Seminar

seminar

Thermalization process and DM production in the reheating era (in English)

  • PLACE Kenkyu-honkan 1F meeting room 3

We estimate dark matter density for the Universe with a reheating temperature smaller than the mass of dark matter, assuming dark matter to be a weakly interacting massive particle. During the reheating process, an inflaton decays and releases high-energy particles, which are scattered inelastically by the thermal plasma and emit many particles. Dark matters are produced through these inelastic scattering processes and pair creation processes by high-energy particles. We properly take account of the Landau-Pomeranchuk-Migdal effect on inelastic processes and show that the resultant energy density of dark matter is much larger than that estimated in the literature and can be consistent with that observed when the mass of dark matter is larger than O(100) GeV.


ページ先頭へ戻る