \\ \hline \\ \overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \rightarrow e^{+} & \overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu} \rightarrow \mu^{+} \\ \hline \\ \overline{\nu}_{e} \rightarrow \overline{\nu}_{\tau} \rightarrow \tau^{+} \\ \hline \\ \nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-} & \nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-} \\ \hline \\ \nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-} \end{array}$$

Performance: unique

Performance: comparison

Performance: comparison

Motivation: NF concept

Motivation: ionisation cooling

- Physics reach increases with neutrino flux
- Maximise stored muon intensity

Implies:

 Require to capture and store as many of the 'decay' muons as possible
 Cool muon
 beam

Short muon lifetime requires novel technique: IONISATION COOLING

Motivation: cooling technique

Principle

Practice

Ionisation cooling

- Ionisation cooling:
 - Principle:

MuScat: Measure MCS distributions

I/p to simulation of heating term

Data taking complete

Engineering demonstration:

Muon Ionisation Cooling Experiment (MICE)

MICE:

- Design, build, commission and operate a realistic section of cooling channel
- Measure its performance in a variety of modes of operation and beam conditions
- i.e. results will allow NuFact complex to be optimised

Motivation: measurement precision

Approval and funding: status

- Proposal:
 - Submitted to CCLRC and PPARC 10 January 03
- Peer review:
 - International Peer Review Panel (Chair Astbury): Report of IPRP 20May03: 'strongly recommends approval of the project'
 - UK: PPARC Projects Peer Review Panel: 03Jun03: Recommended appropriate funding for UK
 - contribution
- Research Councils UK:
 - Allowed project to proceed to Gateway Process

Approval and funding: status

- CCLRC (24Oct03; J. Wood, Chief Exec.):
 - Accepts the strong endorsement of the proposal by the Astbury panel and consequently considers the proposal to have full scientific approval'
 - 'Approves the project subject to satisfactory passage through the Gateway'
- Office of Science and Technology:
 - Gateway Process (UK procedure for large capital projects):
 - Gateway 0: 'Business need' passed
 - Gateway 1: 'Business case' passed on amber
 - Gateway 2/3: 'Procurement strategy' goal summer/fall 04; requires indications that international funding will be forthcoming

Apparatus: cooling channel

Apparatus: Absorber/focus coils

Apparatus: AFC safety – 1st rev^{iew} First review of safety of MICE: Dec. 2003 Internal review reporting to MICE management International panel chaired by John Weisend Focus: hydrogen safety – largest hazard Review panel conclusions: Complementary about MICE approach to safety Three areas requiring development high-lighted: Hydrogen gas handling and venting system Metal-hydride system R&D Window development All issues (including other more minor issues) being addressed

Apparatus: Liquid H₂ vessel

MICE Absorber Design

Apparatus: absorber develop^{ment}

- Build 3 5 absorbers:
 - Bodies at KEK
 - Windows US
- First absorber test with gaseous helium at 20 K later this year

Hydrogen-storage system

Apparatus: focus coils

- Detailed design:
 - Cold mass support and forces
 - Coil support tube including thermal and stress analysis

- v Principal challenges:
 - $_{\nu}$ Operation in strong
 - magnetic field
 - Large aperture;
 require window

Apparatus: Prototype cavity

To be tested in MTA (FNAL) 4th quarter 2004

Apparatus: RF power sources

... potential supply problem with tubes @ 4MW ... stock of ISIS TH116 tubes 2MW max...

Scheme: work in progress.

RF amp test stand to be established at Daresbury Laboratory this year. Equipment to be shipped from LBNL for refurbishment.

Apparatus: instrumentation

Particle identification

- Upstream: $\pi \mu$ separation
 - Time-of-flight measurement
 - Cherenkov
- Downstream: µ e separation
 - Cherenkov
 - Electromagnetic calorimeter
- Spectrometers:

Position, momentum, emittance measurement

Apparatus: Pld: ToF R&D

Test setup for study of rate effects

Apparatus: Pld: ToF calibⁿ syst.

Calibration: tracks in overlaps plus laser system

Apparatus: Pld: dnstrm Cherenkov

- Task:
 v µ/e separation
- v Challenge:

Louvain

 Operation in fringe field of detector solenoid

Apparatus: Pld: dnstrm Cherenkov

Layout and magnetic shielding

Apparatus: Pld: MUCAL

Task: µ/e separation

Rome III

Scintillating fibers embedded in grooved lead layers

Apparatus: Pld: MUCAL

Construction: 0.3 mm lead; 1 mm fibre

Apparatus: spectr^{mtr}: solenoid

- Specification:
 - 4 T field, 40 cm bore
- Challenges:
 - Many coils; one cryostat
 - Matching coils at each end of solenoid
 - Tracker services;
 magnetic field
 monitoring

Baseline

Fallback

Scintillating fibre

- No active electronics/HV close to liquid hydrogen absorber
- No copper close to RF (no pickup)
- 350 µ fibre: 3-fold doublet; 0.35%
 X₀
- VLPC read-out: high quantumefficiency, high gain

TPG – TPC with GEM readout

- Light gas (0.15% X₀)
- Many points per track
- High precision track recⁿ possible
- Large integration time
- Effect of X-rays on GEMs

Mechanical design: status

Optical connectors:

Bulkhead connector

Station connector

Seven 350 µm scint. fibres read out through one 1 mm clear fibre

7-fold reduction in channel count ⇒ significant cost saving

Apparat

Runs 202 - 231 correct gains used for each channel

- Prototype performance:
 - Most probable light yield: 10.5 11 p.e.
 - Expectation based on D0 experience ~10
 - Resolution: 442 ± 4 (stat) ± 27 (syst) µm
 - Expectation from fibre geometry: 424 465 µm (single fibre bunch or two fibre bunch)
 - v Efficiency: (99.7 ± 0.2)%
 - Poisson expectation for 10 p.e. signal 99.7%
 - Dead channels 0.2% (two channels)
 - 0.25% assumed in G4MICE simulation based on D0 experience
- Planning test beam at KEK (then RAL):
 - Additional station finalise fabricatⁿ techniques
 - Magnetic field: verify pattern recognition and momentum measurement

Fallback:

Bari, Legnaro, Napoli, Trieste, Geneva

Time-projection chamber with GEM readout

Test of TPG head using HARP TPC field cage

Operation:

with cosmics March 2004

> with beam May 2004

Apparatus: softwaren – G4MICE

Contributions from EU, Jp, US and UK
 Beam line and MICE simulation in Geant

- Presently in transition phase:
 - S/w required to:
 - meet requir^{ments}
 of component
 design and
 optimisation;
 - evolve into final productⁿ framework.

MICE: implementation at RAL

MICE hall

MICE Muon Beam

Muon decay solenoid: PSI

Solenoid Power Supply Cryo Control System

Active

- remake hot parts

Sign MoU in October

Beam-line elements

 MICE Muon Beam Line:
 Shielding to be re-installed
 Prepare beam line for installation in next long ISIS shutdown – early (?) 2006

Outlook:

Conclusions

Experimental study of neutrinos: Origin of matter Contribution to dark matter New theory of fundamental particles Near/medium term programme: Present generation: K2K, SNO, MINOS, CNGS Next generation: J2K, NuMI off axis (+ ...) Opportunity for the future: Establish NF R&D programme: Key technologies: ionisation cooling – MICE proton driver, target Develop conceptual design of entire facility Overall a *fantastic* programme!