2011年6月14日
独立行政法人 日本原子力研究開発機構
大学共同利用機関法人 高エネルギー加速器研究機構
【発表のポイント】
独立行政法人日本原子力研究開発機構【理事長 鈴木篤之】量子ビーム応用研究部門石井賢司研究副主幹らは、国立大学法人東北大学【総長 井上明久】、大学共同利用機関法人高エネルギー加速器研究機構【機構長 鈴木厚人】及び財団法人国際高等研究所【所長 尾池和夫】と共同で、放射光X線を用いて励起状態(電子が、通常の基底状態より高いエネルギーを持つ状態)における電子の広がりの様子を調べる測定手法を開発し、その有効性を大型放射光施設SPring-8で実証しました。
銅酸化物高温超伝導体などの遷移金属化合物1)においては、物質中で電子がどのように広がっているか(軌道状態2))が電子の動きやすさや相互作用の伝搬する方向を決定する上で重要であると考えられています。共鳴非弾性X線散乱法3)は、このような電子の軌道状態を変えるような励起を観測できる実験手法ですが、これまでは様々な軌道状態への励起状態が混在し、区別することが難しいとされてきました。
この課題を解決するために、今回、当研究グループはX線の特性の一つである偏光4)に注目し、散乱X線(試料によって散乱されて出てくるX線)の複数の偏光成分を分離できる装置を開発しました。この装置によって、共鳴非弾性X線散乱実験において偏光特性を調べることができます。そして、この手法を用いてSPring-8で実験を行い、どのような軌道状態へ電子が励起されたか識別することができることを遷移金属化合物である銅フッ化物KCuF3 5)で実証しました。
今回の手法開発とその実証により、偏光特性を解析した共鳴非弾性X線散乱法を用いれば、特に強相関電子系で発見されている超伝導、磁性や誘電特性など様々な物性・機能に関わる電子軌道の励起状態の種類を理論モデルによらないで決定でき、これらの機能発現機構解明が加速されるものと期待されます。
なお、本研究の一部は、科学技術振興機構(JST)戦略的創造研究推進事業チーム型研究(CREST)の研究領域「次世代エレクトロデバイスの創出に資する革新材料・プロセス研究」の一環として行われ、米国物理学会誌”Physical Review B”のRapid CommunicationsにEditors’ Suggestionとして6月14日(現地時間)にオンライン版に掲載される予定です。
遷移金属化合物には、銅酸化物における高温超伝導やマンガン酸化物における巨大磁気抵抗効果など、有用な性質を示す物質が数多く存在していることが知られています。また、これらの物質では電子の間に強い相互作用が働いており、その理論的な取り扱いは非常に難しいことから、基礎科学的な観点からも数多くの研究が続けられています。その主役となるのが遷移金属原子中の電子(d電子)であり、物質中でのd電子の広がりの様子(軌道状態)が電気の流れやすさや、相互作用の伝播方向など、遷移金属化合物の性質を決める上で重要な役割を果たすことがしばしば見られます。従って、遷移金属化合物においては、軌道状態を識別した上でその振る舞いを調べることが、物質の性質を理解する上で不可欠となります。
遷移金属化合物中の電子の運動状態(エネルギーと運動量)を調べることができる実験手法として、共鳴非弾性X線散乱法が発展してきています。この手法は、最先端の放射光X線を用いることでようやく可能となった新しい分光法です。しかしながら、運動状態を調べる上での有効性は認められてきたものの、d電子の軌道状態を実験のみで区別することは困難であり、これまでは理論計算の助けが必要でした。
図1
今回、独立行政法人日本原子力研究開発機構(以下、原子力機構)量子ビーム応用研究部門の石井賢司研究副主幹らのグループは、光の持つ重要な特性である偏光に着目し、共鳴非弾性X線散乱における偏光特性を調べることで軌道状態を識別することができるのではないか、と考えました。
そこで、まず、X線の偏光状態を分離して検出することができる偏光解析装置を製作し、大型放射光施設SPring-8の原子力機構ビームラインBL11XUに設置されているX線非弾性散乱分光器にとりつけました。SPring-8の蓄積リングから出てくる放射光X線の偏光方向は良くそろっているので、それをそのまま試料に入射し、実際の実験では試料により散乱された側のX線の偏光特性をこの偏光解析装置により調べることになります。偏光解析実験の概念図を図2に示します。
一方、試料面では、電子の複数の励起状態を見るため、d電子軌道状態が整列した銅フッ化物KCuF3を選択しました。単結晶の精度が実験の精度にも影響することから、KEKの村上洋一教授らはブリッジマン法6)にて高品質の単結晶を育成しました。
図2
測定で得られた共鳴非弾性X線散乱スペクトルの一つを図3に示します。赤丸と青丸が実験データで、それぞれ図2に示した散乱X線の赤と青の偏光状態に対応しています。図3には、対応するエネルギー位置にd電子軌道状態もあわせて示しています。(0eVにある軌道状態をエネルギーの基準に取っています。)
図3
KCuF3の軌道状態を変える散乱は、スペクトルの1.0eVから1.5eV辺りに観測されます。赤色のデータで示す偏光条件では1.4eVにピーク構造があり、図の赤い矢印で示した軌道状態の変化に対応します。一方、青色のデータでの偏光条件では、1.4eVに加えて、1.0eVにも散乱強度があり、二本の青い矢印で示した二種類の励起が同時に観測されていることがわかります。即ち、1.0eVの励起と1.4eVの励起は共鳴非弾性X線散乱において異なる偏光特性を持っており、それを調べることで二つの電子励起状態を識別できるということになります。さらに、この偏光特性は共鳴非弾性X線散乱の散乱過程を考えた理論モデルでよく説明できることもわかりました。
本研究は、共鳴非弾性X線散乱における散乱X線の偏光特性を世界で初めて調べることに成功し、この手法がこれまで不可能であったd電子の軌道状態を変える励起の識別に有効であることを示したものです。一般に、光の偏光特性と電子の軌道状態の持つ対称性とは厳密に結びついていると考えられており、今後、共鳴非弾性X線散乱の偏光特性を調べることで、理論計算に頼らず実験のみから物性に関わる電子軌道状態を決定できるようになり、さらには、超伝導や磁性など遷移金属化合物の物性発現機構解明が加速されると期待されます。