Inclusive B-decay Spectra by Dressed Gluon Exponentiation

Einan Gardi (Cambridge)

Plan of the talk

- Inclusive B decay spectra motivation
- Strategy of the theoretical study
- Very short introduction to Sudakov logs and renormalons
- Kinematics, the endpoint region and the "shape function" approach
- Factorization, Sudakov resummation with NNLL accuracy and the divergence of perturbation theory
- Dressed Gluon Exponentiation: renormalon resummation in the Sudakov exponent
- The quark distribution function in a meson and in an on-shell heavy quark
- cancellation of the leading renormalon ambiguity
- Numerical results for inclusive B-decay spectra by DGE; comparison to data

Inclusive B-decay Spectra by Dressed Gluon Exponentiation

References

- Inclusive spectra in charmless semileptonic B decays by DGE,
 J.R. Andersen, E. Gardi, [hep-ph/0509360].
- Taming the $\bar{B} \longrightarrow X_s \gamma$ spectrum by Dressed Gluon Exponentiation, J.R. Andersen, E. Gardi, JHEP **0506** 030 (2005) [hep-ph/0502159].
- On the quark distribution in an on-shell heavy quark and its all-order relations with the perturbative fragmentation function,
 E. Gardi, JHEP 0502, 053 (2005) [hep-ph/0501257].
- Radiative and semi-leptonic B-meson decay spectra: Sudakov resummation beyond logarithmic accuracy and the pole mass,
 E. Gardi, JHEP 0404, 049 (2004) [hep-ph/0403249].

Inclusive B-decay Spectra

The distribution peaks close to the endpoint $(E_{\gamma} \longrightarrow M_B/2; \text{ small } M_X)$

Example: extracting $|V_{ub}|$ from the semi-leptonic decay

Precise measurements are restricted to the small M_X region (charm background) Determination of $|V_{ub}|$ relies on calculation of the spectrum.

Strategy of the theoretical study

Decay spectra are complicated quantities. They depend on

- The underlying decay mechanism
- The structure of the B meson
- The jet structure and hadronization in the final-state.

The latter two involve confinement; they go beyond perturbation theory. To study the applicability of perturbation theory one can

- Disentangle effects of different characteristic scales; apply factorization.
- Identify sources of large corrections and resum them.
- Study the **infrared sensitivity**: renormalon analysis.

Very short introduction to Sudakov Logs and Renormalons

hierarchy of scales ---- logs

Soft and collinear gluon radiation (nearly on-shell partons)

$$\int \underline{d^4k}$$
 Sudakov logs

Running coupling logs in loops

$$\int \underline{d^4k}$$
 Renormal

Sudakov Logs

Incomplete cancellation between real and virtual corrections

The quark propagator

(for
$$k^2 = 0$$
 and $p^2 = 0$)

$$\frac{1}{(p+k)^2} = \frac{1}{2pk} = \frac{1}{2E_g E_q (1-\cos\theta_{qg})}$$

m_r
p+k
ollinear)

is singular at $E_g = 0$ (soft) and at $\theta_{qg} = 0$ (collinear)

- For infrared and collinear safe observables, the singularity itself cancels but the coefficients contain residual logarithms.
- Each gluon emission generates up to two large logarithms
 multiple emission is important!
- Factorization properties of QCD matrix elements (and of the phase space)
 Exponentiation

Renormalons

IR renormalons: the large-order behavior as a probe of large-distance effects

Example: vacuum polarization

$$D(Q^2) = C_F lpha_s \sum_n \int_0^\infty rac{dk^2}{k^2} \phi(k^2/Q^2) \left[-rac{eta_0 lpha_s}{\pi} \ln(k^2/Q^2)
ight]^n$$
 $= C_F \int_0^\infty rac{dk^2}{k^2} \phi(k^2/Q^2) rac{lpha_s(k^2)}{\pi}$
whenta (IR) $\phi(\epsilon) \simeq \epsilon^2$

For small momenta (IR) $\phi(\epsilon) \sim \epsilon^2$

For large momenta (UV) $\phi(\epsilon) \sim \ln \epsilon/\epsilon$

$$A^n \int_0^{Q^2} rac{dk^2}{k^2} \left(rac{k^2}{Q^2}
ight)^p \left[-\ln\left(k^2/Q^2
ight)
ight]^n = A^n rac{n!}{p^{n+1}} \qquad \qquad A \equiv rac{eta_0 lpha_s}{\pi}$$

Minimal term at $n \sim n_m = p/A$. Ambiguity $\sim n_m! n_m^{-n_m} \sim \exp(-n_m) = (\Lambda^2/Q^2)^p$

- At large orders perturbation theory is factorially divergent.
- This is dictated by contributions of extreme momenta, UV or IR.
- The contribution from the IR region is non summable and generates ambiguous power terms.

Example: renormalon ambiguity in the pole mass

The propagator:
$$\frac{i}{\not \! p - m_{\overline{\rm MS}} - \Sigma(p, m_{\overline{\rm MS}})}$$

Computed in the large– N_f limit

Off shell $\Sigma(p, m_{\overline{\rm MS}})$ has no renormalons But applying the on–shell condition (inverse propagator vanishes at $p^2=m^2$):

$$\frac{m}{m_{\overline{\rm MS}}} = 1 + \frac{C_F}{\beta_0} \int_0^\infty du \left(\frac{\Lambda^2}{m_{\overline{\rm MS}}^2}\right)^u \left[3e^{\frac{5}{3}u} \frac{(1-u)\Gamma(1+u)\Gamma(-2u)}{\Gamma(3-u)} + \frac{3}{4u} - R_{\Sigma_1}(u)\right].$$

Beyond PT the pole mass is ambiguous...

Beneke & Braun; Bigi, Shifman, Uraltsev & Vainshtein (94)

and so is $\bar{\Lambda} = M - m$.

Kinematics in $\bar{B} \longrightarrow X_s \gamma$

In the B meson the b quark is close to its mass shell.

Therefore, perturbation theory (with an on-shell quark initial state) applies

(up to power corrections...).

$$x \equiv \frac{2E_{\gamma}}{m_b}; \quad \frac{1}{\Gamma_{\text{tot}}} \frac{d\Gamma}{dx} \Big|_{\text{LO}} = \delta(1-x)$$

Perturbative endpoint: x = 1

Physical endpoint: $x = M_B/m_b > 1$

In the endpoint region the distribution

is smeared by radiation and by the primordial motion of the quark

⇒ conventional approach: leading power NP "shape function".

b quark

Neubert; Bigi, Shifman, Uraltsev & Vainshtein (93)

Distinguish:

Additional energy available in the meson $\bar{\Lambda}=M_B-m_b$ Dynamical structure of the meson

Large-x factorization in inclusive B decays

scales:

Hard: m

Jet: $m_X^2 = (P_b - q)^2 \simeq m^2 (1 - x) \Longrightarrow m^2 / N$

Soft: $m(1-x) \Longrightarrow m/N$

$$\Gamma_N^{\mathsf{PT}} \equiv \int_0^1 dx x^{N-1} \frac{1}{\Gamma_{\mathsf{tot}}^{\mathsf{PT}}} \frac{d\Gamma^{\mathsf{PT}}}{dx}$$

$$= H(m) J(m^2/N; \mu) S_{\mathsf{PT}}(m/N; \mu) + \mathcal{O}(1/N)$$

$$\equiv H(m) \operatorname{Sud}(N, m) + \mathcal{O}(1/N)$$

Korchemsky & Sterman (94)

Coefficients in the Sudakov exponent

$$\operatorname{Sud}(N,m) = \exp\left\{-\sum_{n=1}^{\infty} \sum_{k=1}^{n+1} C_{n,k} \ln^{k} N \left(\frac{\alpha_{s}^{\overline{\mathsf{MS}}}(m^{2})}{\pi}\right)^{n}\right\}$$

The coefficients $C_{n,k}$ are known **exactly** to **NNLL accuracy** [Gardi (2005)] For $N_f = 4$ $C_{n,k}$ are:

- At a given order in α_s the coefficients of **subleading logs** (lower k) get large...
- Is the fixed-logarithmic-accuracy approximation at LL / NLL / NNLL good?

Conventional Sudakov resummation with NNLL accuracy

Sud
$$(N, m) = \exp\left\{\sum_{n=0}^{\infty} g_n(\lambda) \left(\frac{\alpha_s^{\overline{\text{MS}}}(m^2)}{\pi}\right)^{n-1}\right\}; \qquad \lambda \equiv \frac{\alpha_s^{\overline{\text{MS}}}(m^2)}{\pi} \beta_0 \ln N$$

$$g_0(\lambda) = \frac{C_F}{\beta_0^2} \left[(1 - \lambda) \ln (1 - \lambda) - \frac{1}{2} (1 - 2\lambda) \ln (1 - 2\lambda) \right]$$

Sud(N, m)

Corresponding spectra

Coefficients in the Sudakov exponent in the large- β_0 limit

$$\operatorname{Sud}(N,m) = \exp\left\{-\sum_{n=1}^{\infty} \sum_{k=1}^{n+1} C_{n,k} \ln^{k} N \left(\frac{\alpha_{s}^{\overline{\mathsf{MS}}}(m^{2})}{\pi}\right)^{n}\right\}$$

The part in $C_{n,k}$ that is proportional to $(\beta_0)^{n-1}$ is known to all orders:

			κ	\longrightarrow			
~	-1.56	0.67	0	0	0	0	0
n	1.24	0.90	1.39	0	0	0	0
1	61.17	28.32	8.28	3.38	0	0	0
	1096.06	515.20	166.25	34.89	9.04	0	0
\downarrow	20399.23	10078.43	3231.40	793.25	131.33	25.95	0
	444615.21	221481.03	73268.94	17791.58	3514.66	482.12	78.49
	11342675.74	5665794.49	1883129.50	468180.33	91361.30	15080.79	1768.50
	334032127.30	166960507.50	55609620.17	13867704.58	2760946.21	449959.01	63745.75

7

- $C_{n,k}$ increase for lower powers of $\ln N$, building up $\sum_{k=1}^{n+1} C_{n,k} \ln^k N \sim n! f_n(N)$
- Truncation at fixed logarithmic accuracy is not a good approximation.
- Renormalon divergence sets in already at low orders requires a prescription!

Dressed Gluon Exponentiation

Dressed Gluon Exponentiation — the jet function

Borel representation of the Sudakov exponent:

$$\ln J_N(Q; \mu_F) = \int_0^1 dx \frac{x^{N-1} - 1}{1 - x} \left[\int_{\mu_F^2}^{(1-x)Q^2} \frac{d\mu^2}{\mu^2} \mathcal{A} \left(\alpha_s(\mu^2) \right) + \mathcal{B} \left(\alpha_s((1-x)Q^2) \right) \right]$$

$$= -\frac{C_F}{\beta_0} \int_0^\infty \frac{du}{u} \left(\frac{\Lambda^2}{Q^2} \right)^u \times \left[B_{\mathcal{J}}(u) \Gamma(-u) \left(N^u - 1 \right) + \left(\frac{Q^2}{\mu_F^2} \right)^u B_{\mathcal{A}}(u) \ln N \right],$$

we defined $B_{\mathcal{J}}(u) \equiv B_{\mathcal{A}}(u) - uB_{\mathcal{B}}(u)$ and used the Borel representation of the anomalous dimensions,

$$\mathcal{A}\left(\alpha_{s}(\mu^{2})\right) = \frac{C_{F}}{\beta_{0}} \int_{0}^{\infty} du \left(\frac{\Lambda^{2}}{\mu^{2}}\right)^{u} B_{\mathcal{A}}(u); \qquad \mathcal{B}\left(\alpha_{s}(\mu^{2})\right) = \frac{C_{F}}{\beta_{0}} \int_{0}^{\infty} du \left(\frac{\Lambda^{2}}{\mu^{2}}\right)^{u} B_{\mathcal{B}}(u),$$

$$\int_{0}^{1} dx x^{N-1} (1-x)^{-1-u} = \frac{\Gamma(-u)\Gamma(N)}{\Gamma(N-u)} \simeq \Gamma(-u) N^{u} \times (1+\mathcal{O}(1/N)).$$

In the large
$$\beta_0$$
 limit $B_{\mathcal{J}}(u) = e^{\frac{5}{3}u} \frac{\sin \pi u}{\pi u} \times \frac{1}{2} \left(\frac{1}{1-u} + \frac{1}{1-u/2} \right) \times \left(1 + \mathcal{O}(u/\beta_0) \right).$

Infrared sensitivity appears as renormalon ambiguity in the Sudakov exponent \Rightarrow parametrically–enhanced power corrections $\mathcal{O}(N\Lambda^2/Q^2)$ in the exponent

Dressed Gluon Exponentiation — the soft function

Borel representation of the soft Sudakov exponent:

$$\ln S_N(Q; \mu_F) = \int_0^1 dx \frac{x^{N-1} - 1}{1 - x} \left[\int_{(1-x)^2 Q^2}^{\mu_F^2} \frac{d\mu^2}{\mu^2} \mathcal{A} \left(\alpha_s(\mu^2) \right) - \mathcal{D} \left(\alpha_s((1-x)^2 Q^2) \right) \right]$$

$$= \frac{C_F}{\beta_0} \int_0^\infty \frac{du}{u} \left(\frac{\Lambda^2}{Q^2} \right)^u \left[B_{\mathcal{S}}(u) \Gamma(-2u) \left(N^{2u} - 1 \right) + \left(\frac{Q^2}{\mu_F^2} \right)^u B_{\mathcal{A}}(u) \ln N \right],$$

where we defined $B_{\mathcal{S}}(u) \equiv B_{\mathcal{A}}(u) - uB_{\mathcal{D}}(u)$.

What does one gain?

- Resummation of running-coupling effects beyond the available logarithmic accuracy
- Upon choosing a prescription (e.g. PV) for the Borel integral, the divergent sum is <u>defined</u>.
- <u>Cancellation</u> of certain renormalon ambiguities can then take place.
- Landau singularities are <u>absent</u>.
- The pattern of power corrections (observable dependent) can be studied: singularities in $\Gamma(-2u) \Longrightarrow$ power corrections $(N\Lambda/Q)^k$ in the exponent, except for $B_{\mathcal{S}}(u) = 0$.

However, QCD perturbation theory gives the power expansion: $B_{\mathcal{S}}(u) = 1 + s_1 u + \cdots$ For DGE one needs to know $B_{\mathcal{S}}(u)$ also away from the origin — involves assumptions!

Soft anomalous dimensions in the large– β_0 limit

$$B_{\mathcal{S}}(u) = e^{\frac{5}{3}u} \frac{\sin \pi u}{\pi u} b_{\mathcal{S}}(u) \times \left(1 + \mathcal{O}(u/\beta_0)\right)$$

Observable	$b_{\mathcal{S}}(u)$	$B_{\mathcal{S}}(u) = 0$	power corrections
Drell-Yan (2)	$\frac{\Gamma^2(1-u)}{\Gamma(1-2u)}$	$u = \frac{1}{2}, \frac{3}{2}, \dots$	$\left(rac{\Lambda N}{Q} ight)^k$, k even
Heavy Jet Mass (1) / Thrust (2)	1		$\left(rac{\Lambda N}{Q} ight)^k$, k integer
c parameter (2)	$\frac{\Gamma^2(1+u)}{\Gamma(1+2u)}$		$\left(rac{\Lambda N}{Q} ight)^k$, k integer
Heavy Quark Fragmentation (1) Heavy Quark Distribution (1) $(Q^2=m^2)$	$(1-u)\frac{\pi u}{\sin \pi u}$	u = 1	$\left(rac{\Lambda N}{m} ight)^k$, $k eq 2$

The quark distribution function

$$F_{\text{PT}}(N;\mu) \underset{\text{large N}}{\longrightarrow} \left\langle b(p_b) \left| \left[\bar{\Psi}(y) \gamma^+ \Phi_y(0,y) \, \Psi(0) \right]_{\mu} \right| b(p_b) \right\rangle \right|_{ip_b^+ y^- \longrightarrow N} = H(m_b,\mu) \, \mathcal{S}\left(\frac{N\mu}{m_b}\right)$$

$$\mathcal{S}\left(\frac{N\mu}{m_b}\right) = \exp\left\{\frac{C_F}{\beta_0} \int_0^\infty \frac{du}{u} \left(\frac{\Lambda^2}{\mu^2}\right)^u \left[\frac{B_{\mathcal{S}}(u)}{\Gamma(-2u)} \left(\left(\frac{N\mu}{m_b}\right)^{2u} - 1\right) + B_{\mathcal{A}}(u) \ln\left(\frac{N\mu}{m_b}\right)\right]\right\}$$

with
$$B_{\mathcal{S}}(u)$$
 = $e^{\frac{5}{3}u} (1-u) \times (1+\mathcal{O}(u/\beta_0))$
= $1+s_1u+s_2u^2/2!+\cdots$

b quark field: zp $A^{+} = 0 \text{ gauge}$ pOn shell b quark

Renormalon in the exponent and their interpretation:

- Leading renormalon $u=\frac{1}{2}$, $\mathcal{O}(\Lambda N/m_b)$, is related to the mass of $\langle b(p_b)|$: $e^{-i\,\delta m\,y^-}=e^{-\delta m\,N/m_b}$
- Higher renormalons $u \geq \frac{3}{2}$, $(\Lambda N/m_b)^k$ with $k \geq 3$, correspond to the difference between the momentum distribution in the on-shell quark and the (unambiguous) distribution in the meson:

$$F(N;\mu) = \left\langle B(P_B) \left| \left[\bar{\Psi}(y) \gamma^+ \Phi_y(0,y) \Psi(0) \right]_{\mu} \right| B(P_B) \right\rangle \Big|_{iP_B^+ y^- \longrightarrow N} + \mathcal{O}(1/N)$$

Cancellation of the leading renormalon ambiguity

Owing to kinematic power corrections, the resummed E_{γ} spectrum is not influenced by the $u=\frac{1}{2}\mathcal{O}(N\Lambda/m_b)$ ambiguity of the perturbative Sudakov exponent:

$$\frac{1}{\Gamma_{\text{tot}}} \frac{d\Gamma}{dE_{\gamma}} = \frac{2}{m_b} \int_{c-i\infty}^{c+i\infty} \frac{dN}{2\pi i} \left(\frac{2E_{\gamma}}{m_b}\right)^{-N} H(m_b) \underbrace{J(m_b^2/N; \mu) S_{\text{PT}}(m_b/N; \mu)}_{\text{Sud}(m_b, N) - \text{ ambiguous}}$$

$$\simeq \frac{2}{M_B} \int_{c-i\infty}^{c+i\infty} \frac{dN}{2\pi i} \left(\frac{2E_{\gamma}}{M_B}\right)^{-N} H(m) J(m_b^2/N; \mu) \underbrace{S_{\text{PT}}(m_b/N; \mu) e^{-(N-1)\bar{\Lambda}/m_b}}_{u=\frac{1}{2} \text{ prescription independent}}$$

The cancellation is exact in all the moments, but it requires

- renormalon resummation in the Sudakov exponent
- ullet renormalon resummation in $ar{\Lambda}=M_B-m_b$ using the same prescription.

Sudakov resummation beyond logarithmic accuracy

$$\operatorname{Sud}(m, N)|_{\text{PV}} = \exp\left\{\frac{C_F}{\beta_0} \operatorname{PV} \int_0^\infty du \, T(u) \, \left(\frac{\Lambda^2}{m^2}\right)^u \right.$$

$$\times \frac{1}{u} \left[B_{\mathcal{S}}(u) \Gamma(-2u) \left(N^{2u} - 1\right) - B_{\mathcal{J}}(u) \Gamma(-u) \left(N^u - 1\right)\right]\right\}.$$

What do we know about $B_{\mathcal{S}}(u)$?

- NNLO in the full theory: $B_{\mathcal{S}}(u) = 1 + s_1 \frac{u}{1!} + s_2 \frac{u^2}{2!} + \cdots$
- Renormalon cancellation in $\operatorname{Sud}(m,N)\operatorname{e}^{-(N-1)\overline{\Lambda}/M}$ implies: $B_{\mathcal{S}}(u=1/2)$ is equal in magnitude and opposite in sign to the residue of the u=1/2 renormalon in $m/m_{\overline{\mathrm{MS}}}$, which can be determined from the known NNLO expansion in $\overline{\mathrm{MS}}$ within a few percent.
- All orders in the large- β_0 limit: $B_{\mathcal{S}}(u) = e^{\frac{5}{3}u} (1-u) + \mathcal{O}(1/\beta_0^2)$. The vanishing of $B_{\mathcal{S}}(u)$ at u=1 is assumed to hold in general.

$\bar{B} \longrightarrow X_s \gamma$ spectrum: from moment space to E_{γ}

$$\operatorname{Sud}(m,N)|_{\mathsf{PV}} = \exp\left\{\frac{C_F}{\beta_0} \mathsf{PV} \int_0^\infty du \, T(u) \, \left(\frac{\Lambda^2}{m^2}\right)^u \right. \\ \times \frac{1}{u} \left[B_{\mathcal{S}}(u) \Gamma(-2u) \left(N^{2u} - 1\right) - B_{\mathcal{J}}(u) \Gamma(-u) \left(N^u - 1\right)\right]\right\}. \\ \frac{d\Gamma(E_\gamma)}{dE_\gamma} = \frac{m_{\mathsf{PV}}}{2} \int_{c-i\infty}^{c+i\infty} \frac{dN}{2\pi i} \, H(m) \, \operatorname{Sud}(m,N)|_{\mathsf{PV}} \left(\frac{2E_\gamma}{m_{\mathsf{PV}}}\right)^{-N}$$

Modified support properties:

$B_{\mathcal{S}}(u)$ away from the origin

Ansatz for $B_{\mathcal{S}}(u)$ that is consistent with the known $\mathcal{O}(u^2)$ result in QCD (and the large- β_0 limit):

$$B_{\mathcal{S}}(u) = e^{\frac{5}{3}u}(1-u) \times \exp\left\{c_2u + \frac{1}{2}\left[c_3 - c_2^2 + \frac{C_A}{\beta_0}\left(\frac{5}{18}\pi^2 + \frac{7}{9} - \frac{9}{2}\zeta_3\right)\right]u^2\right\} \times W(u)$$

$$W(u) \equiv e^{t_1 u + \frac{1}{2} t_2 u^2} \left(1 - t_1 u + \frac{1}{2} (t_1^2 - t_2) u^2 \right) = 1 + \mathcal{O}(u^3).$$

Here $t_{1,2}$ are fixed requiring:

$$B_{\mathcal{S}}(u=1/2) = 0.914 \pm 3\% \text{ (computed)}; \quad B_{\mathcal{S}}(u=3/2) = -0.23366 \times C,$$

comparison to data: $\bar{B} \longrightarrow X_s \gamma$ branching fraction

- ullet Theoretical uncertainty on the total BF $\sim 10\%$
- \bullet Experimental cuts on E_{γ} do not significantly increase the overall uncertainty.
- The measured BF is consistent with the Standard Model.

• Possible determination of $m_b!$

comparison to data: cut moments in $\bar{B} \longrightarrow X_s \gamma$

$$\left\langle E_{\gamma} \right\rangle_{E_{\gamma} > E_{0}} \equiv \frac{1}{\Gamma(E_{\gamma} > E_{0})} \int_{E_{0}} dE_{\gamma} \frac{d\Gamma(E_{\gamma})}{dE_{\gamma}} E_{\gamma}$$

$$\left\langle \left(\left\langle E_{\gamma} \right\rangle_{E_{\gamma} > E_{0}} - E_{\gamma} \right)^{n} \right\rangle_{E_{\gamma} > E_{0}} \equiv \frac{1}{\Gamma(E_{\gamma} > E_{0})} \int_{E_{0}} dE_{\gamma} \frac{d\Gamma(E_{\gamma})}{dE_{\gamma}} \left(\left\langle E_{\gamma} \right\rangle_{E_{\gamma} > E_{0}} - E_{\gamma} \right)^{n}.$$

- The comparison suggests that power corrections are indeed small.
- In future: possible measurement of power corrections.

Integrated $\bar{B} \longrightarrow X_u l \bar{\nu}$ spectrum

Integrating the spectrum with given experimental cuts:

- Hadronic Mass Cut: $P^+P^- < (1.7 \, \text{GeV})^2$, $E_l > 1 \, \text{GeV}$
- Small Lightcone Component Cut: $P^+ < 0.66 \, \mathrm{GeV}$, $E_l > 1 \, \mathrm{GeV}$

The effect of cuts on the P^- spectrum

Sensitivity of the Event Fraction to C

Extraction of $|V_{ub}|$ from Belle data

$$\Delta \mathcal{B}(\bar{B} \longrightarrow X_u l \bar{\nu} \text{ restricted phase space}) = \tau_B \Gamma_{\text{tot}} (\bar{B} \longrightarrow X_u l \bar{\nu}) \times R_{\text{cut}}.$$

From Belle data

$$\Delta \mathcal{B}(P^+P^- < (1.7 \,\text{GeV})^2, E_l > 1 \,\text{GeV}) = 1.24 \cdot 10^{-3} \quad (\pm 13.4\%)$$

 $\Delta \mathcal{B}(P^+ < 0.66 \,\text{GeV}, E_l > 1 \,\text{GeV}) = 1.10 \cdot 10^{-3} \quad (\pm 17.2\%)$

and the computed event fraction

$$R_{\text{cut}}(P^+P^- < (1.7 \,\text{GeV})^2, E_l > 1 \,\text{GeV}) = 0.615 \quad (\pm 9.6\%)$$

 $R_{\text{cut}}(P^+ < 0.66 \,\text{GeV}, E_l > 1 \,\text{GeV}) = 0.535 \quad (\pm 15.2\%),$

we obtain

$$|V_{ub}| = \left(4.35 \pm 0.28_{\text{[exp]}} \pm 0.14_{\text{[th-total}(m_b^{\overline{\text{MS}}})]} \pm 0.22_{\text{[th-cuts]}}\right) \cdot 10^{-3}$$

$$|V_{ub}| = \left(4.39 \pm 0.36_{\text{[exp]}} \pm 0.14_{\text{[th-total}(m_b^{\overline{\text{MS}}})]} \pm 0.38_{\text{[th-cuts]}}\right) \cdot 10^{-3}$$

Conclusions

- Resummed perturbation theory can be directly used as an approximation to inclusive B meson decay spectra, without a leading power non-perturbative function.
 - The leading renormalon cancels out with kinematic power corrections involving the pole mass.
 Requires renormalon resummation with the same prescription in both the Sudakov exponent and the pole mass.
 - DGE yields definite predictions for decay spectra in the on-shell approximation. Beyond the logarithmic accuracy at hand (NNLL), the Borel sum of the exponent is constrained by information on renormalon residues. For the quark distribution in an on-shell heavy quark $B_{\mathcal{S}}(u=1/2)$ was **computed**(!) and $B_{\mathcal{S}}(u=1)$ **vanishes**(?)
 - Contrary to Sudakov resummation with fixed logarithmic accuracy, the DGE prediction is free of Landau singularities and stable.
 - The DGE spectrum smoothly extends beyond the perturbative endpoint Its support is close to the physical one, provided that $B_{\mathcal{S}}(u)$ is not too large at intermediate u.
- Application to $\bar{B} \longrightarrow X_s \gamma$:
 Predictions for moments in the experimentally–accessible range $E_{\gamma} > E_0$ agree well with data.
 Potential measurement of m_b .
- Application to charmless semileptonic decay*: The event fraction for an invariant mass cut $P^+P^- < (1.7\,\mathrm{GeV})^2$ has $\pm 10\%$ accuracy. Consistent values for $|V_{ub}|$ are obtained from two different cuts.

^{*}The program can be found at: www.hep.phy.cam.ac.uk/ \sim andersen/BDK/B2U