Hypernuclear Physics with FINUDA now and in the future

Tullio Bressani KEK-RIKEN-INFN meeting Tsukuba, December 13-14, 2004

The FINUDA Collaboration

- Bari University and I.N.F.N. Bari
 Brescia University and I.N.F.N. Pavia
 KEK
- L.N.F. / I.N.F.N. Frascati
- Pavia University and I.N.F.N. Pavia
- RIKEN
- 💌 Seoul National University
- Teheran Shahid Beheshty University
- Torino University and I.N.F.N. Torino
- Torino Polytechnic and I.N.F.N. Torino
 Trieste University and I.N.F.N. Trieste
 TRIUMF

- 1) the FINUDA experiment
 - the physics program
 - the apparatus

2) the results

- hypernuclear spectroscopy
- search for neutron-rich hypernuclei
- hypernucleus (rare) decays
- Kaon bound state K-pp

3) future plans

Detectors of the internal region

internal scintillator barrel mounted (tofino)

9

$rac{1}{r}$ very thin nuclear targets (0.1 ÷ 0.3 g/cm²)

coincidence measurement with large acceptance
 decay mode study

rirradiation of different targets in the same run

high degree of flexibility

$K^{-12}C \Rightarrow \pi^- X$ inclusive spectra

 π^{-} momentum distribution

Entries 1322566

⁶Li target: π⁻ spectrum

⁷Li target: π^{-} spectrum

²⁷ Al and ²⁸ Si: excitation spectra

2 production mechanisms:

neutron-rich hypernuclei

					-			
P _{NRH}	90% C.L.		<mark>2</mark> σ C. L.		3 σ C.L.		In,	
UPPER LIMIT (· 10 ⁻⁵)	<i>dE/dx</i> PID	<i>dE/dx</i> + <i>TOF</i> PID	<i>dE/dx</i> PID	<i>dE/dx</i> + <i>TOF</i> PID	<i>dE/dx</i> PID	<i>dE/dx</i> + <i>TOF</i> PID	IN TRI	
Present Momentum	2.6	2.1	3.2 4.3	2.6 3.6	4 .9 6.6	4 .0 5.6	¹² ,Be	
(0.9%)	4.9	4.3	6.1	5.3	9.4	8.3	7 _A H	
Nominal Momentum Resolution (0.35%)	1.6 2.1 3.3	1.3 1.8 2.8	2.0 2.6 4.1	1.6 2.2 3.5	3.1 4.1 6.5	2.5 3.5 5.6	¹² _A Be ⁶ _A H ⁷ _A H	
Uncertainties error on the officies	s dominated he μ ⁺ time g ncy (≈ 10%)	by the ate	KEK result for ¹² Be: 6.1ï10 ⁻⁵ (90% C.L., no error given)			new r	new results	

 $^{4}He \rightarrow d + d$ (rare) decay

NM proton stimulated decay

- <u>Missing-mass spectroscopy</u>
 - Example: ⁶Li + $K^- \rightarrow \begin{cases} K^-pppnn + n \\ K^-ppnnn + p \end{cases}$
 - A kaonic nucleus emits a hyperon in its decay.
- Invariant-mass spectroscopy
 - Example:

$$K^- pp \to \Lambda + p \quad , \quad K^- ppn \to \Lambda + d(p+n)$$

A momentum distribution and back-to-back correlations

p momentum (MeV/c)

- First data taking period successfully carried out (30 × 10⁶ events on tape)
- Preliminary and partial results on spectroscopy are competitive with world published data
- Experimental upper limit for the NRH production:
 better than published one for ¹²Be
 measured for the first time for ⁶H and ⁷H
- First observation of A^4He non mesonic (rare) decay
- Observation of K-pp bound state

I Next data-taking period scheduled in the 2nd half of 2005

v effort focused on light-medium targets (⁶Li, ⁷Li, ⁹Be, ¹⁶O, ...)

▲ Increase by a factor 4 of the DAQ rate

A Replacement of the internal TOF detector (KEK)

A Improvement of the reconstruction program

- geometrical alignment
- detector calibration
- pattern recognition strategy
- 🖝 selection criteria

