New results on sin2β with charmonium and penguin modes

David J. Lange Lawrence Livermore National Laboratory

Representing the BABAR Collaboration

CP Violation in Standard Model from non-zero phase in CKM matrix

• Coupling for $Q \rightarrow W^+ q$ is ~ V^*_{Qq}

 $\left(\begin{array}{c} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$ Three generations: 4 fundamental parameters

1 phase

Test unitarity of matrix with B decays. Does

 $V_{\mu d}V_{\mu b}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Overconstrain angles and sides of Unitarity Triangle to test the Standard Model

Measure β with "golden" modes B \rightarrow J/ ψ K⁰

KEK, October 12, 2004

$$\lambda_{f_{CP}} \neq \pm 1 \implies \operatorname{Prob}(\overline{B}^{0}_{phys}(t) \rightarrow f_{CP}) \neq \operatorname{Prob}(B^{0}_{phys}(t) \rightarrow f_{CP})$$

$$\begin{split} & \mathsf{CPV} \text{ in } \mathsf{B} \xrightarrow{\rightarrow} \mathsf{J}/\psi\mathsf{K}^0\text{: Interference of decay and mixing amplitudes}} \\ & \lambda = \frac{q}{p} \cdot \frac{\overline{A}}{A} \xleftarrow{} \operatorname{Amplitude ratio}} & \mathbf{B}^0 \xrightarrow{} \mathbf{A}_{f_{CP}} \xrightarrow{} \mathbf{f}_{CP} \\ & \mathbf{B}^0 \xrightarrow{} \mathbf{A}_{f_{CP}} \xrightarrow{} \mathbf{f}_{CP} \\ & \mathbf{t} = 0 & \mathbf{h} \\ & \mathbf{h}_{f_{CP}} \neq \pm 1 \Rightarrow \operatorname{Prob}(\overline{\mathsf{B}}^0_{\text{phys}}(t) \rightarrow f_{CP}) \neq \operatorname{Prob}(\mathsf{B}^0_{\text{phys}}(t) \rightarrow f_{CP}) \\ & \lambda_{f_{CP}} \neq \pm 1 \Rightarrow \operatorname{Prob}(\overline{\mathsf{B}}^0_{\text{phys}}(t) \rightarrow f_{CP}) \neq \operatorname{Prob}(\mathsf{B}^0_{\text{phys}}(t) \rightarrow f_{CP}) \\ & \lambda_{f_{CP}} \neq \pm 1 \Rightarrow \operatorname{Prob}(\overline{\mathsf{B}}^0_{\text{phys}}(t) \rightarrow f_{CP}) + \Gamma(\mathsf{B}^0_{\text{phys}}(t) \rightarrow f_{CP}) \\ & \lambda_{f_{CP}} = \mathsf{C}_{f_{CP}} \cdot \cos(\Delta \mathsf{m}_{\mathsf{B}_{\mathsf{d}}}t) + \mathsf{S}_{f_{CP}} \cdot \sin(\Delta \mathsf{m}_{\mathsf{B}_{\mathsf{d}}}t) \\ & \mathsf{C}_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2} \\ & \mathsf{S}_{f_{CP}} = \frac{2\operatorname{Im}\lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2} \end{split}$$

C=0 and S=+/- sin2 β for $B \rightarrow J/yK_S$ and $B \rightarrow J/yK_L$

KEK, October 12, 2004

Notation translation

Belle	BABAR
φ ₁	β
Α	-C

2002: BABAR and Belle experiments conclusively observe that $sin 2\beta$ is not 0

- World average: 0.731+/-0.056
- "Perfect" agreement between constraints of apex of the Unitarity Triangle.

Penguin modes also measure sin2 β

- $b \rightarrow s\overline{s}s$ decays also measure $sin 2\beta$ in the SM
 - Small Standard Model amplitude → Sensitive to new physics at high mass scales

SM expectation: $sin 2\beta$ in some penguin modes agrees at 5% with charmonium

Penguin results from BABAR

Mode	η_{CP}	Branching fraction (/10 ⁻⁶)	Naïve SM difference from sin2β with <i>[cc]K</i>
B→fK⁰	-1	9	5%
$B \rightarrow K^+ K^- K_S$	~+1	27	10%
B→h'K _S	-1	65	10%
$B \rightarrow f_0 K_S$	+1	6	10%
$B \rightarrow p^{0} K_{S}$	-1	5	20%

Peak Pep-II luminosity >3x design

BABAR Detector

"Run 5" starts October 15 with 1/3 of IFR barrel RPCs replaced with LSTs

 Goal for 8 month run is 130 fb⁻¹ with peak luminosity of 1.5x10³⁴ achieved by June 2005

KEK, October 12, 2004

Typical B reconstruction variables

Experimental procedure to measure time-dependent CP Violation parameters

Experimental procedure to measure time-dependent CP Violation parameters

Experimental procedure to measure time-dependent CP Violation parameters

Tagging and ∆t resolution parameters are determined from data

Determine *w* and *R* parameters from more plentiful $B^0 - \overline{B}^0$ decays to flavor eigenstates.

KEK, October 12, 2004

Boosted center-of-mass plus silicon vertex detector required for ∆t determination

- Reconstruct B_{rec} vertex from charged B_{rec} daughters
- Determine B_{Tag} vertex from
 - All charged tracks not in B_{rec}
 - Constrain with B_{rec} vertex, beam spot, and $\Upsilon(4S)$ momentum
 - Remove high χ^2 tracks (to reject charm decays)
- High efficiency: 95%
- Average Δz resolution ~ 180 μ m (dominated by B_{Tag})

 $< |\Delta z| > \sim 260 \ \mu m$

B mesons produced just above threshold: <|Dz|> ~ 30 mm if no boost...

B decay properties used to determine if tagging B decayed as a B^0 or \overline{B}^0

		ε(%)	w(%)	Q(%)
Measure of tagging performance Q:	Lepton	8.6+/-0.1	3.2+/-0.4	7.5+/-0.2
	Kaonl	10.9+/-0.1	4.6+/-0.5	9.0+/-0.2
	Kaonll	17.1+/-0.1	15.6+/-0.5	8.1+/-0.2
$Q = \epsilon (1-2w)^2$	Κ-π	13.7+/-0.1	23.7+/-0.6	3.8+/-0.2
$\boldsymbol{s}(\sin 2\boldsymbol{b}) \propto \frac{1}{\sqrt{Q}}$	π	14.5+/-0.1	33.9+/-0.6	1.7+/-0.1
	Other	10.0+/-0.1	41.1+/-0.8	0.3+/-0.1
	Total	74.9+/-0.2		30.5+/-0.4

5% (relative) improvement in tagging algorithm.

Tagging algorithm improvements

- New tagger based on same idea/framework as previous one.
- "Physics" changes
 - Improved use of correlations between Kaons in event
 - $\Lambda \rightarrow \pi p$ as source of tagging
 - Secondary electrons
- New way to categorize events
 - Category #1: Primary leptons
 - Categories #2-#6: Split remaining events based on estimated mistag rate (from NN).
- Not all analyses use new tagger yet.

$sin 2\beta$ with Charmonium modes

KEK, October 12, 2004

Event sample for "Golden" channels

signal region

3900 $\eta_{CP} = -1$ tagged signal events

$B \rightarrow J/\psi K_L$ and $B \rightarrow J/\psi K^{*0}(K_S \pi^0)$

1600 J/ψK_L tagged signal events

New sin2β Results: 227 BB events

sin2ß = 0.722 ± 0.040 (stat) ± 0.023 (sys)

Best of the best: Lepton tagged η_{CP} =-1 events

Lower background

Close to perfect tagging

Better Δt determination

 $sin2\beta = 0.75 + / - 0.08$

Consistent results when data is split by decay mode and tagging category

Decreasing systematic error: $sin 2\beta$ measurement still statistics limited. $\sigma(sin 2b)$

Description of background events	0.012	
CP content of peaking background		
Background shape uncertainties		
Mistag differences between B _{CP} and B _{flav} samples		
Composition and content of $J/y K_L$ background		
Δt resolution and detector effects		
Silicon detector alignment uncertainty		
Δt resolution model		
Beam spot position	0.007	
Fixed ? m, t, ? G'G, ?	0.005	
Tag-side interference/ DCSD decays	0.003	
MC statistics/bias	0.003	
TOTAL	0.023	
Steadily reducing systematic error:	July 2002 = 0.033	

July 2001 = 0.05

CKM picture with new sin2β measurement

 1 of 4 solutions for β overlays allowed region by other constraints.

 $B \rightarrow J/\psi K^*$ channel sensitive to cos2 β if angular variables are included in analysis

- CP even (L=0,2) and odd (L=1) amplitudes averaged over in nominal sin2β analysis.
- Terms proportional to $cos2\beta$ also in full amplitude
 - Sign of $cos2\beta$ mathematically ambiguous
 - Two-fold ambiguity in determination of strong phases

Ambiguity solved via S-wave – P-wave interference

- Resonance phase rotates counter-clockwise
- P-wave moves "fast", S-wave moves "slow"
- Look at interference term in amplitude analysis
 - $-\delta_{S}-\delta_{P}$ vs. m(K π) : Which solution is physical?

Clear solution to strong phase ambiguity

Measure cos2ß with angular and time dependent analysis

- Current results on 88 million BB events.
 - 104 tagged signal events.

Preliminary

Standard Model sign of $cos(2\beta)$ favored by our data.

KEK, October 12, 2004

Conclusion for sin2 β with Charmonium

 Updated measurement of sin2β with B→J/ψK⁰ decays using full BABAR data sample

 $sin2b = 0.722 \pm 0.040 (stat) \pm 0.023 (syst)$

• Novel method to break strong phase ambiguity in measurement of $\cos 2\beta$ in B $\rightarrow J/\psi K^*$ decays

 $\cos(2\beta) = 2.72^{+0.50}_{-0.79}(stat.) \pm 0.27(syst.)$

• $\cos 2\beta = -0.68$ excluded at 86.6% level. More data to be included in this analysis.

BABAR charmless analysis requirements

- DIRC for separation of high momentum π and K.
- Continuum rejection
 - Neural network or Fisher to optimally combine event shape discriminants.

- Design high efficiency selection. Maximum likelihood fit to untangle signal from background in optimal way.
 - Variables: m_{ES} , ΔE , (NN or Fisher), resonance mass, decay angle, tagging, and Δt
 - Contributions: Signal, continuum, B background(s)

$B \rightarrow fK_S$ and $B \rightarrow fK_L$

- $f \rightarrow K^+K^-$: dE/dx + DIRC information
- $B \rightarrow f K_L$ mode like $B \rightarrow J/y K_L$
 - Add continuum suppression variables
- New for updated analysis
 - New tagger
 - Event yields determined along with CP parameters
 - Improved B background treatment

Event yield results for 227x10⁶ BB

KEK, October 12, 2004

David Lange, LLNL

Event yield results for 227x10⁶ BB

KEK, October 12, 2004

New CP asymmetry results confirm previous measurement

$B \rightarrow K^+ K^- K_S$

- $B \rightarrow f K_S$ only 15% of $B \rightarrow K^+ K^- K_S$ events
 - We analyze the rest excluding the $B \rightarrow f K_s$ contribution.
 - Determine the CP content via angular moments analysis of *K*+*K*- helicity angle distribution.
 - Dominantly CP-even

$$f_{CP\text{-even}} = \frac{A_s^2}{A_s^2 + A_p^2} = 0.89 \pm 0.08 \pm 0.06$$

KEK, October 12, 2004

$B \rightarrow K^+K^-K_S$ event sample

$B \rightarrow K^+ K^- K_S$ (227x10⁶ $B\overline{B}$ pairs)

 $\mathbf{S}_{\mathbf{K}^+\mathbf{K}^-\mathbf{K}_{\mathbf{S}}^0} = -0.42 \pm 0.17 \pm 0.04$ $C_{\kappa^+\kappa^-\kappa_{\rm c}^0} = +0.10 \pm 0.14 \pm 0.06$

Fit bias

Tag-side CP Violation

Previous result: 122x10⁶ BB $S = -0.56 \pm 0.25 \pm 0.04$ $C = -0.10 \pm 0.19 \pm 0.10$

KEK, October 12, 2004

CP content

$B \rightarrow h' K_{S}$

• Definitely not a "rare" decay mode

$$\mathsf{BR}(B^0 \rightarrow h'_{\mathrm{rec}} K^0_{\mathrm{S}}) \sim 14.9 \times 10^{-6}$$

• Reconstruct in multiple final states:

Projections of $B \rightarrow h'K_S$ (227x10⁶ $B\overline{B}$)

- Likelihood projections onto m_{ES} and ΔE .
 - Most modes have very low background.
- Yield from fit: 819 ± 38 signal events

S coefficient is 3σ from [cc]K sin2 β

KEK, October 12, 2004

$B \rightarrow f_0(980) K_{\mathrm{S}} (f_0 \rightarrow p^+ p^-)$

- f₀(980) is broad. Use "quasi two-body" approach:
 - Analyze $f_0 \rightarrow \pi^+\pi^-$ region of $\pi^+\pi^-K_s$ Dalitz plot
 - Account for other $B \rightarrow \pi^+\pi^-K_s$ contributions
 - Vary size and relative phase of contributing amplitudes as part of systematic error
 - Mass and width parameters of relativistic BW floating in likelihood fit
 - Not sensitive to different lineshapes
- No analysis changes for updated results

$B \rightarrow f_0 K_S$ from 206x10⁶ $B\overline{B}$ pairs

KEK, October 12, 2004

CP results from $B \rightarrow f_0(\rightarrow p^+ p^-)K_S$

$$S_{f_0 \kappa_s^0} = -0.95 ^{+ 0.32}_{- 0.23} \pm 0.10$$
$$C_{f_0 \kappa_s^0} = -0.24 \pm 0.31 \pm 0.15$$

- Larger than expected improvement in errors as well as shift in S largely due to new lepton tagged event with high signal probability and "good" ∆t.
- Systematic error dominated by unknown ππK_S contributions in f₀ region of Dalitz plot. (Q2B approach)

Time-dependant analysis of $B \rightarrow p^0 K_S$ using novel vertexing technique

- Lifetime of K_S requires additional information to be used to determine Δt with adequate precision
 - Require at least 4 SVT hits on each $K_S \rightarrow \pi^+\pi^-$ daughter track.
 - 40% of events failing this criterion are still used to determine the direct CP coeff.
 - Include beam energy and beam spot (determined run by run) constraints and fit full Y(4S) decay tree.

209x10⁶ $B\overline{B}$ results for $B \rightarrow p^0 K_S$

Events / (0.004 GeV 100 Replace ΔE and $m_{\rm FS}$ $m_{\mathrm{miss}} = |q_{e^+e^-} - \hat{q}_{B \to K^0_{\mathrm{S}} p^0}| \approx 2m_{\mathrm{ES}} - m_B^{\mathrm{PDG}}$ mass-constrained $m_{\rm rec} = |q_{B \to \kappa_{\rm s}^0 p^0}| \approx \Delta E + m_B^{\rm PDG}$ Reduced correlation, improved 20 Projections after LR cut resolution $(m_{\rm miss})$ 5.15 5.2 5.25 5.3 Events m_{miss} (GeV) 104 300+/-23 signal events Events / (0.02 GeV) 10 10 20 BABAR 10 5.4 5.25 5.3 5.35 5.15 5.20.2 0.8 0.4 0.6 0 m_{rec} (GeV) $P_{s} / (P_{s} + P_{B})$ KEK, October 12, 2004 David Lange, LLNL

New CP results for $B \rightarrow p^0 K_S$

$$\begin{cases} \mathbf{S}_{p^{0}K_{S}^{0}} = +0.35 + 0.30 \pm 0.04 \\ \mathbf{C}_{p^{0}K_{S}^{0}} = +0.06 \pm 0.18 \pm 0.06 \end{cases}$$

Systematic errors dominated by

- Background tagging asymmetry
- SVT alignment, vertexing

KEK, October 12, 2004

No indication of significant direct *CP* violation ($cos(\Delta m \Delta t)$ term)

KEK, October 12, 2004

Penguin and tree measurements of sin($\Delta m \Delta t$) coefficient differ at 2.7 σ

KEK, October 12, 2004

Belle results also show a difference with respect to $sin2\beta$ from [cc]K⁰

Are we seeing hints of new physics?

- Maybe you believe the "glass is ½ full" or that the "glass is ½ empty".
 - $-3+\sigma$ indication of additional CPV amplitude contribution.
 - Expect new physics effects to appear differently in different modes
 - Averaging most relevant in Standard Model case
 - − For BABAR, B→ η 'K_s drives average away from [cc]K_s sin2 β .
 - Do we worry about BABAR vs Belle agreement?

Current situation gives interesting hint. But it is too early to draw any conclusion

Sizable "new physics" amplitudes would be required to explain current results

(assume maximal relative strong phase)

KEK, October 12, 2004

Future expectations

Luminosity expectations:

2004=240 fb⁻¹ 2006=500 fb⁻¹

KEK, October 12, 2004

Conclusion

- BABAR has updated its [cc]K⁰ and penguin sin2β measurements to include its latest data
 - Most up to 227 *BB* pairs.
- BABAR sin2β with [cc]K⁰ now a 5% measurement. sin2b = 0.722 ± 0.040 (stat) ± 0.023 (syst)
- Hints that $\sin 2\beta$ measured in penguin modes is not the same as in golden $B \rightarrow [cc]K^0$ modes.
 - 3σ deviation in $B \rightarrow h' K_{S}$.
 - $B \rightarrow h' K_{S}$ is also the most precise penguin measurement (+/- 0.18).
 - *B*→*fK*⁰ agrees with [*cc*]*K*⁰ within 1σ.

Stay tuned for increasingly precise results as B Factory samples increase

KEK, October 12, 2004

How do we display the results of our likelihood fits?

- Plot of likehood ratio: L(sig)/(L(sig)+L(background))
- Projection onto mES (or other variable) after cut on likelihood ratio.
 - Plotted variable not used to calculate likelihood ratio
 - Superimpose signal and background PDFs from primary likelihood fit.
- sPlots (ref: physics/0402083)
 - Weighted histogram of mES
 - Weights determined from other variables in fit
 - Weights chosen so histogram is unbiased estimator of m_{ES} for signal contribution. (or background)