Recent Θ^+ and Gamma experiments at the SPring-8/LEPS

Koichi Kino (RCNP)

- Θ^+ experiment
 - LD2 target data

- Gamma experiment
 - Forward gamma detector
 - Preliminary $\gamma+p \rightarrow \eta+p'$ analysis
LEPS beam line

SPring-8 (SuperPhotonRing 8GeV)

8 GeV electron storage ring

Current=100mA
62 beam lines
Bunch=every 2nsec

1.5 – 2.4 GeV real photon available
Θ^+ experiment
LEPS Ω^+ first data

- **Prediction from the chiral soliton model**

- $\gamma+n(^{12}\text{C}) \rightarrow K^+K^-n$

\begin{align*}
\text{nK}^+ \text{ or pK}^0 & \rightarrow \text{Z}^+(\text{uudds}) \\
180 \text{ MeV} & \\
180 \text{ MeV} & \rightarrow \Sigma(1890) \\
180 \text{ MeV} & \downarrow \rightarrow \Xi(2070) \\
\Xi^-\pi^- \text{ or } \Sigma^-K^- & \rightarrow \Xi_{3/2}^- \\
(\text{ddssu}) & \\
q^4\overline{q} & \rightarrow 10 \text{ state}
\end{align*}

\begin{align*}
\Xi^0\pi^+ \text{ or } \Sigma^+K^0 & \\
(\text{uussd}) & \\
\text{peak} = 1.54 \pm 0.01 \text{ GeV/c}^2 \\
\text{width} < 25 \text{ MeV/c}^2 \\
\text{Gaussian significance} = 4.6\sigma
\end{align*}

$^{12}\text{C(Scintillator)}$
Data from other Labs

- **Optimistic data**
 - LEPS \(\gamma+n^{(12)C} \rightarrow nK^{+}+K^{-} \)
 - CLAS \(\gamma+d \rightarrow nK^{+}+p+K^{-} \)
 - CLAS \(\gamma+p \rightarrow nK^{+}+\pi^{+}+K^{-} \)
 - SAPHIR \(\gamma+p \rightarrow nK^{+}+K^{0} \)
 - HERMES \(e+d \rightarrow pK^{0}+X \)
 - ZEUS \(e+p \rightarrow pK^{0}+X \)
 - COSY \(p+p \rightarrow pK^{0}+\Sigma^{+} \)
 - DIANA \(K^{+}+XE \rightarrow pK^{0}+XE' \)
 - JINR \(n+p \rightarrow nK^{+}+p+K^{-} \)
 - SVD \(p+A \rightarrow pK^{0}+X \)
 - \(\nu+A \rightarrow pK^{0}+X \)

- **Pessimistic data**
 - BaBar \(e^{+}+e^{-} \rightarrow pK^{0}+X \)
 - E690(Fermi) \(p+p_{rest} \rightarrow p_{slow}K^{0}+K^{-}+\pi^{+}+p_{fast} \)
 - CDF \(p+\bar{p} \rightarrow pK^{0}+X \)
 - Belle \(K+N \rightarrow pK^{0} \)
 - Belle \(B^{0} \rightarrow pK^{0}+\bar{p} \)
 - HERA-B \(p+A \rightarrow pK^{0}+X \)
 - ALEPH \(e^{+}+e^{-} \rightarrow pK^{0}+X \)
 - DELPHI \(e^{+}+e^{-} \rightarrow pK^{0}+X \)
 - HyperCP \(p+A \rightarrow pK^{0}+X \)
 - BES \(\psi(2S) \rightarrow pK^{0}+\bar{n}K^{-}, \bar{p}K^{0}+nK^{+} \)
 - BES \(J/\psi \rightarrow pK^{0}+\bar{n}K^{-}, \bar{p}K^{0}+nK^{+} \)

\[E522(KEK) \quad \pi^{-}+p \rightarrow X+K^{-} \]

- **Can the peak seen in the previous LEPS data be seen in the new data again?**

etc.
LEPS new LD2 and LH2 data

- 15cm-long target cell
- $\sim 2 \cdot 10^{12}$ photons on the LD2 target
 - Less Fermi motion effect
- $\sim 1.4 \cdot 10^{12}$ photons on the LH2 target
LEPS Detector

Aerogel Čerenkov counter

Vertex detector (SSD)

Dipole Magnet (0.7 T)

Target

Start counter

LH2, LD2 Target (150mm thick)

TOF wall

MWDC 1

MWDC 2

MWDC 3

1m

γ
Expected reactions

\[\gamma n(p) \rightarrow \Theta^+K^-(p) \]
\[\Theta^+ \rightarrow K^+n \]
Exotic

\[S=+1 \]

\[\gamma p(n) \rightarrow \Lambda^*(1520)K^+(n) \]
\[\Lambda^*(1520) \rightarrow K^-p \]
Standard baryon

\[S=-1 \]

\[\gamma N \rightarrow \phi(1020)N \rightarrow K^+K^-N \]
Mason resonance
Applied cuts and correction

- ϕ meson exclusion cut
- Deuteron elastic reaction cut
- Missing mass cut
- Fermi motion correction
φ meson exclusion cut

- **Invariant Mass (K⁺K⁻) (GeV/c²)**
 - Ratio = (Real − MC) / MC
 - Almost Eᵧ independent

- **Missing Mass (γ,K⁻)**
 - MC KKn 3-body phase space
 - 1.8 < Eᵧ < 2.0 GeV 2.2 < Eᵧ < 2.4 GeV
 - M(φ) = 1.019 GeV/c²
 - Relative acceptance
 - = N(1.50 < MM(γ,K⁻) < 1.55) / N(all)
 - Eᵧ dependent

R = “Ratio” × “Relative acceptance”
φ meson exclusion cut

- **Energy dependent**
 φ exclusion cut function

- **Effect on MM (γ,K⁺)**

![Graphs showing energy-dependent exclusion cut function](image)

- **Invariant Mass (K⁺K⁻)** (GeV)

- **Eγ (GeV)**

- **MM γK⁺ (GeV/c²)**

- **R=0.20**
 - MM γK⁺ (GeV/c²) = 0.01

- **R=0.05**
 - MM γK⁺ (GeV/c²) = 0.10

- **R=0.01**
 - MM γK⁺ (GeV/c²) = 0.20

- MM γK⁺ (GeV/c²) = 0.50
deuteron elastic reaction cut

- Remove $\gamma d \rightarrow K^+ K^- d$ reaction
- Cut $\text{MM } d(\gamma, K^+ K^-) < 1.89 \text{ GeV/c}^2$
MM n(γ,K⁺K⁻) cut

- Choose 0.89 < MM n(γ,K⁺K⁻) < 0.99 GeV/c²

![Graphs showing distributions for MM n(γ,K⁺K⁻) with LH2 and LD2 labels.]
Fermi motion correction

1 : $\text{MM}^c_{\gamma K^-} = \text{MM}_{\gamma K^-} - \text{MM}_{\gamma K^+ K^-} + M_n$

2 : $(\text{MM}^c_{\gamma K^-})^2 = (\text{MM}_{\gamma K^-})^2 - \frac{P_{(K+n)}}{P_n}(\text{MM}^2_{\gamma K^+ K^-} - M_n^2)$

3 : n(p) momentum = missing momentum
Result of LD2 data and summary

- K^+K^- from LD2 target
- ϕ exclusion cut at $R=0.2$
- $MM \, d(\gamma,K^+K^-) > 1.89 \, GeV/c^2$
- $0.89 < MM \, n(\gamma,K^+K^-) < 0.99 \, GeV/c^2$
- Fermi motion correction

LEPS took new data with LD2 target for the search of the Θ^+.

- Energy dependent ϕ exclusion cut was designed and its validity was checked with $\Lambda(1520)$ study.
- The "Θ^+" peak was reproduced in the K^- missing mass of LD2 data.
Gamma experiment
Primakov $2\pi^0$ production

- **Polarizability** (10^{-4}fm^3)
 - $\alpha-\beta = -1.4 \pm 1.7 \ (\text{exp.})$
 - $\alpha-\beta = -1.9 \pm 0.2 \ (\chi\text{PT.})$

- **Loop structure in the χPT theory**
 - No tree diagram because of no charge

Only one similar reaction data exists

\[e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-\pi^0\pi^0 \]

- Cross Section (nb) $(|\cos \theta|<0.8)$

- 1 loop diagrams
Primakov $2\pi^0$ production

- Contribution of σ meson
 - inverse process of $\sigma \rightarrow 2\gamma$ decay
 - $f_0(400-1200)$

- $2\pi^0$ decay: dominant
 - $\Gamma_{\gamma\gamma} = 10 \pm 6$ keV (PDG)
 - $\Gamma_{\gamma\gamma} = 3.8 \pm 1.5$ keV
 (Pennington hep-ph9905241)

\[
\frac{d\sigma}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2 \beta^3 E^4}{M^3} \frac{E^4}{q^4} |F_{e.m.}(q)|^2 \sin^2(\theta)
\]

- σ Mass: momentum transfer

Total Cross Section = 1.0μ barn
$E_\gamma = 0.5$ Mcps \otimes DAQ Live time
\Rightarrow 0.3 event/hr
Gamm-rays distribution

- Simulation of Primakov $2\pi^0$ production
Nucleon resonances

• Gap between theory and experiment
 – πN scattering and π decay
 – data with other channels and isospin selectivity needed

• This experiment
 – suitable energy
 – various channels $\eta, \omega, \eta', \ldots$
 – photon beam asymmetry
\(\gamma p \to \eta p' \) data by ELSA

\[\text{Included diagrams} \]

<table>
<thead>
<tr>
<th>(N^*)</th>
<th>(M) (MeV)</th>
<th>(\Gamma) (MeV)</th>
<th>(A_{3/2} / A_{1/2})</th>
<th>(P_{\text{in/out}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1520)D_{13}</td>
<td>1530 ± 7</td>
<td>102 ± 15</td>
<td><−2.4</td>
<td>0.027±0.015</td>
</tr>
<tr>
<td>PDG</td>
<td>1520±10</td>
<td>120±15</td>
<td><−6.9 ± 2.6</td>
<td>< 0.07</td>
</tr>
<tr>
<td>N(1535)S_{11}</td>
<td>1505 ± 12</td>
<td>152 ± 15</td>
<td>−6.9 ± 2.6</td>
<td>0.01 − 0.4</td>
</tr>
<tr>
<td>PDG</td>
<td>1505 ± 10</td>
<td>170 ± 80</td>
<td>−6.9 ± 2.6</td>
<td>0.01 − 0.4</td>
</tr>
<tr>
<td>N(1650)S_{11}</td>
<td>1626 ± 10</td>
<td>188 ± 30</td>
<td>0.2 ± 0.06</td>
<td>< 0.07</td>
</tr>
<tr>
<td>PDG</td>
<td>1660 ± 20</td>
<td>160 ± 10</td>
<td>0.1 ± 0.4</td>
<td>0.01 − 0.4</td>
</tr>
<tr>
<td>N(1680)F_{15}</td>
<td>1673 ± 8</td>
<td>98 ± 17</td>
<td>large</td>
<td>0.009 ± 0.007</td>
</tr>
<tr>
<td>PDG</td>
<td>1680±10</td>
<td>130 ± 10</td>
<td>−8.9 ± 3.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>N(1720)P_{13}</td>
<td>1734 ± 23</td>
<td>275±70</td>
<td>−4.5±1.7</td>
<td>0.2±0.28</td>
</tr>
<tr>
<td>PDG</td>
<td>1720±30</td>
<td>250 ± 50</td>
<td>−1.1 ± 2.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>N(2080)D_{15}</td>
<td>2079 ± 40</td>
<td>368±100</td>
<td>−0.5 ± 0.3</td>
<td>0.20 ± 0.03</td>
</tr>
</tbody>
</table>

Fit result

\(D_{15} \rightarrow 5/2^- \) \(\chi^2 = 676/630 \)

\(3/2^- \) \(\Delta \chi^2 = 59 \)

\(1/2^+ \) \(\Delta \chi^2 = 73 \)

\(5/2^+ \) \(\Delta \chi^2 = 91 \)

[hep-ex/0311045]
What kind of state?

Deformed Oscillator Quark Model

D_{15}

isospin $1/2$

spin $5/2$

$\pi+N$ decay

relative angular momentum

$J^\pi = 5/2^-$

$\rightarrow L = 1$ or 3

Even parity

Odd parity

Even parity candidates

Odd parity candidates

$E_{\text{DOQ}}(L,N) = E_{\text{int}}(N) + \frac{L(L+1)}{2I} - \left\langle \frac{L^2}{2I} \right\rangle$

$E_{\text{int}}(N) = \frac{L(L+1)}{2I} - \left\langle \frac{L^2}{2I} \right\rangle$
Detector Setup

Backward Detector

\[\theta = 30-100 \text{ deg} \]
\[\phi = 0-360 \text{ deg} \]

Forward Detector

\[\theta = 3-15 \text{ deg} \]
\[\phi = 0-360 \text{ deg} \]
Backward Gamma Detector

- Lead/SCIFI 252 modules
- Energy resolution 6% @ 1 GeV Gamma-ray
- Each length = 22cm → 13.7 X₀
Forward Gamma Detector

- 252 PWO crystals
 - $22 \times 22 \times 180\text{mm} \ 19.5X_0$
- $\frac{3}{4} \text{ in. PMT}$
- Cockcroft-Walton type H.V. supplier
- Energy resolution 3%
 - @ 1GeV gamma-ray
PbWO$_4$ Crystal

- Development started in 1992
- Property
 - high density
 - short radiation length
 - small Moliere radius
 - fast decay time
 - small light output
- Recent development (1999~)
 - La$^{3+}$,Y$^{3+}$,... doped
 - To suppress 350 and 420nm absorption bands due to Pb$^{3+}$,O$^-$ color centers

<table>
<thead>
<tr>
<th></th>
<th>PWO</th>
<th>BGO</th>
<th>NaI(Tl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>density (g/cm3)</td>
<td>8.2</td>
<td>7.13</td>
<td>3.67</td>
</tr>
<tr>
<td>radiation length (cm)</td>
<td>0.92</td>
<td>1.12</td>
<td>2.59</td>
</tr>
<tr>
<td>Moliere radius (cm)</td>
<td>2.2</td>
<td>2.4</td>
<td>4.5</td>
</tr>
<tr>
<td>decay constant (ns)</td>
<td>10</td>
<td>300</td>
<td>230</td>
</tr>
<tr>
<td>light yield (%)</td>
<td>~0.5</td>
<td>7 - 10</td>
<td>100</td>
</tr>
<tr>
<td>wave length (nm)</td>
<td>430</td>
<td>480</td>
<td>415</td>
</tr>
<tr>
<td>index</td>
<td>2.2</td>
<td>2.15</td>
<td>1.85</td>
</tr>
</tbody>
</table>
Experiment

• Target
 - CH2(0.10X₀), C(0.17X₀), W(0.20X₀)

• Event Trigger
 - (FGor ⊕ BGor) ⊗ TaggerHit ⊗ Bar(VetoCounters)
 • FGor: 30MeV deposit at least in 1 crystal
 • BGor: 10MeV deposit at least in 1 module

• Incident gamma intensity
 - 500-600 kcps

• Trigger rate
 - 350-750 cps
 - 70-80% DAQ live time
FG Base analysis(1)

- **Energy calibration**
 - (1) cosmic-ray MIP
 - (2) iteration method using $\pi^0 \rightarrow 2\gamma$ events

- **Clustering**
 - Energy deposit @ 1 GeV gamma-ray
 - 80% center PWO
 - 20% peripheral 8PWOs

2\gamma event

![Histogram of invariant mass](image)

2 cluster and no charged particle on FG detector

- real data = 4.9%
- simulation = 4.2%

![Cluster examples](image)

1 cluster
- example1
- example2

2 cluster
- example1
- example2

Energy deposit > 40MeV
FG Base analysis(2)

- Position reconstruction
 - center of gravity method
 - logarithmic weighting

\[w_i = \max \{ 0, \left[W_0 + \ln \left(\frac{E_i}{E_{\text{tot}}} \right) \right] \} \]

\[X = \frac{\sum w_i x_i}{\sum w_i} \quad Y = \frac{\sum w_i y_i}{\sum w_i} \]

Experimental result using e-beam
Examples of invariant mass

2γ event
\[\pi^0 \rightarrow 2\gamma \ (99\%) \]
\[\eta \rightarrow 2\gamma \ (39\%) \]
\[\eta' \rightarrow 2\gamma \ (2\%) \]

3γ event
\[\omega \rightarrow \gamma \pi^0 \rightarrow 3\gamma \]
\[\text{(9\%)} \]

kinematical fit applied
$\gamma p \rightarrow \eta p'$ event selection

- 2γ and 1 charged particle detected events

Applied cut

Charged particle ID
Photon Beam Asymmetry (1)

- Photon beam asymmetry: \(\Sigma \)

\[
\begin{align*}
\sigma_\perp &= \sigma + \Sigma \cos(2\phi) \\
\sigma_\parallel &= \sigma - \Sigma \cos(2\phi)
\end{align*}
\]

\[
\Sigma \cos(2\phi) = \frac{\sigma_\perp - \sigma_\parallel}{\sigma_\perp + \sigma_\parallel}
\]

CM system of \(\gamma p \to \eta p' \) reaction
Photon Beam Asymmetry (2)

- Helicity representation

\[A_{\mu\lambda}(\theta, \phi) = \sum_j A^j_{\mu\lambda}(2j + 1) d^j_{\lambda\mu}(\theta) e^{i(\lambda - \mu)\phi} \]

initial helicity \(\lambda = \lambda_k - \lambda_1 \)
final helicity \(\mu = \lambda_q - \lambda_2 = -\lambda_2 \)
resonance spin \(j \)

<table>
<thead>
<tr>
<th>(\lambda_1(\lambda))</th>
<th>(\lambda_k = +1)</th>
<th>(\lambda_k = -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu = \frac{1}{2})</td>
<td>(A_{\frac{1}{2}, \frac{3}{2}})</td>
<td>(A_{\frac{1}{2}, \frac{1}{2}})</td>
</tr>
<tr>
<td>(\mu = -\frac{1}{2})</td>
<td>(A_{-\frac{1}{2}, \frac{3}{2}})</td>
<td>(A_{-\frac{1}{2}, \frac{1}{2}})</td>
</tr>
</tbody>
</table>
Photon Beam Asymmetry (3)

Using property:

\[A_{-\mu, -\lambda} = -e^{i(\lambda - \mu)(\pi - 2\phi)} A_{\mu, \lambda}(\theta, \phi) \]

\[\varepsilon_\perp = \frac{i}{\sqrt{2}}(\varepsilon_+ + \varepsilon_-) \quad \text{Vertical linear polarization} \]

\begin{align*}
\lambda_1 & \quad \mu \\
-\frac{1}{2} & \quad 1/2 \quad A_{1/2, 3/2} + A_{1/2, -1/2} \quad \rightarrow \quad \sum_j A^j_{1/2, 3/2}(2j + 1)d_{1/2}^j(\theta) e^{i\phi} + \sum_j A^j_{-1/2, 1/2}(2j + 1)d_{1/2}^j(\theta) e^{-i\phi} \\
-\frac{1}{2} & \quad 1/2 \quad A_{-1/2, 1/2} + A_{-1/2, -3/2} \quad \rightarrow \quad \sum_j A^j_{-1/2, 1/2}(2j + 1)d_{1/2}^j(\theta) e^{i\phi} + \sum_j A^j_{1/2, 3/2}(2j + 1)d_{1/2}^j(\theta) e^{-i\phi} \\
1/2 & \quad 1/2 \quad A_{1/2, 1/2} + A_{1/2, -3/2} \quad \rightarrow \quad \sum_j A^j_{1/2, 1/2}(2j + 1)d_{1/2}^j(\theta) - \sum_j A^j_{-1/2, 3/2}(2j + 1)d_{1/2}^j(\theta) e^{-2i\phi} \\
-\frac{1}{2} & \quad -1/2 \quad A_{-1/2, 3/2} + A_{-1/2, -1/2} \quad \rightarrow \quad \sum_j A^j_{-1/2, 3/2}(2j + 1)d_{1/2}^j(\theta) - \sum_j A^j_{1/2, 1/2}(2j + 1)d_{1/2}^j(\theta) e^{-2i\phi}
\end{align*}

Interference terms in the cross section:

\[= 2Re \left[\left(\sum_j A^j_{1/2, 3/2}(2j + 1)d_{1/2}^j(\theta) \right) \left(\sum_j A^j_{-1/2, 1/2}(2j + 1)d_{1/2}^j(\theta) \right)^* \right] \cos(2\phi) \]

\[-2Re \left[\left(\sum_j A^j_{1/2, 1/2}(2j + 1)d_{1/2}^j(\theta) \right) \left(\sum_j A^j_{-1/2, 3/2}(2j + 1)d_{1/2}^j(\theta) \right)^* \right] \cos(2\phi) \]

\[\varepsilon_\parallel = -\frac{1}{\sqrt{2}}(\varepsilon_+ - \varepsilon_-) \quad \text{Horizontal linear polarization} \]

Interference terms \rightarrow inverse signs
Example $\gamma p \rightarrow \eta p' @$ low energy

$S_{11} \otimes (D \text{ or } F \text{ or } G)$

\uparrow

Large Cross Section

GRAAL data
cos(2\(\phi\)) dependence

Example: CH2 target, FG1\(_y\), BG1\(_y\)

\[E_y = 1.8-2.1\text{GeV}, \; \theta^*\eta = 40-60\text{deg} \]

Very preliminary result with limited data
Obtained Asymmetry

- GRAAL data
- LEPS CH2
- LEPS carbon

Very preliminary result with limited data
Possibility of Δ^* study

- Resonance isospin $3/2$ selectivity
- Quark model prediction
 - $F_{35}(1990)$
 - $D_{35}(2165)$
- 2 neutral particles in final state
 - $\eta + \pi^0$ or $\eta + n$
 ($\Delta^+ \to p\pi^0, n\pi^+$)
 - η detection is important
Summary

• Photoreaction experiment was performed to study Primakov $2\pi^0$ production and nuclear resonances at the SPring-8/LEPS beam line.

• Forward gamma detector was constructed to detect gamma-rays at a forward direction with a minimum angle of 3 degree.

• Preliminary result of $\gamma p \rightarrow \eta p'$ reaction was shown. Photon beam asymmetries have tendency of a forward peaking distribution.

• Data analysis for precise calibration and various physics channels are in progress.
additional pages
Charged particle identification

Reconstructed mass

Mass/Charge (GeV/c2)

$\sigma_{\text{Mass}} = 30$ MeV/c2(typ.) for 1GeV/c Kaon
KKN phase space MC data

- After applying the same cuts
• After applying the same cuts
$\Lambda^{*}(1670)$ MC

- After applying the same cuts
$\text{MM}(\gamma, K^+) \text{ vs } \text{MM}(\gamma, K^-)$

LH2

LD2