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Inclusive B—decay Spectra by Dressed Gluon Exponentiation
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Inclusive B—decay Spectra

radiative decay: B — X, semi-leptonic decay: B — X, i
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The distribution peaks close to the endpoint (E, — Mp/2; small Mx)

Example: extracting |V,;| from the semi-leptonic decay
Precise measurements are restricted to the small My region (charm background)
Determination of |V,;| relies on calculation of the spectrum.
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Strategy of the theoretical study

Decay spectra are complicated quantities. They depend on

e The underlying decay mechanism
e The structure of the B meson

e The jet structure and hadronization in the final-state.

The latter two involve confinement; they go beyond perturbation theory.
To study the applicability of perturbation theory one can

e Disentangle effects of different characteristic scales; apply factorization.
e lIdentify sources of large corrections and resum them.

e Study the infrared sensitivity: renormalon analysis.
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Very short introduction to Sudakov Logs and Renormalons

hierarchy of scales —— logs

Soft and collinear gluon radiation fd4k Sudakoy locs
(nearly on-shell partons) 5

. . . [d*k
Running coupling logs in loops —  Renormalons
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Sudakov Logs

Incomplete cancellation between real and virtual corrections

The quark propagator
(for k* = 0 and p? = 0)

1 1 1

(p+E)2 — 2pk — 2E,Eq(1—cosfyy)

is singular at E, = 0 (soft) and at §,, = 0 (collinear)

e For infrared and collinear safe observables, the singularity itself
cancels but the coefficients contain residual logarithms.

e Each gluon emission generates up to two large logarithms
— multiple emission is important!

e Factorization properties of QCD matrix elements (and of the phase space)
— Exponentiation
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Renormalons

IR renormalons: the large—order behavior as a probe of large—distance effects

Example: vacuum polarization

D(Q%) = cpasZ/ a — o(k*/Q%) fhe 51 wQh|
— Cr /O TR /Q%) O‘Sff)
For small momenta (IR)  ¢(€) ~ € 3

For large momenta (UV)  ¢(e) ~ Ine€/e

o [T (’f) i (/@] = A, Az o

Minimal term at n ~ n,, = p/A. Ambiguity ~ n,,!n_"" ~ exp(—n,,) = (A2/Q2)p

e At large orders perturbation theory is factorially divergent.
e This is dictated by contributions of extreme momenta, UV or IR.

e The contribution from the IR region is non summable and generates ambiguous power terms.
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Example: renormalon ambiguity in the pole mass

(

The propagator:

]%_mM_S_E(pamM_S> m
Computed in the large—NN; limit

Off shell X(p, mgz ) has no renormalons
But applying the on—shell condition (inverse propagator vanishes at p? = m?):

mo_ ., CF /OOO du <A_22> lgegu (L= w4 wl(—2u) 43 — Ry, (u)

Mivre Bo me ['(3 —u) u

Beyond PT the pole mass is ambiguous...

Beneke & Braun; Bigi, Shifman, Uraltsev & Vainshtein (94)
and so is A = M — m.
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Kinematics in B — X,

In the B meson the b quark is close to its mass shell.
Therefore, perturbation theory (with an on-shell quark initial state) applies

(up to power corrections...). o 1 dT
q x = ; —| =901 —x)
photor} mp Lot dz |10
s quark

Perturbative endpoint: = = 1
Physical endpoint: © = Mpg/my; > 1

jet
m>2< =(Ps - CI)2

In the endpoint region the distribution
is smeared by radiation and by the primordial motion of the quark
——> conventional approach: leading power NP “shape function”.

Neubert; Bigi, Shifman, Uraltsev & Vainshtein (93)

Distinguish:
Additional energy available in the meson A = Mpg — my
Dynamical structure of the meson
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Large—x factorization in inclusive B decays

. Hard Jet Hard~

o
The spectrum can be computed

in PT: infrared— and collinear—safe

Dominated by Sudakov logs,
In(1 — x)

scales: P 4880[‘!

Hard: m
Jet: m% = (P, — q)? ¥~ m?*(1 —x) = m?/N
Soft: m(1 —x) = m/N

Loy 1drT
Spectral moments: rr = dxx™ —
P N /0 't dx

tot

Korchemsky & Sterman (94)

= H(m)J(m*/N; p)Ser(m/N; ) + O(1/N)
H(m)Sud(N,m) + O(1/N)
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Coefficients in the Sudakov exponent

oo n+l VS o\ \
L k Qg (m )
Sud(N, m) = expq — ChppIn® N
7
n=1 k=1
The coefficients C,, ; are known exactly to NNLL accuracy [Gardi (2005)]
For Ny =4 C), j, are:
e —
—1.564  0.667 0 0 0 0 0 0
3.837 —0.078 1.389 0 0 0 0 0
? 20.579 6.339 3.376 0 0 0 0
? ? 116.464  33.024 9.042 0 0 0
? ? ? 597.221  138.600 25.955 0 0
? ? ? ? 2859.284 548.170 78.492 0
? ? ? ? 13141.289  2129.058 247.233
? ? ? ? : ? 58941.217 8238.359
? ? ? ? ? ? ? 260391.559

e At a given order in a; the coefficients of subleading logs (lower k) get large...

e Is the fixed—logarithmic—accuracy approximation at LL / NLL / NNLL good?
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Conventional Sudakov resummation with NNLL accuracy

- n—1 -

o MS 2 MS 2
« m « m
Sud(N,m) = exp { Z gn(A) | = (m”) }; A= 2 (m’) Boln N
0 /i /A
C 1
go(N) = =S [(1 =X In(1=X) —=(1—2\) In(1—2))
Do 2
Sud(N, m) Corresponding spectra
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Coefficients in the Sudakov exponent in the large—(; limit

oo n+1 Cl{M_S (mz) n
Sud(N, m) = exp{ — ZZCn,klnkN ° }

v
n=1 k=1

The part in C,, ;. that is proportional to (3y)" ' is known to all orders:

kE —

_1.56 0.67 0 0 0 0 0

&2 1.24 0.90 1.39 0 0 0 0

61.17 28.32 8.28 3.38 0 0 0

l 1096.06 515.20 166.25 34.89 9.04 0 0

20399.23 10078.43 3231.40 793.25 131.33 25.95 0
444615.21 221481.03 73268.94 17791.58 3514.66 482.12 78.49

11342675.74 5665794.49 1883129.50 468180.33 91361.30 15080.79 1768.50
334032127.30 166960507.50 55609620.17 13867704.58 2760946.21 449959.01 63745.75

n—+1

e (), 1 increase for lower powers of In IV, building up Z C’n,klnkN ~n!f,(N)
k=1

e Truncation at fixed logarithmic accuracy is not a good approximation.

e Renormalon divergence sets in already at low orders — requires a prescription!
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expansion in a,(Q?)

Dressed Gluon Exponentiation

n Single Dressed Gluon

n!CpBy tan

Dressed Gluon Exponentiation (DGE)
(A?/W? is not negligible)

multiple emission
Sudakov Double Logs C’}}a?[zzn
asL <1 (W2 > A?)
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Dressed Gluon Exponentiation — the jet function

Borel representation of the Sudakov exponent:

In JN(Q; pur) = 1d:r;xN_1 ; L [ M(l e d—2A<Oés(,u )) (as (1—2)Q ))]

1 — 2
0 T

__Lr Tdw A [Bj(u)F(—u) (N" — 1) + B.a(u)In N],

Bo o u Q*

Q2

1

we defined B 7(u) = B4(u)—uBp(u) and used the Borel representation of the anomalous dimensions,

u u

) B CF 0o A2 . 0 B CF 0o A2
A(ozs(,u )) = du 5 Baw) B(as(,u )) =5 du 5 Bau),
1 _
O dea™ (1 — ) T = Fé(;)f(g) ~ I'(—u) N* x (14 O(1/N)).
In the large [y limit By (u) = o3 Slizu % (1 i - + ; —1u/2> X (1 + O(u/ﬁg)).

Infrared sensitivity appears as renormalon ambiguity in the Sudakov exponent
— parametrically—enhanced power corrections O(NA?/Q?) in the exponent
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Dressed Gluon Exponentiation — the soft function
Borel representation of the soft Sudakov exponent:

In Sn(Q; ur) = 1da:xN_1 — 1 [ " d—/ﬂA<Ozs(u2)> — D<as((1 — :c)QQQ))]

0 1l —=x (1—x)2Q2 /,LQ
C o ] A2 2
== T2 2 [Bs(u)r(—zu) (N2“ - 1) + Q—2 B(u) In N],
Bo o u Q K

where we defined Bs(u) = Ba(u) — uBp(u).
What does one gain?
Resummation of running—coupling effects beyond the available logarithmic accuracy

Upon choosing a prescription (e.g. PV) for the Borel integral, the divergent sum is defined.

Cancellation of certain renormalon ambiguities can then take place.

Landau singularities are absent.

The pattern of power corrections (observable dependent) can be studied:
singularities in I'(—2u) == power corrections (N A /Q)" in the exponent, except for Bs(u) = 0.

However, QCD perturbation theory gives the power expansion: Bs(u) =1 + syu + - - -
For DGE one needs to know Bs(u) also away from the origin — involves assumptions!
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Soft anomalous dimensions in the large—3; limit

5,5In Tu
Bs(u) = e bs(u) x (1+ O(u/Bo))
Observable bs(u) Bs(u) =0 power corrections
(1 — u) 13 AN *
Drell-Yan (2) u=—-,—, —— ] , k even
T(1 — 2u) 2’2 Q
ANNF
Heavy Jet Mass (1) / Thrust (2) 1 o) k integer
(1 ANNF
c parameter (2) 1+ (—) , k integer
['(1 4+ 2u) Q
Heavy Quark Fragmentation (1) ol AN F
Heavy Quark Distribution (1) (1 —u)— u=1 (—) Kk # 2
2 2 sin Ty m
(Q" =m7)
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Fpr(N;p) — <b(pb)

The quark distribution function

b(pb)>

[\If(y)v+ ®,(0,y) ‘I’(O)L —H(my, 1) S <&>

large N iy TN e
N Cr “du A2 " Np\ > N
S <—'u> = exp {—F @2 [Bg(u)F(—2u) (_u) —1 + By(u)ln (_u) ] }
mp Bo o u p? myp My
0 Wilson line y-
with Bs(u) = e3"(1 —u) X (1 + O(u/ﬁo))
B b quark field:zp A* =0gau

1 + s1u + spu®/2! + -+

. . . p M\
Renormalon in the exponent and their interpretation: /

On shell b quark

e Leading renormalon u = 1, O(AN/my), is related to the mass of (b(p,)|: e **"Y = e ™ N/my,

e Higher renormalons u > 3, (AN /my)" with k& > 3, correspond to the difference between
the momentum distribution in the on-shell quark and the (unambiguous) distribution in the meson:

+ O(1/N)

iPty——N

FNi) = (B B(Pr))
;

Ty @y (0,9) W (0)]
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Cancellation of the leading renormalon ambiguity

Owing to kinematic power corrections, the resummed E., spectrum is not influenced
by the u = 2 O(NA/m;) ambiguity of the perturbative Sudakov exponent:

deﬁ’ - my

1 dr 9 [etico gn sop N\ TN
/ ( ) H(my) J (/N 1) Sor (my /N )

Sud(my,N) Z ambiguous

9 c+100 dN [ 2FE —N — —1A/m
ﬁM—B/C o (M;) H(m)J (3 /N ) Sor (/N ) e (N D8/

271 my

—200

—100 1 IR
u=7 prescription independent

The cancellation is exact in all the moments, but it requires

e renormalon resummation in the Sudakov exponent

e renormalon resummation in A = Mp — my using the same prescription.
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Sudakov resummation beyond logarithmic accuracy
Cr > A2\
N, = —Ip T —
Sud(m, N)|,, exp{ﬁo V/O duT (u) (m2)
1

X — [BS(U)F(—ZU) (N** —1) — By(u)['(—u) (N* — 1)] }

U

What do we know about Bs(u) 7

u2

o NNLO in the full theory: Bg(u) =1+ 81% st
e Renormalon cancellation in Sud(m, N) e~ (V=DA/M jmplies:

Bs(u = 1/2) is equal in magnitude and opposite in sign
to the residue of the u = 1/2 renormalon in m/mys, which can be determined
from the known NNLO expansion in MS within a few percent.

e All orders in the large—03 limit: Bs(u) = o3 (1—u) +0(1/3).
The vanishing of Bs(u) at u = 1 is assumed to hold in general.
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Sud (NN, m)|p, with various approx. for Bs(u)

B — X4y spectrum: from moment space to F,

C > Az
Sud(m, N)|,, = exp {B_FPV duT(u) —

0 0 m?

<o [Bswr-2u (8= 1) = Byr-u (v - | },

dl'(E,)  mpy T dN <2E,Y> N

= “— H(m) Sud(m, N)|p,

c—100 T

mpy

Modified support properties:

Corresponding spectra

[ L T T
r T T T T T ] L ! |
Lo ] 0.0010 | P
ol ~ 0.0008 | :
B > [
> S [ |
& 0.6 I ] <~ 0.0006] |
z ‘ o [ |
= o [ .
& 0.4} 1 & 0.0004F |
[ e NNLL ] i ,
02F - NLL—DGE : 0.0002
I NNLL-DGE (residue fixed) 1 -
0.0 N R T R \.\\.\r\.\,. A 0.0000 S S — -
‘ 5 10 15 20 o5 30 1.6 1.8 2.0 R.2 2.4 2.6
N E, (GeV)
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Bs(u) away from the origin
Ansatz for Bs(u) that is consistent with the known O(u?) result in QCD (and the large—3y limit):

1 C 5 7 9
Bs(u) = e%u(l — u) X exp {02u + — [03 — o+ 4 <—772 + - — —Cg)] u2} X W(u)
2 o \ 18 9 2
— tlu—l—thuz 1 2 2\ _ 3
Wi(u) =e1™2 1 —tlu—|—§(t1 —to)u” ) =1+ O(u”).

Here t; 2 are fixed requiring:

Bs(u =1/2) = 0.914 4+ 3% (computed); Bs(u =3/2) = —0.23366 x C,
1 =] o 03[ _
- S C ]

S, (]

\"\‘ _ — 9. : :
C=0.0l—§ ! c\_z T 0.25— —
0 Y o - ]
/ o - _
e C ]
/ 5 02 .
~ —1 5 B NNLL-DGE: ]
< Ty - s N C=0.1 7
0 S 015 =0. —
- I - — =10 ]
-2 - C=10.0 ]
\ c=12 0.1 P'=3.5 GeV, EI=1.5 GeV ]
-3 B ]
0.05— —
_4 O; V'I‘ 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 :
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1 1.5 2 25
u P*[GeV]
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comparison to data: B — X,y branching fraction

e Theoretical uncertainty on the total BF ~ 10%

e Experimental cuts on E., do not significantly increase the overall uncertainty.

e The measured BF is consistent with the Standard Model.

0.3 —
0.25[ =
0.2 NNL_L-DGE: =
- — A=0.355 GeV .
0.15— ----A=0.405 GeV =
C A=0.455 GeV .
0.1 —
- e BaBar data ]
0.05 Mg/2 —
0: 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 1 :

1.6 1.8 2 2.2 2.4 2.6 2.8
E,[GeV]

e Possible determination of my!
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(e~ 22) Vo

2.3

2.25

2.2

comparison to data: cut moments in B — X,

< E’y >E’7>EO

1

L'(E, > Eoy) g,
1

L(E, > Eo) &,

v

v

dr(E,)

dE.,
dr'(E,)
dE.,

v

+ Belle data
¢ BaBar data

NNLL-DGE (residue fixe
0,=0.198

‘\\\\‘\\\\‘\\\\‘\\&\‘\\\\

T T | T T T | L | L I L I T T 17T I T T 7T T (\l'_' 0-06 I T
B + Belle data 7 2 -
B o BaBar data S C
- NNLL-DGE (residue fixed) 470.05(—
[ —7A=0.355GeV ] JRON
- ---A=0.405 GeV 8 =T
[ - A=0.455 GeV - A00
L — e
B a l// T~ e
// 1 ¥ 0.03f=._
IO ] 0.02f-
L ] 0.01]—
L1 [ [ | L1 i I oL
1.6 17 1.8 1.9 2 2.1 2.2 2.3 16

E, [GeV]

e The comparison suggests that power corrections are indeed small.

e In future: possible measurement of power corrections.
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Integrated B — X, spectrum

Integrating the spectrum with given experimental cuts:

e Hadronic Mass Cut: PTP~ < (1.7GeV)?, E; > 1GeV
e Small Lightcone Component Cut: P™ < 0.66 GeV , E; > 1 GeV

The effect of cuts on the P~ spectrum

Sensitivity of the Event Fraction to C'

=0.35[ \ \ T c 1F =
> - n = C ]
oS - NNLL-DGE: = © il ]
S 0.3 E,=0GeV, M =M, ] s 0.9 = =
[ A E,=1GeV, M=M, 7 - 0.8 -
k=] | - [ i -
= n E,=1GeV, M =1.7GeV . 7 @ o 4
025 ----- E=1GeV, M=17GeV, fully diff. 77T — T 0.7 NNLL-DGE: =
= - Eg=1GeV, P,,=0.66GeV ] - —c=1 3
0.2 } .......... E,=1GeV, P\ =0.66GeV, fully diff. { 0.6 ? ----- C=0.1 E
g : osf c=10 =
015 — - Bo=1GeV =
co e T e - 0.4 p=P’ =
0.1 = 0.3F" E
- R 0.2F =
0.05[— = & E
C m 0.1 =
o L L1 = \ L =

0 1 2 4 5 1 1.5 2.5 35
P [GeV] M, [GeV]
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Extraction of |V,;| from Belle data

AB(B — X,lv restricted phase space) = 73t (B — XulD) X Ryt
From Belle data

AB(PTP™ < (1.7GeV)?, E; >1GeV) = 1.24-10° (£13.4%)
AB(PT < 0.66GeV, E;, >1GeV) = 1.10-10"° (£17.2%)

and the computed event fraction

Rent(PTP™ < (1.7GeV)?, E; >1GeV) = 0.615  (+9.6%)
Roi(PT < 0.66GeV, E; >1GeV) = 0.535 (£15.2%),
we obtain
-3
V| = (4.35 + 0.28(yp + 0'14[th_tota1<mgﬂ_5>] + 0.22[th_cuts]> .10

|Vub|

-3
(4.39 + 0.36[cxp] T 0'14[th_tota1 i) + 0.38[th_cuts]> - 10
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Conclusions
e Resummed perturbation theory can be directly used as an approximation to inclusive B meson

decay spectra, without a leading power non-perturbative function.
— The leading renormalon cancels out with kinematic power corrections involving the pole mass.
Requires renormalon resummation with the same prescription in both
the Sudakov exponent and the pole mass.
— DGE vyields definite predictions for decay spectra in the on-shell approximation.
Beyond the logarithmic accuracy at hand (NNLL), the Borel sum of the exponent is constrained
by information on renormalon residues. For the quark distribution in an on-shell heavy quark
Bs(u = 1/2) was computed(!) and Bs(u = 1) vanishes(?)
— Contrary to Sudakov resummation with fixed logarithmic accuracy,
the DGE prediction is free of Landau singularities and stable.
— The DGE spectrum smoothly extends beyond the perturbative endpoint
lts support is close to the physical one, provided that Bs(u) is not too large at intermediate w.
e Application to B — X,v:
Predictions for moments in the experimentally—accessible range E, > Ej agree well with data.
Potential measurement of my.

e Application to charmless semileptonic decay™:
The event fraction for an invariant mass cut PT P~ < (1.7 GeV)* has £10% accuracy.
Consistent values for |V,,;| are obtained from two different cuts.

“The program can be found at: www.hep.phy.cam.ac.uk/~andersen/BDK/B2U

Einan Gardi (University of Cambridge) KEK, October 2005 27



