## DUSEL

### (U.S. Deep Underground Science and Engineering Lab) and UNO (Underground proton decay and Neutrino Observatory)

### Jeffrey Wilkes U. of Washington, Seattle



*KEK* 1 Nov 2005



http://ale.physics.sunysb.edu/uno/

http://nngroup.physics.sunysb.edu/husep/

### Outline

- DUSEL in USA
- DUSEL @ Henderson Mine (Colorado)
- UNO, and where it could go
  - Overview
  - Physics goals, briefly
  - Neutrino beams to UNO?
  - Outreach and education

#### **DUSEL:** Deep Underground Science and Engineering Lab

• A long-standing dream in USA! e.g., see **PROPOSAL FOR A NATIONAL UNDERGROUND SCIENCE FACILITY.** By <u>Alfred K. Mann</u> (<u>Pennsylvania II</u>). Presented at Workshop on Science Underground, Los Alamos, N. Mex. Sep 27 - Oct 1, 1982. Published in **AIP Conf.Proc.96:16-36,1983** 

- Initiative by US National Science Foundation (NSF)
  - Create a new national lab for underground science
  - Supports research on physics, geology, biology (life in extreme environment), mine/tunnel engineering
- 2nd (recent) attempt to do this!
  - 2003: Bahcall and Haxton led "NUSEL" process
    - Conclusion: Homestake mine is best site
      - But: many thought selection process was biased
    - South Dakota government failed to act promptly mine was sold to company in Canada, closed, and allowed to flood!
      - Estimated cost to restore = \$50 million

### U.S. DUSEL process now

- Solicitation 1 (2004): Define requirements for *potential* underground experiments in physics, geosciences, biology, & engineering
  - 14 working groups established
  - Meetings and workshops (too many!): final report due soon
- Solicitation 2 (2005): Different sites respond: conceptual designs for DUSEL
  - Proposals from sites in California (San Jacinto), Washington (Icicle Creek), Minnesota (Soudan), and several others
  - Two finalist sites: Homestake Mine and Henderson Mine
  - Funding of 0.5M\$ each provided to prepare proposal
- Solicitation 3 (2006): submit construction proposals
  - final choice of site in late 2006 ?

Work on S-2 is going on NOW!

#### DUSEL Candidates: first round (2004)



### DUSEL Candidates: July, 2005



#### Henderson Underground Science/Engineering Project



### Henderson Mine (near Denver, Colorado USA)



# Using site details for simulations and proposal

- Working molybdenum mine; 150M\$ modernization completed in 2000
- Easily accessible; near expressway, roads kept clear in winter
- Near major urban/industrial area and airline hub
  - < 1.5 hr drive from Denver International Airport
  - Nearby research infrastructure, institutes and universities:
    - U. Colorado, NIST, Colorado State U., Denver U., USAFA, Colorado College, Aspen Center for Physics
  - Direct flights to cities around the world

J. Wilkes, 1 Nov '05

### Henderson Mine, Empire, Colorado



### Henderson Mine

- Owned by Climax Molybdenum Company, a subsidiary of Phelps Dodge Corporation
- Opened in 1970's
  - modern mine, developed under strict environmental and safety regulations: company just spent \$150M updating
- Mining molybdenum (Mo) ore, by 'Block Caving'
- Huge elevator/hoist for vertical access
  - 8.5 m diameter shaft with with two hoisting compartments
  - Elevator: 7m long X 2.5m wide X 4m tall, 50 tons capacity
    - Can carry a ship container
    - Or 200 people...



- Now:>1000m deep, minimum overburden ~3000 mwe
  - Can go deeper...

J. Wilkes, 1 Nov '05

### Elevator and office space

### Main elevator

### 1 Tom Kirk = 2m



### Surface buildings

[Thanx to R. Wilson for photos]

### **Excellent DUSEL Site**



### Henderson Mine parameters

- Excavation Capacity: ~40,000 50,000 ton/day
  - Actual operation: ~20,000 30,000 ton/day
    - under-utilized capacity
- 15km tunnel with high speed conveyor and train track
  - Conveyor belt: 50kton/day max capacity, 20kton/day normal operation
- Electric power station: 2 x 30 MW
- Rock disposal site (approved) with huge capacity
- Large office buildings and warehouses
- Anticipated mine closing in 10~20 years
  - Mine Co. and local politicians see underground science as way of retaining employment, revitalizing local economy, etc
  - Local residents are supportive: most are miners!

J. Wilkes, 1 Nov '05

### Henderson: Big toys for big boys (and girls) !



#### 10 ton underground loader.

#### 80 ton side-dump truck.



### Jumbo Boom Drill

### Mining @ Henderson: how to make tunnels cheaply

Basic drilling cycle for drill and blast tunneling:

- 1. Survey and setup
- 2. Drilling
- 3. Charging
- 4. Blasting
- 5. Ventilation
- 6. Scaling
- 7. Mucking
- 8. Scaling
- 9. Bolting



### Gigantic Rock Handling/Removal System



- 1. 80 ton trucks dump rock at crusher.
- 2. 17 km underground conveyors belts remove rock.
- 3. 7 km surface conveyor to mill site.
  - 40~50 kton/day capacity

#### Cheapest excavation cost: ~ \$60/ton



### Conveyer belts total 25 km

### Ore conveyer tunnel can give horizontal access after mining is finished







### Last year: core sample from DUSEL area

- Universities and Colorado government funded exploratory core drill into the proposed DUSEL site
  - 750 m long, inclination of 26 degrees, right through proposed Central Campus area
- Results = good news:
  - 'Extremely competent' porphyry (granite)
  - Very hard with a high percentage of quartz.
  - Expected to have high compressive strength
    We evidence of mineralization/
    - 'No evidence of mineralization'
- No Mo: company won't want to mine here!
  - No problem foreseen for constructing DUSEL



#### **Experimental areas**

- Upper campus
  - Old company machine shop (32k ft<sup>2</sup> area) at UC-1 level (8100' asl, 2500 mwe) can be ready for experiments within a few months, at cost of 100K\$
  - Slightly deeper UC-2 (7700' asl, 3100 mwe) also possible quickly
- Central Campus
  - 6750' asl, 4200 mwe overburden
  - Accessed by new ramps from existing shaft area, ~2 years
  - Several large, multipurpose rooms (~20x20x100 m<sup>3</sup>)
  - Natural location for megaton-scale proton decay/neutrino detector UNO (not part of official DUSEL scope)
- Possible: Midway Campus at bend in access tunnels
  - 5800' asl, 5100 mwe overburden
- Lower Campus
  - 4900' asl, 6000 mwe overburden
  - In ~5 years: several rooms sized ~20x20x50 m<sup>3</sup>
  - For projects requiring lowest background
    - double-beta decay, dark matter, solar neutrinos
  - Second core drill in planning stage, to confirm geology





#### Compare Dark Matter Sensitivity to other mines:



#### **UNO Detector Concept**

- Water Cherenkov Detector optimized for:
- Light attenuation length limit
- PMT pressure limit
- Cost (staging built-in) (Total \$500M incl. contingency)

3 sections, each (60m)<sup>3</sup> 13x Super-K total mass 20x Super-K fiducial mass excavation: \$100~250M

60m

60m

40% photocathode

2.5m veto layer with outward-facing PMTs optical separation between sections

10%

photocathode

60x60x180m<sup>3</sup> Total Vol: 650 kton Fid. Vol: 440 kton Inner: 56,000 20" PMTs Outer: 14,900 8" PMTs Detector cost: \$250M

#### Salient features

- ~ 20X Super-K fiducial mass
- Build on well-known water Cherenkov techniques
  - Significant new detector development not required
    - Cost estimates can be made with reasonable confidence, BUT
    - Detector R&D may reduce costs significantly
- Site independent proposal!
  - Henderson Mine site would be ideal, but...
  - More or less independent of DUSEL site selection process
    - DUSEL will not include funding for UNO anyway
  - Physics goals can be met at any site with <a>3000</a> mwe depth

### UNO Collaboration: 98 members, 40 institutes

| ANL                                     | GRPHE / UHA - Mulhouse, France              | LANL                           | SUNY at Stony Brook             |  |  |
|-----------------------------------------|---------------------------------------------|--------------------------------|---------------------------------|--|--|
| Maury Goodman                           | Yann Benhammou                              | Todd J. Haines                 | Marcus Ackerman                 |  |  |
| D. Reyna                                | Gyeongsang National Univ., Korea            | Louisiana State Univ.          | John Hobbs                      |  |  |
| R. Talaga                               | S. H. Kim                                   | Bob Svoboda                    | Chang Kee Jung                  |  |  |
| J. Thron                                | I. G. Park                                  | Univ. of Minesota, Duluth      | Tokufumi Kato                   |  |  |
| BNL                                     | C. S. Yoon                                  | Alec Habig                     | Dan Kerr                        |  |  |
| Milind Diwan                            | Indiana Univ.                               | Univ. of Minesota, Minneapolis | Kenkou Kobayashi                |  |  |
| Maurice Goldhaber                       | Rick Van Kooten Marvin Marshak              |                                | Matthew Malek                   |  |  |
| Dick Hahn                               | INFN-Napoli Earl Peterson                   |                                | Bob McCarthy                    |  |  |
| Brett Viren                             | Vittorio Paladino                           | Univ. of Nebraska              | Clark McGrew                    |  |  |
| Minfang Yeh                             | INFN-Padova                                 | Dan Claes                      | Michael Rijssenbeek             |  |  |
| Caltech                                 | Mauro Mezzetto                              | NHMFL                          | Antony Sarrat                   |  |  |
| Christopher Mauger                      | INR (Institute for Nuclear Research), Rusia | John Miller                    | Ryan Terri                      |  |  |
| Univ. of California, Davis              | Leonid Bezrukov                             | Univ. of New Mexico            | Chiaki Yanagisawa               |  |  |
| Daniel Ferenc                           | Anatoly Butkevich                           | Sally Seidel                   | IRES / ULP - Strasbourg, France |  |  |
| California State Univ., Dominguez Hills | Marat Khabibullin                           | Northern Illinois Univ.        | Chantal Racca                   |  |  |
| Ken Ganezer                             | Yury Kudenko                                | Gerald C. Blazey               | Jean-Marie Brom                 |  |  |
| Jim Hill                                | Stanislav Mikheyev                          | Dhiman Chakraborty             | Tuft Univ.                      |  |  |
| Bill Keig                               | Iowa State University                       | David Hedin                    | Tomas Kafka                     |  |  |
| Univ. of Cantania, Italy                | Jim Cochran                                 | Northwestern Univ.             | Tony Mann                       |  |  |
| Renato Potenza                          | Univ. of Kansas                             | Heidi Schellman                | Univ. of Utah                   |  |  |
| Colorado School of Mines                | Phil Baringer                               | Okayama Univ., Japan           | Kai Martens                     |  |  |
| John Fanchi                             | Dave Besson                                 | Makoto Sakuda                  | Warsaw Univ., Poland            |  |  |
| Uwe Greife                              | Kansas State Univ.                          | Purdue Univ.                   | Danka Kielczewska               |  |  |
| Murray Hitzman                          | Tim Bolton                                  | Wei Cui                        | Univ. of Washington             |  |  |
| D. Scott Kieffer                        | Eckhard von Toerne                          | John Finley                    | Rick Gran                       |  |  |
| Mark Kuchta                             | Ron A. Sidwell                              | Saclay, France                 | Jeff Wilkes                     |  |  |
| James McNeil                            | Noel Stanton                                | Jacques Bouchez                | Tianchi Zhao                    |  |  |
| Fred Sarazin                            | KEK, Japan                                  | Luigi Mosca                    | College of William and Mary     |  |  |
| Colorado State Univ.                    | Taku Ishida                                 | Francois Pierre                | Jeff Nelson                     |  |  |
| John Holton                             | Kenzo Nakamura                              | Sejong University, Korea       | WIPP                            |  |  |
| Jim Sites                               | Kyungpook National Univ., Korea             | Yeongduk Kim                   | Roger Nelson                    |  |  |
| Walter Toki                             | Wooyoung Kim                                | Jungyeon Lee                   | Bill Thompson                   |  |  |
| Dave Warner                             | Vitaly Batourine                            | Jungil Lee                     |                                 |  |  |
| Bob Wilson                              | Seungwook Jin                               |                                |                                 |  |  |
|                                         | Dmitriy Nekrasov                            |                                |                                 |  |  |

joined in past year

### Advisory committees

- UNO advisory committee
  - Jacques Bouchez (Saclay)
  - Maury Goodman (ANL)
  - Tom Kirk (BNL)
  - Takahaki Kajita (ICRR)
  - Tony Mann (Tufts)
  - Kenzo Nakamura (KEK)
  - Masayuki Nakahata (ICRR)
  - Yoichiro Suzuki (ICRR)
  - Jeff Wilkes (U. of Washington)
  - Bob Wilson (Colorado State U.)

- Theoretical advisory committee
  - John Bahcall (IAS/Princeton)
  - John Beacom (FNAL)
  - Adam Burrows (U. of Arizona)
  - Maria Concepcion Gonzales-Garcia (Stony Brook)
  - Jim Lattimer (Stony Brook)
  - Bill Marciano (BNL)
  - Hitoshi Murayama (Berkeley)
  - Jogesh Pati (U. of Maryland)
  - Robert Shrock (Stony Brook)
  - Frank Wilczek (MIT)
  - Edward Witten (IAS/Princeton)

#### Tank liner and concept for PMT mounting



### **UNO Design and Construction Timeline**

| Conceptual UNO Schedule |         |         |        |   |   |   |   |   |   |   |             |    |
|-------------------------|---------|---------|--------|---|---|---|---|---|---|---|-------------|----|
|                         | Year -2 | Year -1 | Year 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9           | 10 |
| R&D Proposal/LOI        |         |         |        |   |   |   |   |   |   |   |             |    |
| Tech. Proposal          |         |         |        |   |   |   |   |   |   |   |             |    |
|                         |         |         |        |   |   |   |   |   |   |   |             |    |
| Excavation              |         |         |        |   |   |   |   |   |   |   |             |    |
| Water containment       |         |         |        |   |   |   |   |   |   |   |             |    |
| PMT delivery            |         |         |        |   |   |   |   |   |   |   |             |    |
| Preparation             |         |         |        |   |   |   |   |   |   |   |             |    |
| Installation            |         |         |        |   |   |   |   |   |   |   |             |    |
| Water fill              |         |         |        |   |   |   |   |   |   |   |             |    |
|                         |         |         |        |   |   |   |   |   |   |   | contingency |    |

Two years of rigorous detector design needed Proposal just submitted (10/05) for R&D funding



- Multi-purpose detector
- Comprehensive programs in astrophysics, nuclear and particle physics
- Synergy between accelerator and non-accelerator physics
- Nominal cost: ~\$450M total (~\$400M for site @ Henderson mine)



UNO Proton Decay Sensitivity

Need help from theorists to update this!)

#### J. Wilkes, 1 Nov '05

### Supernovae



UNO's Supernova Reach: ~ 1 Mpc (Local Group of galaxies)

Supernova Rate: ~ 1 per 10 ~ 15 yr

140K events for SN @ 10 kpc

#### **Galactic Supernova**



~140,000 events in UNO:

msec timing structure of the flux  $\Rightarrow$  Determination of core collapse mechanism Possible Observation of Birth of a Black Hole via cutoff

J. Wilkes, 1 Nov '05

### Diffuse supernova relic flux

- Super-K limit (1.2 v<sub>e</sub>/cm<sup>2</sup>s >19 Mev @ 90%CL) must be reduced by factor of ~6 to address all current predictions
- Can be reached by UNO in ~6 yrs @ 4000 MWE depth (longer if shallower)
  - Event rate 20~60 / year for 450 MT fiducial volume
  - BG-limited search

#### Direct Observation of Oscillatory Behavior in atm v L/E



### DUSEL Candidate Sites and Potential VLBL/Superbeam Experiments

#### N2O° 105° 90° 75° Lake Canada 8 Winnipeg Recina innipe Spokane, Quebec MISSING Lake Montreal North Dakota Superior. lelena Sudbury Montana Faige Ottawa 🔿 Duileth Bismarck 🛱 Aùqus' Montpelier <u>130</u> N.H. Michigan km Idaho Lake Huron Homestake Minne apolis Boise Dalota Łake Toront 2560 km Ontarie Boston **O**Pierr Albany 🔍 Mass.-Wisconsin Stales Providence Nev York Hartford W yoming 1315 km Lansing Corn Màdison 👜 FNA Pennsylvania Inwa 1 Harrisburg Chiladelphia Trenton Henderson de 500 km Netraska BN willes Moines t٧ Pittsburgh Indiana aDo ver Columbus Washington CAnnapolis Lincoln® Illinois nada **etndranapolis** $D \cap$ West ∽Dekavare Springfield: 2760 km Dernver Y irgiria Utah Cdasto. Charleston o Kansas Oity Pichmond a Topeka® Filankfort St.Lous Nonolk <mark>Jeffe</mark>rson Citv<sup>®</sup> Kansas Chio. Atlantic Y irginia Kentucky Missour Ocea Rateigh Arizon a Nashville 🏟 North Canoliná Santa Fe<u>/</u> Tulss Oklahoma City T ennessee South Arkanses Albuquerque Memphis Columbia 🗃 Salahan Okkhoma Little Rock Phoenix 🛛 Atlanta Nev √Mexico United State Challeston Birmingham 🍦 ž Ft. Worth Dalas Tucsor $\odot$ Montgomer y National capital Georgia Jackson El Pas Lousiana Alabama State capital T exas Mississippi Secondary dity Jacksonville Tallahassee Prim ary road Baton Rouge Austin Mexico Florda Nev Orleans Railroad Holston San Antoni State borcer

37

J. Wilkes, 1 Nov '05

### Why VLBL?

 Marciano pointed out that for HE neutrino beams, 2nd and 3rd oscillation dips can be very handy...

Marciano (hep-ph/0108181):

- Yes, statistics fall off with baseline  $(1/L^2)$
- but, CP asymmetry grows with baseline (L)
- so, FOM =  $A^2 N_{\nu}/(1 A^2)$  is ~constant



Message: don't be afraid to get high and go long!

M. Diwan, B. Viren

### **3-D Neutrino Super Beam Perspective**



**US Department of Energy** Brookhaven Science Associates T. Kirk February 15, 2003



### Now and near future

- UNO R&D proposal submitted to US DOE and NSF
  - UNO is still site-independent
  - Let's build it wherever we can!
- DUSEL @ Henderson Physics Workshop planned for Nov 18-19, 2005 at CSU, Ft. Collins, Colorado

See <u>http://ale.physics.sunysb.edu/husep</u> and click on "Conferences and Workshops"

- HUSEP Physics Committee (J.W. = chair) Working groups:
  - Neutrino mass (solar, 0vββ)
  - Neutrino mixing (atm v, LBL)
  - Dark matter/nuclear physics
  - Nucleon decay
  - Astrophysics

