

Studies for the Linear Collider TPC at DESY/Hamburg University

Markus Hamann

on behalf of the TPC Group: M. Ball, T. Behnke, M. Janssen, T. Kuhl, T. Lux, F. Sefkow, B. Voigt, P. Wienemann.

Outline

- The Linear Collider TPC
- TPC R&D in Hamburg: GEM readout
- **GEM TPC Activities at KEK**

Short Motivation for a LC

- Compementarity to the LHC
 - well defined initial state
 - precisely adjustable centre-of-mass energy
 - low background;
- suitable for
 - precision measurements, e.g. mechanism of EW symmety breaking, SUSY spectroscopy, and
 - the discovery of new phenomena, e.g. SUSY;

requirement: high luminosity (≈ 1000 x LEP)

 \rightarrow high precision detector

DESY LC Proposal: TESLA

- based on superconducting technology
- energy range: 90 500 (800) GeV
- luminosity: 3.4 ·10³⁴ cm⁻² s⁻¹
- polarised beams
- several other running options: γγ, γe, e⁻e⁻, (ep)

The Detector Concept

- precise vertex detectors
- large tracking detectors
- high granularity calorimeter
- B = 4 T
- yoke

Physics Requirements

е

 Z^{*}

 H_{\perp}

►μ μ

 Higgs searches dilepton recoil mass for Z H events, goal: δM(μ,μ) < 0.1 x σ(Z).

impose

Physics Requirements

- Searches for new particles e.g. charged particles with different lifetimes in GMSB models:
 - highly ionising tr. (t >10e-6 s)
 - kinked tracks (t >10e-9 s)

impose

- large sensitive volume
- good dE/dx resolution (≤ 5 %)
- efficient pattern recognition

Markus Hamann

OPAL prelimin.

bg(τ_m,)

The TESLA TPC

Envisaged precision:

- momentum resolution: $\delta p_t / p_t^2 = 1.5 \times 10^{-4} \text{ GeV}^{-1} (1/10 \times \text{LEP})$,
- single point resolution in r- $\phi \approx 100 \ \mu m$ (ALEPH TPC: 200 400 μm),
- dE/dx resolution = 5 %.

29 June 04, KEK, Tsukuba, Japan

R&D needed

R&D Issue: Gas Amplification

Conventional readout: WIRE CHAMBER

- Broad induction signal on pads
- Resolution limited due to E x B effects
- Large ion feedback without gating

New approach: MICRO PATTERN GAS DETECTORS

- Sharp electron signal on pads
- 2-D symmetry
- Intrinsically better resolution
- Natural suppression of ion feedback

Markus Hamann

Gas Electron Multiplier (GEM)

- 50 µm thick kapton
- \bullet coated with 5 μm layers of copper
- perforated (140 µm pitch, 70 µm hole diameter)
- voltage of several hundred volts applied between copper layers
- amplification within the holes
- gain up to 10⁴ for a single GEM feasible
- higher stability (at high gain) with multi-GEM-structure

Double GEM Module

Tracking with GEMs

Drawbacks:

- Narrow electron signal is only collected on few pads.
- Calculation of the charge centre-of-gravity unprecise.

Possible Solutions:

- Smaller pads ... but: total number of readout channels increases
- pixel readout
- capacitive or resistive coupling of adjacent pads
- alternative pad geometries

Alternative Pad Geometries

Increase charge sharing without increasing the total number of pads (TESLA TPC: 1 200 000)

TPC R&D Activities at DESY/Hamburg U

Determination of TPC properties with GEM readout using software simulation and measuremnts:

- 1) point resolution in magnetic fields up to 5 T
- 2) gain homogeneity
- 3) double track resolution
- 4) ion feedback
- 5) ...

Software Simulation Tool

Stand-alone Fortran program which includes

- simulation of the gas properties using MAGBOLTZ,
- simulation of the primary ionisation using HEED,
- Polya distribution for the description of the gas gain inside GEM holes.

Parameters in the presented study:

 $E_{ind} = E_{trans} = 2 \text{ kV/cm}, E_{drift} = 230 \text{ V/cm}, \text{ gain/GEM} = \sqrt{1000}, \text{ B} = 4\text{T},$ pad size = 2mm x 6mm, chevrons: 4 'zig zags', number of pad rows = 21

Determination of the Point Resol.

- calculation of the center-ofgravity of charge clusters
- (linear) χ2-track fit

 \rightarrow calculation of residuals:

Point Resolution

Simulation parameters:

- B = 4 T
- pad size = 2 mm x 6 mm
- gas: 93% Ar, 5% CH₄, 2% CO₂

Measurement: TPC Setup

Completed a new GEM-TPC prototype for resolution measurements in high magnetic fields last autumn

Improved DAQ System

- based on ALEPH technology
- Switched from Mac to VME CPU
- full exploitation of TPD features (e.g. hardware based pedestal subtraction)
- some software optimisation still has to be done (e.g. zero suppression)

Fastbus VSB Interface

Measurements in 5 T Magnet

The Magnet:

- Superconducting magnet
- 5.3 T maximal field
- 28 cm aperture
- 187 cm cryostat length

The Chamber:

- 192 readout channels
- 6 x 2 mm readout pads
- Active area 5.28 x 4.96 cm²
- Gas Ar-CH₄-CO₂ (93-5-2)
- cosmic muons

Two Events

Markus Hamann

Point Resolution in r-φ

Large drift volume of prototype allows resolution measurements up to 70 cm drift distance

- resolution rises with drift length due to diffusion for 0 T and 1 T.
- at 4 T, even at 70 cm drift distance no rise in the resolution seen

Resolution achieved with first preliminary analysis:

 \approx 130 μ m at 4 T

- more investigations needed to determine systematic effects
- more statistics for short drift lengths

Gain Homogeneity

 \rightarrow Importance for dE/dx resolution (TDR goal: 5 %).

→ Measurement of gain homogeneity requires good calibration of each readout channel.

Calibration method

Split data sample into two sets:

- calibration set
- analysis set

Take calibration set and re-weight mean charge in each channel to be equal to the channel averaged charge

Gain Homogeneity

Markus Hamann

DESY Electron Test Beam

Motivation:

- High statistics in short time
- Study field distortions
 systematically
- double track resolution (target)

Markus Hamann

First Events

<u>Status</u>

- first data taking period finished
- data analysis just started

UV Laser System

The laser tests are carried out with our old large chamber.

Setup used to produce laser tracks in the TPC

Laser Tracks

30 cm drift length:

90 cm drift length:

Markus Hamann

Setup f. Laser Double Track Studies

A Laser Double Track Event

Summary and Outlook

- Successful data taking with different TPC prototypes
 - cosmic muons in magnetic fields up to 5 T
 - electron test beam in fields up to 0.75 T
 - laser beam \rightarrow two track resolution
 - measurement of ion feedback (not mentioned)
- GEM (MPGD) readout promising for the linear collider TPC.
- Analysis of huge amount of data to be done, e.g. implementation of PRF into track fit, determination of double track resolution.
- More measurements planned, e.g. with different pad arrangements and geometries aiming $\sigma_m = 100 \mu m$.

Markus Hamann

Purpose

- <u>compare basic chamber performances of MWPC and</u> <u>MPGD readout</u>
 - spacial resolution
 - 2-track separation
 - dE/dx capability
- use the readout plane of the <u>same TPC for MWPC and</u> <u>MPGD (GEM)</u>
- comparison of data with simulation
- establish design procedure for a full scale MPGD TPC

International Collaboration

• GLC CDC Group

Hiroshima, KEK, Kogakuin, Kinki, MSU, Saga, Tokyo, Tsukuba, TUAT

- MPI/DESY Group, Germany
- IPN Orsay Group, France

- Hadron beam measurements with MWPC readout from 16/June/04 until 01/July/04,
- O(100 000) evts. already recorded; data analysis started.

Markus Hamann

KEK, Tsukuba, Japan

Mar

- Next: Careful and systematic data analysis and
- → GEM installation in the TPC readout plane,
 - measurements with cosmic muons in magnet,
 - → GEM measurements in hadron beam planned for spring 2005.

