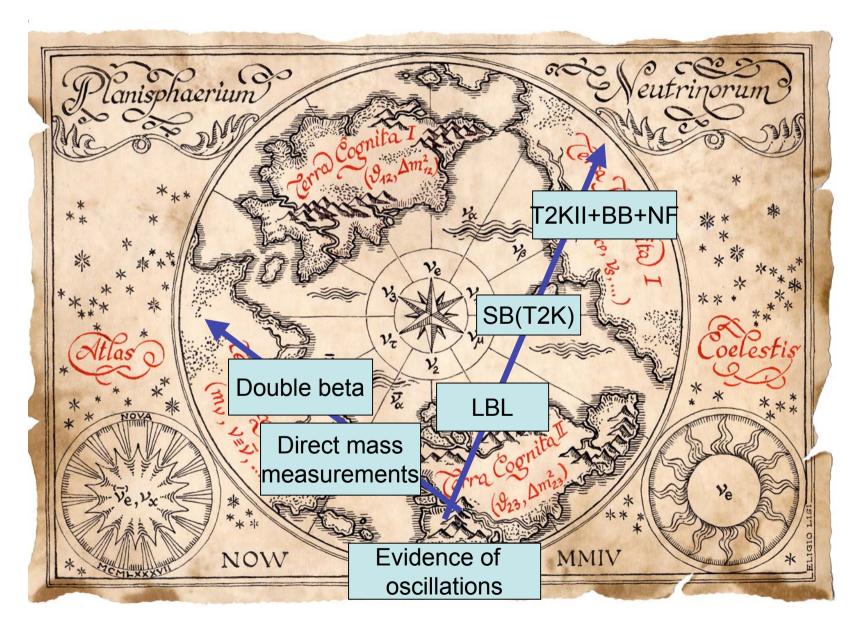
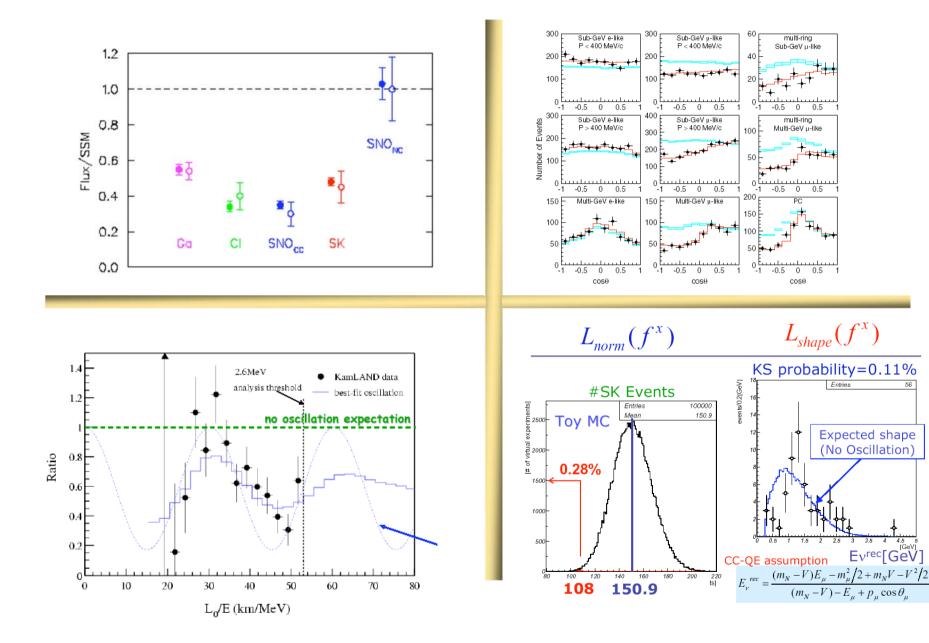
Extracting the parameters of the PMNS matrix from future neutrino oscillation experiments I

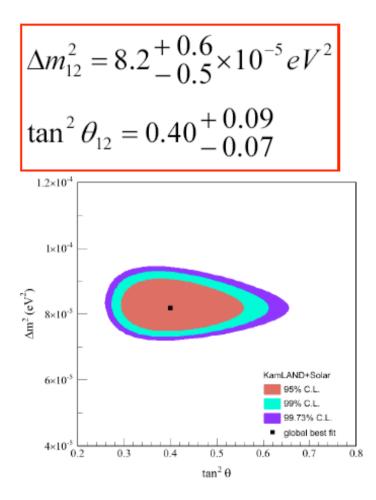
J.J. Gómez-Cadenas U. Valencia/KEK Original results presented in this talk based on work done in collaboration with P. Hernández, J. Burguet-Castell, D. Casper & P.Novella

A trip to terra incognita

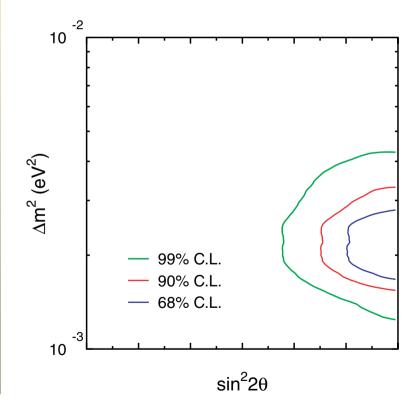


Evidence of neutrino oscillations

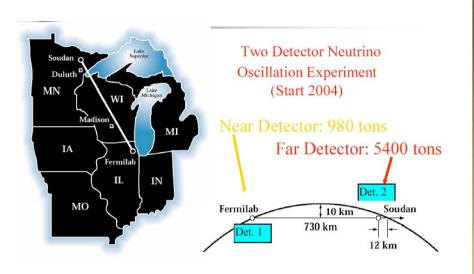


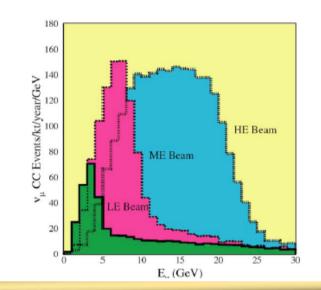


$$\Delta m^2 = 2.1 \cdot 10^{-3} eV^2$$
$$\sin^2 2\theta \approx 1$$

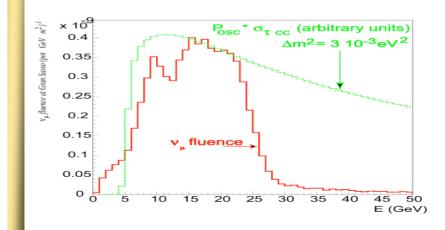


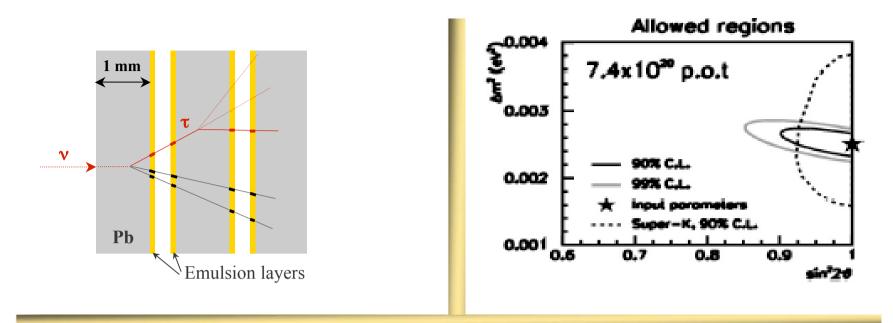
Long Base Line Experiments

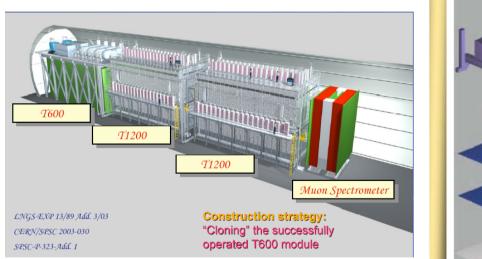


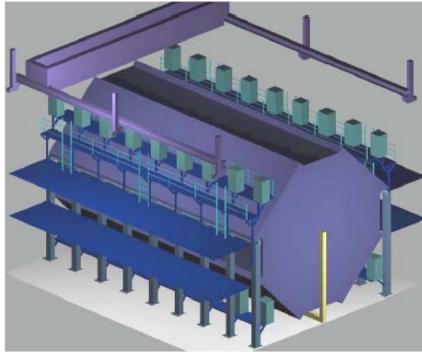






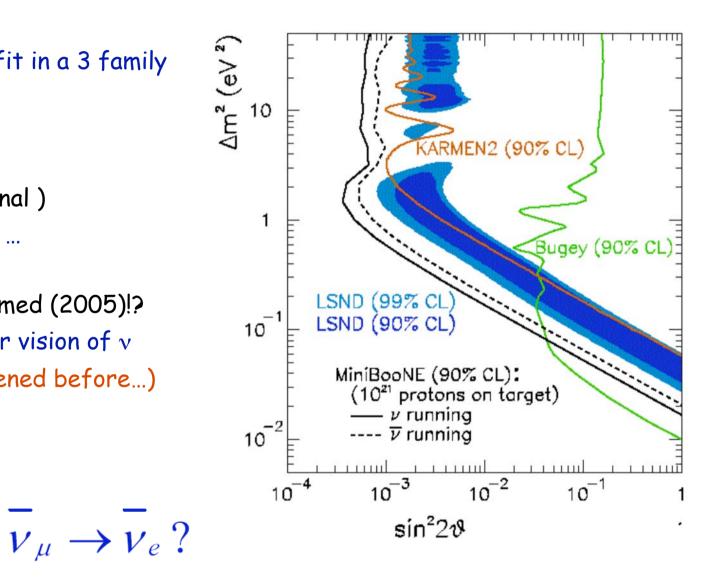






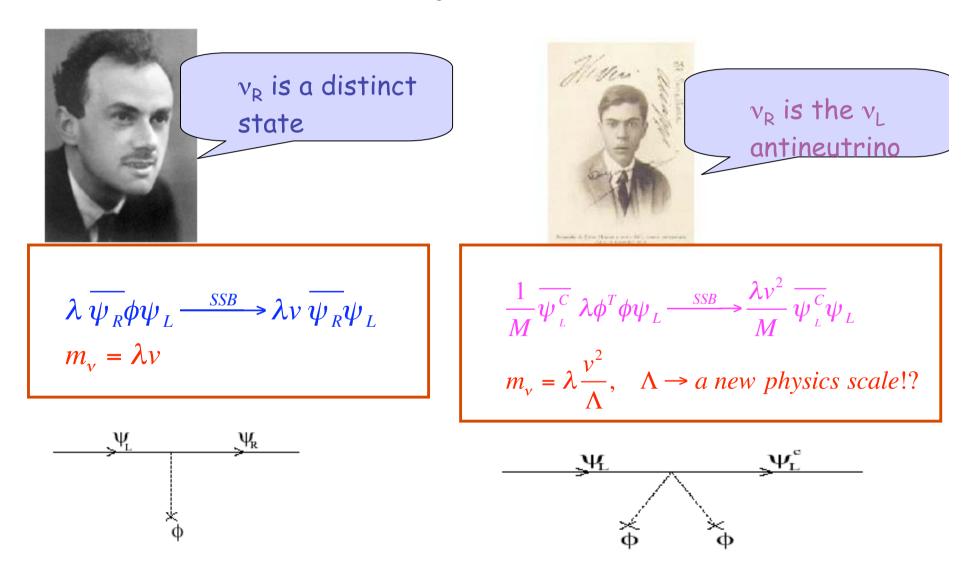
The last anomaly

- LSND •
 - Does not fit in a 3 family scenario
 - $2 \Delta m^2$
- MiniBooNE (Fnal) •
 - Testing it ...
- If it is confirmed (2005)!? •
 - Change our vision of ν
 - (has happened before...)



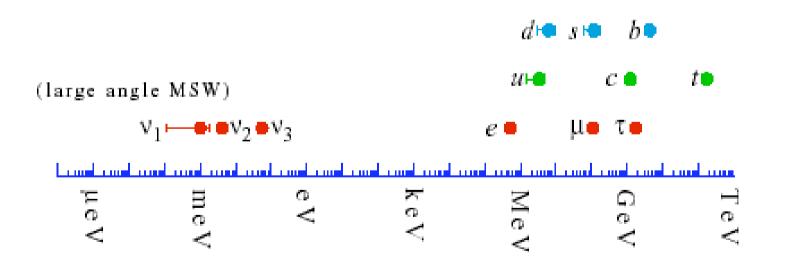
Neutrino masses mixing and oscillations

Neutrino masses. Dirac versus Majorana

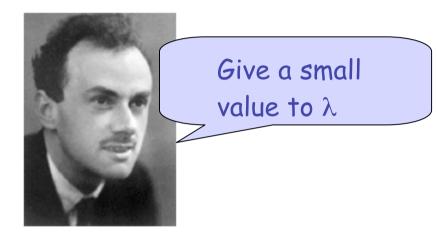


Smallness of neutrino masses

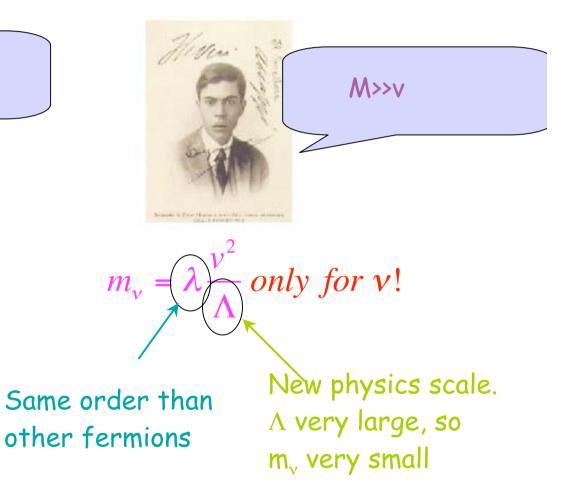
Why neutrino masses are so much smaller than the other fermion masses???

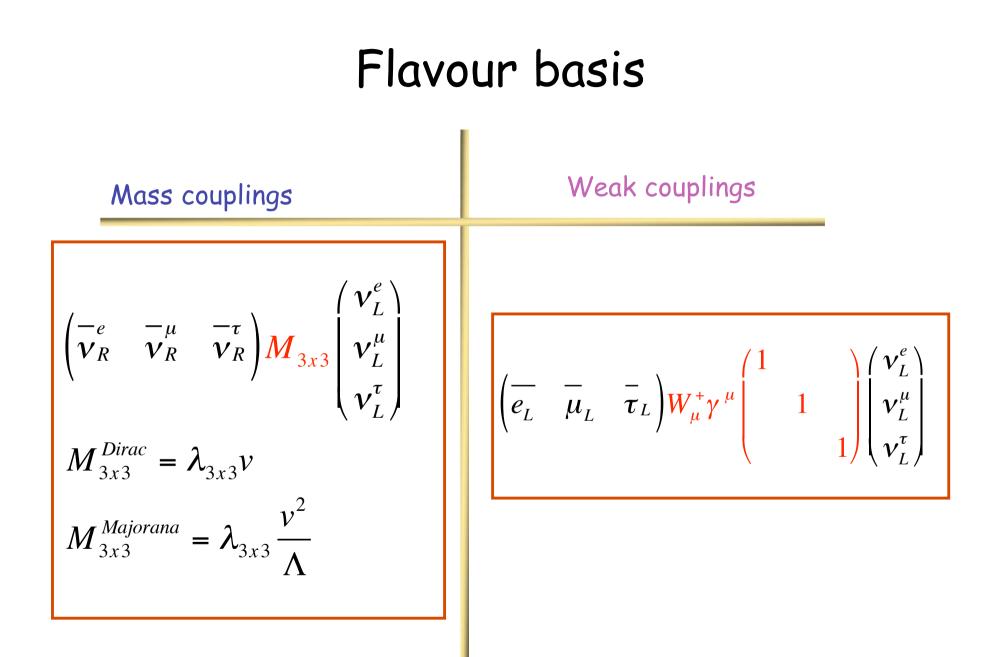


Smallness of Neutrino masses. Dirac versus Majorana

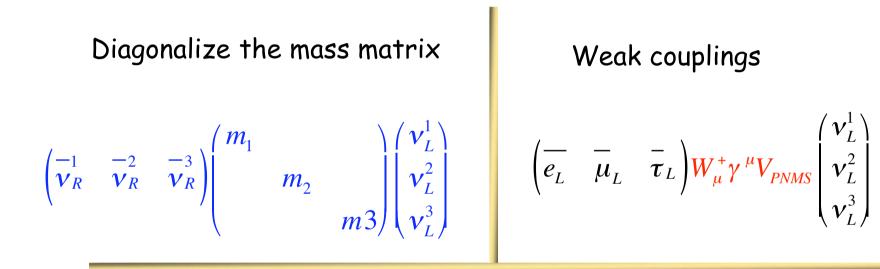


Why λ is so much smaller for neutrinos than for the other leptons?? (hierarchy problem!!!)





Mass basis and mixing matrix



Mixing matrix connecting mass and weak eigenstates

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \boldsymbol{V}_{PMNS} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

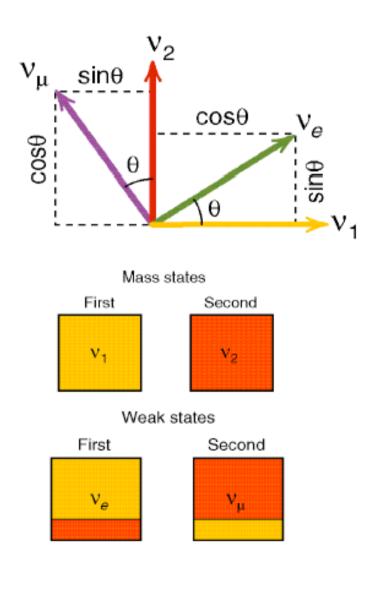
Pontecorvo Maki Nakagawa Sakata

Mixing in two families

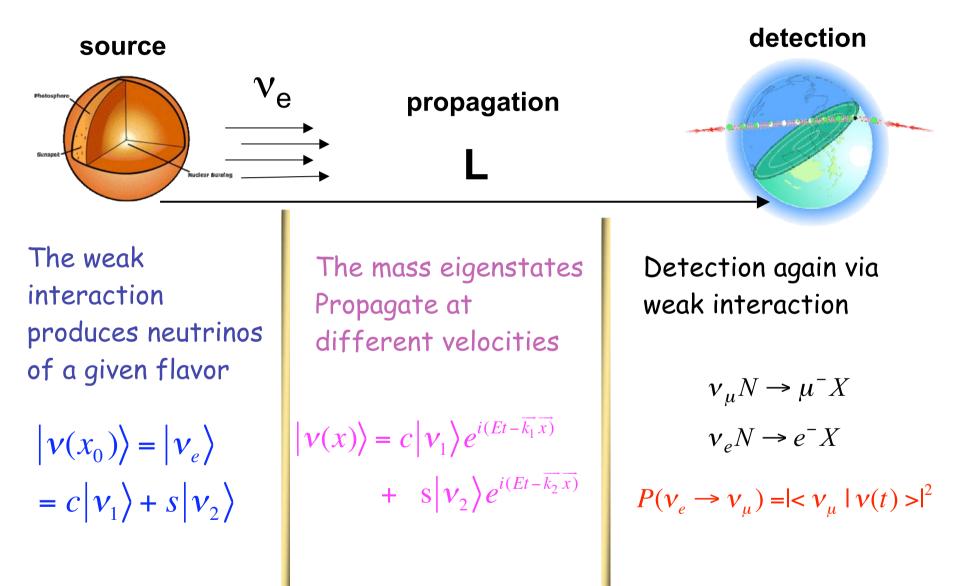
Consider for simplicity two families. Then the mixing matrix depends of a single parameter, the mixing angle θ

That is, the weak and mass eigenstates are connected by a simple two-dimensional rotation

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix} = U \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}$$



Neutrino oscillations



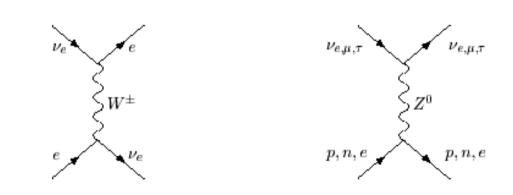
Oscillation probability

$$|\vec{k}| \approx E - \frac{m^2}{2E} \qquad |v(L)\rangle \approx e^{-iEt} (c \cdot e^{-i\frac{m_1^2}{2E}L} |v_1\rangle + s \cdot e^{-i\frac{m_2^2}{2E}L} |v_2\rangle)$$

$$P(v_e \rightarrow v_{\mu}) = |\langle v_{\mu} | v(L) \rangle|^2 = \left| -sce^{-i\frac{m_1^2}{2E}L} + cse^{-i\frac{m_2^2}{2E}L} \right|^2$$
$$= 4s^2c^2(1 - \cos\frac{m_1^2 - m_2^2}{2E}L) = \sin^2(2\theta)\sin^2(\frac{\Delta m_{12}^2}{4E}L)$$

Neutrino oscillations in Matter

 v_e, v_μ, v_τ interact with e, p and n of matter via NC.interactions (Z). Only v_e interact via (CC) with the electrons of the medium



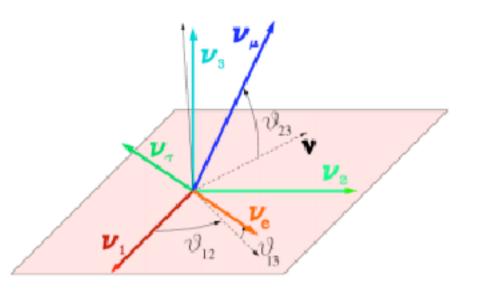
Oscillation probability change in matter. There can be a resonant enhancement of the oscillation probability. The Mikheyev-Smirnov-Wolfenstein (MSW) effect.

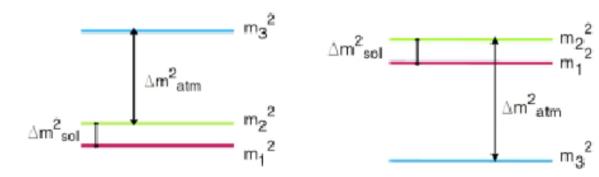
 P_{osc}^{matter} can be large (\approx 1) even if mixing angle in vacuum is small

Oscillations in 3D

Solar data. The v_e is oscillating (via enhanced matter resonance, MSW) to the other two flavours with $\Delta m_{12} \approx 10^{-4} \text{ eV}^2$, $\theta_{12} \approx 30^0$

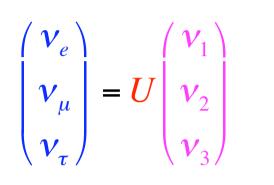
Atmospheric data. Largely $v_{\mu} \rightarrow v_{\tau}$ (vacuum) oscillations with $\Delta m_{23} \approx 10^{-3}$ $eV^2 \theta_{23} \approx 45^0$





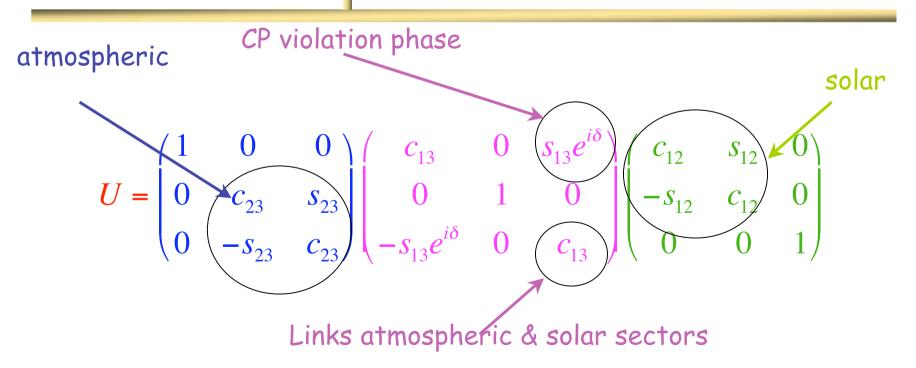
Two mass differences → need 3 neutrinos

The PMNS matrix

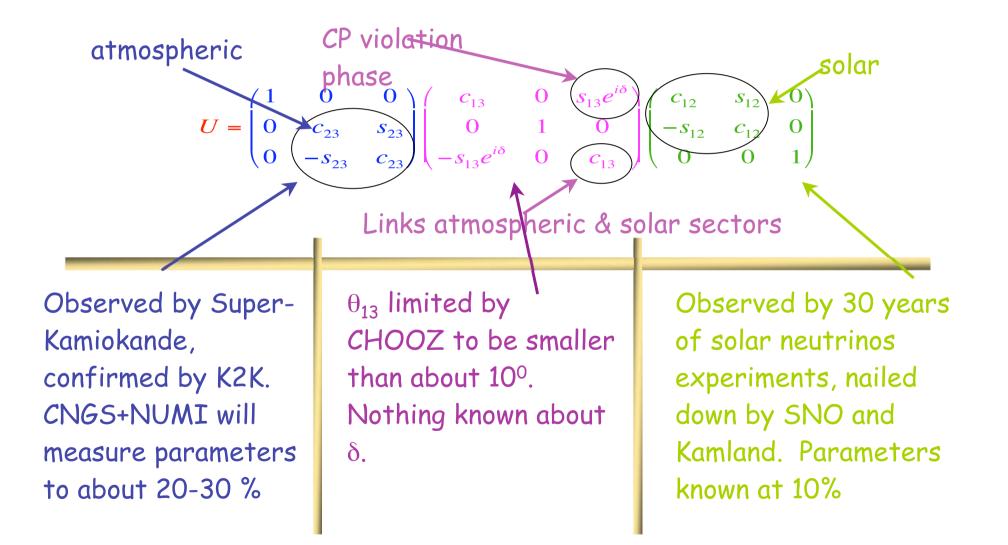


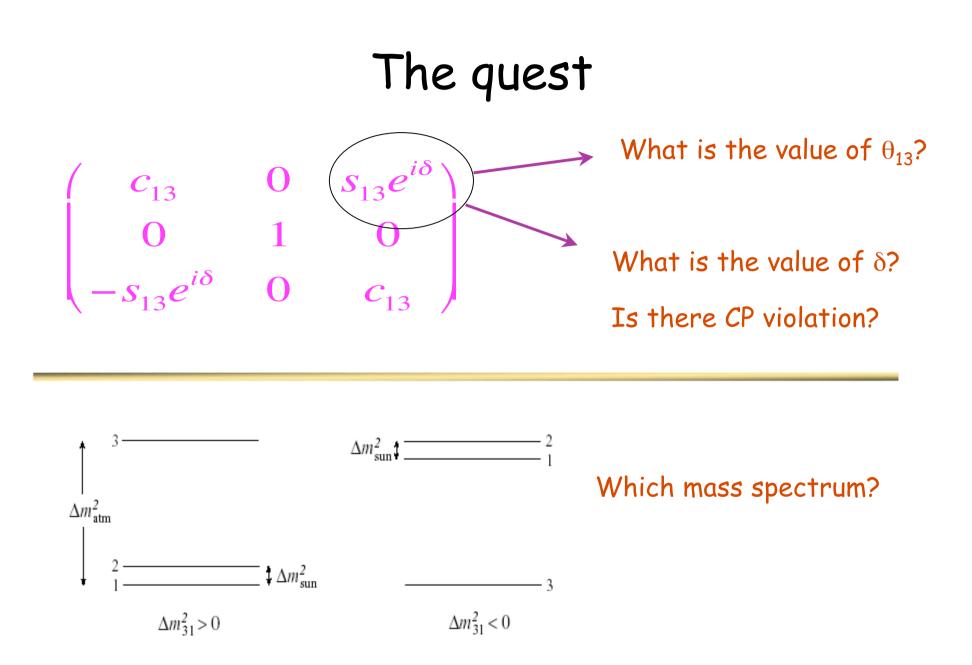
Unless the other two angles θ_{13} is small (experimental upper limit $\theta_{13} < 10^{\circ}$)

If $\delta \neq 0, \pi, 2\pi$...then weak interactions violate CP symmetry in the lepton sector (as in the quark sector)



Neutrino oscillation physics: you are here



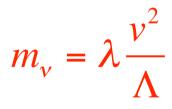


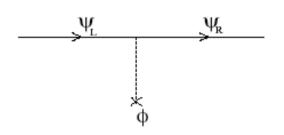
The quest (II)

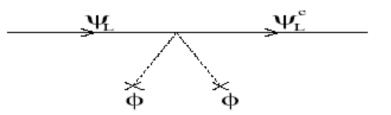
Dirac or Majorana?

If Majorana, what is the value of $\Lambda?$

$$m_v = \lambda v$$







θ₁₃: link between atmospheric and solar oscillations

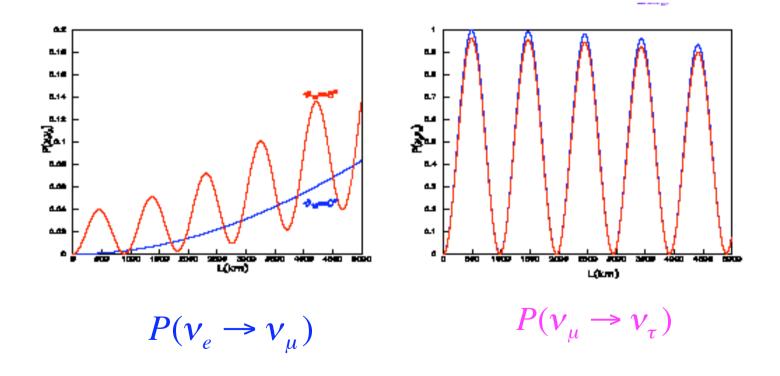
$$\begin{split} \theta_{13} &= 0 \qquad P(v_e \rightarrow v_\mu) = c_{23}^2 \sin^2 2\theta_{12} \sin^2(\frac{\Delta m_{12}^2 L}{4E}) \qquad \text{solar} \\ \theta_{13} \neq 0 \qquad P(v_e \rightarrow v_\mu) = c_{23}^2 \sin^2 2\theta_{12} \sin^2(\frac{\Delta m_{12}^2 L}{4E}) \qquad \text{solar} \\ &+ s_{23}^2 \sin^2 2\theta_{13} \sin^2(\frac{\Delta m_{23}^2 L}{4E}) \qquad \text{solar} \\ &+ J \cos(\pm \delta - \frac{\Delta m_{23}^2 L}{4E}) \frac{\Delta m_{12}^2 L}{4E} \sin(\frac{\Delta m_{23}^2 L}{4E}) \qquad \text{interference} \end{split}$$

 $J = c_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}$

Sensitivity to θ_{13} : subleading transitions

Subleading: $v_e \rightarrow v_{\mu}$, $v_e \rightarrow v_{\tau}$: sensitive to θ_{13} and δ

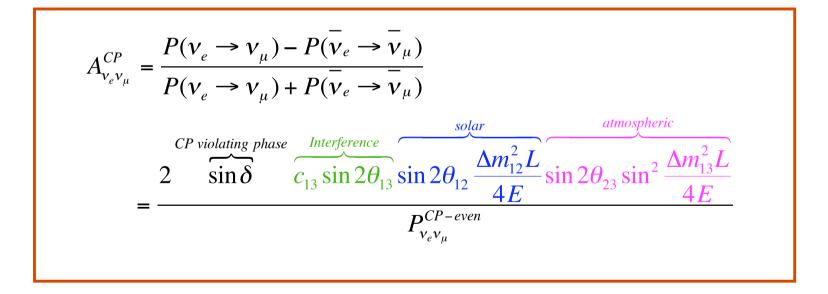
Leading: $v_{\mu} \rightarrow v_{\tau}$: rather insensitive to θ_{13} and δ



CP violation in v oscillations

CP violation in v oscillations \rightarrow Oscillation probability is different for neutrinos and antineutrinos.

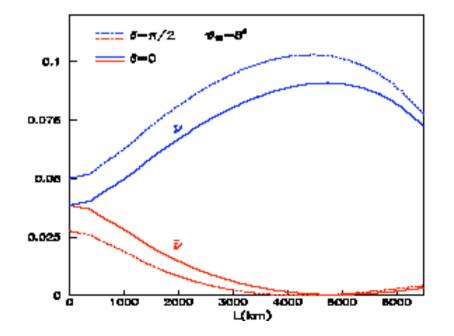
Thus, one can measure non-vanishing asymmetries A_{CP}



Determine mass spectrum

The same experiments that will measure δ and θ_{13} can establish the v mass hierarchy by studying the matter effects on Earth

•One gets a large amplification/supression of $P(v_e \rightarrow v_{\mu})$ depending on whether the hierarchy is "natural" or "inverted"



Extracting the parameters of the PMNS matrix from future neutrino oscillation experiments I

J.J. Gómez-Cadenas U. Valencia/KEK Original results presented in this talk based on work done in collaboration with P. Hernández, J. Burguet-Castell, D. Casper & P.Novella

Measurement of θ_{13} . Correlations

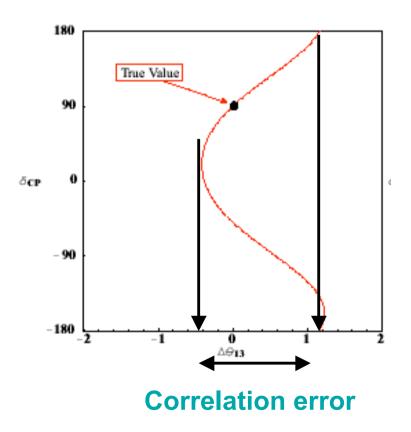
$$P_{\nu_e\nu_{\mu}}^{\pm}(\theta_{13},\delta) \approx X_{\pm} \sin^2 2\theta_{13} + \left(Y_{\pm}^c \cos \delta \mp Y_{\pm}^s \sin \delta\right) \sin 2\theta_{13} + Z$$

(DeRujula99, Cervera00)

The appearance probability $P(\overline{\theta}_{13},\overline{\delta})$ obtained for neutrinos at fixed (E,L) with input parameters $(\overline{\theta}_{13},\overline{\delta})$ has no unique solution. Indeed the equation:

 $P_{\alpha\beta}(\overline{\theta}_{13},\overline{\delta}) = P_{\alpha\beta}(\theta_{13},\delta)$

has a continuous number of solutions



Measurement of θ_{13} : Intrinsic degeneracy

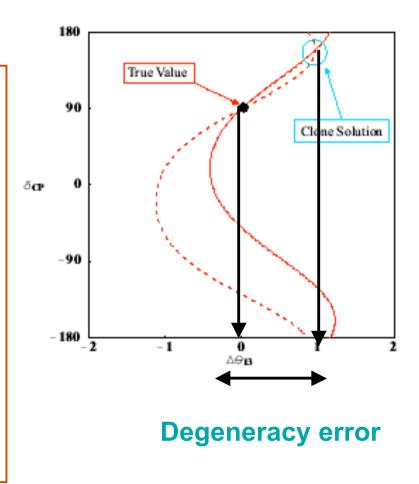
$$P_{\nu_e\nu_\mu}^{\pm}(\theta_{13},\delta) \approx X_{\pm} \sin^2 2\theta_{13} + \left(Y_{\pm}^c \cos \delta \mp Y_{\pm}^s \sin \delta\right) \sin 2\theta_{13} + Z$$

J. Burguet-Castell et al. Nucl. Phys. B 608 (2001) 301;

For neutrinos and antineutrinos of the same energy and baseline the system of equations

 $P_{\alpha\beta}^{\pm}(\overline{\theta}_{13},\overline{\delta}) = P_{\alpha\beta}^{\pm}(\theta_{13},\delta)$

has two intersections. The true one $(\overline{\theta}_{13}, \overline{\delta})$ and a second, energy dependent point (clone) that introduces and ambiguity in the determination of the parameters



Discrete degeneracies

3. H. Minakata and H. Nunokawa, JHEP 0110 (2001) 001.

4. V. Barger, D. Marfatia and K. Whisnant, Phys. Rev. D 65 (2002) 073023.

Two other sources of degeneracy.

1. Ignorance of the sign of Δm_{23}^2

2. Ignorance of the octant of θ_{23}

$$s_{atm} = \operatorname{sgn}(\Delta m_{23}^2)$$

$$s_{oct} = \operatorname{sgn}(\tan(2\theta_{23}))$$

These two discrete values assume the value ±1

Eightfold degeneracy

4. V. Barger, D. Marfatia and K. Whisnant, Phys. Rev. D 65 (2002) 073023.

Experimental measurement. Number of observed chaged leptons N β Integrate P over Φ_{γ} , σ , and detector efficiencies.

$$N_{\beta}^{\pm}(\overline{\theta}_{13},\overline{\delta};\overline{s}_{atm},\overline{s}_{oct}) = N_{\beta}^{\pm}(\theta_{13},\overline{\delta};s_{atm} = \overline{s}_{atm},s_{oct} = \overline{s}_{oct}) \quad \beta = e,\mu,\tau$$

Since s_{atm} & s_{oct} not known, one should consider also 2 other equations which result in an 8-fold degeneracy

$$N_{\beta}^{\pm}(\overline{\theta}_{13},\overline{\delta};\overline{s}_{atm},\overline{s}_{oct}) = N_{\beta}^{\pm}(\theta_{13},\delta;s_{atm} = -\overline{s}_{atm},s_{oct} = \overline{s}_{oct})$$

$$N_{\beta}^{\pm}(\overline{\theta}_{13},\overline{\delta};\overline{s}_{atm},\overline{s}_{oct}) = N_{\beta}^{\pm}(\theta_{13},\delta;s_{atm} = \overline{s}_{atm},s_{oct} = -\overline{s}_{oct})$$

$$N_{\beta}^{\pm}(\overline{\theta}_{13},\overline{\delta};\overline{s}_{atm},\overline{s}_{oct}) = N_{\beta}^{\pm}(\theta_{13},\delta;s_{atm} = -\overline{s}_{atm},s_{oct} = -\overline{s}_{oct})$$

How to solve degeneracies

- Use spectral information on oscillation signals → experiment with energy resolution
- Combine experiments differing in E/L (and/or matter effects) → need two experiments
- 3. Include other flavor channels: silver channel $v_e \rightarrow v_{\tau}$. Need a tau-capable detector

Burguet et al, Nucl.Phys.B608:301-318,2001

Donini, Meloni, Miggliozzi, hep-ph/0206034 Donini, Meloni, Rigolin, hep-ph/hep-ph/0312072

